(1) $->\mathrm{Z}==>$ Integer; $\mathrm{Q}==>$ Fraction Z ;

Line analysis:

- "Integer" recognized as $\backslash \mathrm{bb}\{\mathrm{Z}\}$
- $==>$ recognized as macro alias
-

Output: $Z \equiv \mathbb{Z}, Q \equiv \mathbb{Q}$
(2) $->\mathrm{f}(\mathrm{q}: \mathrm{Q}): \mathrm{Q}==\operatorname{truncate}\left(\operatorname{abs}\left(\mathrm{q}^{*} \cos (\mathrm{q}:: \text { Float })\right)+1\right)^{*}(\mathrm{q} / 2+1)$

Line Analysis:

- $\mathrm{f}(\mathrm{q}: \mathrm{Q}): \mathrm{Q}==$ recognized as function lead in
- Recognize algebraic expression
- Parse
- Convert to latex

Output:
$q \in \mathbb{Q}, f(q) \in \mathbb{Q}$
Definition 1. $f(q)==\left\lfloor\left(|(q \cdot \cos (q)+1)| \cdot\left(\frac{q}{2}+1\right)\right)\right.$
(3) $->\mathrm{s}$: Stream Q := $\operatorname{stream}(\mathrm{f}, 0)$

Definition 2. Line analyis:

- Recognize assigment "s:"
- Recognize data type Q
- Recognize stream as "sequence"

Output: Here we have a choice of how to explain sequence. I would do it: s is the sequence of $f(0 \ldots)$ leading terms are $\left[0,1, \frac{3}{2}, \ldots\right]$
or
s is the sequence of
$\left\lfloor\left(|(q \cdot \cos (q)+1)| \cdot\left(\frac{q}{2}+1\right)\right.\right.$
leading terms are $\left[0,1, \frac{3}{2}, \ldots\right]$
(4) $\mathrm{p}:=\operatorname{series}(\mathrm{s}) \$$ UnivariateFormalPowerSeries(Q)

Line analysis:

- Recognize assignment of "p"
- Recognize "series" means \sum
- Recognize "series(s)" and if s is defined at this level expand it to notice $f()$

Output:
p is a series over
$f(): \sum_{k} f(k) \frac{x^{k}}{k!}$
(again a choice about displaying leading terms)
Leading terms are
$x+\frac{3}{2} x^{2}$
And so on \qquad

