
avarice(1) avarice(1)

NAME
avarice − Provides an interface from avr-gdb to Atmel’s JTA GICE box.

SYNOPSIS
av arice [OPTIONS]... [[HOST_NAME]:PORT]

DESCRIPTION
AV aRICE runs on a POSIX machine and connects to gdb via a TCP socket and communicates via gdb’s
"serial debug protocol". This protocol allows gdb to send commands like "set/remove breakpoint" and
"read/write memory".

AV aRICE translates these commands into the Atmel protocol used to control the AVR JTAG ICE. Connec-
tion to the AVR JTAG ICE is via a serial port on the POSIX machine.

Because the GDB <---> AVaRICE connection is via a TCP socket, the two programs do not need to run on
the same machine. In an office environment, this allows a developer to debug a target in the lab from the
comfort of their cube (or even better, their home!)

NOTE: Even though you can run av arice and avr−gdb on different systems, it is not recommended
because of the security risk involved. av arice was not designed to be a secure server. There is no
authentication performed when a client connects to av arice when it is running in gdb server mode.

Supported Devices
av arice currently has support for the following devices:

atmega16
atmega162
atmega169
atmega323
atmega32
atmega64
atmega128
at90can128 (experimental)

Supported File Formats
av arice uses libbfd for reading input files. As such, it can handle any file format that libbfd knowns about.
This includes the Intel Hex, Motorola SRecord and ELF formats, among others. If you tell av arice to read
an ELF file, it will automatically handle programming all of the sections contained in the file (e.g. flash,
eeprom, etc.).

OPTIONS
−h, −−help

Print this message.

−d, −−debug
Enable printing of debug information.

−D, −−detach
Detach once synced with JTAG ICE

−C, −−capture
Capture running program.
Note: debugging must have been enabled prior to starting the program. (e.g., by running avarice
earlier)

−I, −−ignore-intr
Automatically step over interrupts.
Note: EXPERIMENTAL. Can not currently handle devices fused for compatibility.

−f, −−file <filename>
Specify a file for use with the --program and --verify options. If --file is passed and neither --pro-
gram or --verify are given then --program is implied.

February 6, 2004 1



avarice(1) avarice(1)

−j, −−jtag <devname>
Port attached to JTAG box (default: /dev/avrjtag).

−B, −−jtag-bitrate <rate>
Set the bitrate that the JTAG box communicates with the avr target device. This must be less than
1/4 of the frequency of the target. Valid values are 1MHz, 500KHz, 250KHz or 125KHz. (default:
1MHz)

−p, −−program
Program the target. Binary filename must be specified with --file option.
NOTE: The old behaviour of automatically erasing the target before programming is no longer
done. You must explicitly give the --erase option for the target to be erased.

−v, −−verify
Verify program in device against file specified with --file option.

−e, −−erase
Erase target.

−r, −−read-fuses
Read fuses bytes.

−W, −−write-fuses <eehhll>
Write fuses bytes. ee is the extended fuse byte, hh is the high fuse byte and ll is the low fuse byte.
The fuse byte data must be given in two digit hexidecimal format with zero padding if needed. All
three bytes must currently be given.
NOTE: Current, if the target device doesn’t hav e an extended fuse byte (e.g. the atmega16), the
you should set ee==ll when writing the fuse bytes.

−l, −−read-lockbits
Read the lock bits from the target. The individual bits are also displayed with names.

−L, −−write-lockbits <ll>
Write lock bits. The lock byte data must be given in two digit hexidecimal format with zero pad-
ding if needed.

−P, −−part <name>
Target device name (e.g. atmega16)

HOST_NAME defaults to 0.0.0.0 (listen on any interface) if not given.

:PORT is required to put avarice into gdb server mode.

EXAMPLE USAGE
avarice --erase --program --file test.bin --jtag /dev/ttyS0 :4242

DEBUGGING WITH AVARICE
The JTAG ICE debugging environment has a few restrictions and changes:

• No "soft" breakpoints, and only three hardware breakpoints. The break command sets hardware break-
points. The easiest way to deal with this restriction is to enable and disable breakpoints as needed.

• Two 1-byte hardware watchpoints (but each hardware watchpoint takes away one hardware break-
point). If you set a watchpoint on a variable which takes more than one byte, execution will be
abysmally slow. Instead it is better to do the following:

watch *(char *)&myvariable

which watches the least significant byte of myvariable.

• The Atmel AVR processors have a Harvard architecture (separate code and data buses). To distinguish
data address 0 from code address 0, avr-gdb adds 0x800000 to all data addresses. Bear this in mind
when examining printed pointers, or when passing absolute addresses to gdb commands.

February 6, 2004 2



avarice(1) avarice(1)

SEE ALSO
gdb(1), avr−gdb(1), insight(1), avr−insight(1), ice−gdb(1), ice−insight(1)

AUTHORS
Av arice (up to version 1.5) was originally written by Scott Finneran with help from Peter Jansen. They did
the work of figuring out the jtagice communication protocol before Atmel released the spec (appnote
AVR060).

David Gay made major improvements bringing avarice up to 2.0.

February 6, 2004 3


