
Combinatorics in PanAxiom

Alasdair McAndrew

November 2015

PanAxiom currenly contains a little combinatorial functionality. The source
file combfunc.spad contains a few functions for dealing with factorials, and
permuations themselves and permutation groups are provided by perm.spad

abd permgrp.spad.
However, there seems to be no functionality for listing permutations. This

is the beginning of attempting to address that lack.
We have written a few functions (in the Interactive Language) as a proof of

concept. They can be rewritten into a spad file later.
The functions include methods for listing subsets, permutations and derange-

ments, and set partitions;

Subsets

powerSet Given a set, produces its power set: the set of all subsets. For
example:

() -> S := set[4,14,46,5]

{4,5,14,46}
Type: Set(PositiveInteger)

() -> powerSet(S)

{{}, {4}, {5}, {5,4}, {14}, {14,4}, {14,5}, {14,5,4}, {46},
{46,4}, {46,5}, {46,5,4}, {46,14}, {46,14,4}, {46,14,5},
{46,14,5,4}}

Type: Set(Set(Any))

There is no restriction on the elements of the set:

() -> S:=set["A",2.5,vector[1,2,3]]

{"A",2.5,[1,2,3]}
Type: Set(Any)

() -> powerSet(S)

{{}, {"A"}, {2.5}, {2.5,"A"}, {[1,2,3]}, {[1,2,3],"A"},
{[1,2,3],2.5}, {[1,2,3],2.5,"A"}}

Type: Set(Set(Any))

1



choose The function choose(S,n) lists all subsets of S containing n elements.
There is no restriction on elements of S:

() -> S:=set["cat","dog","fly","eel"]

{"cat","dog","eel","fly"}
Type: Set(String)

() -> choose(S,2)

{{"eel","fly"}, {"dog","fly"}, {"dog","eel"}, {"cat","fly"},
{"cat","eel"}, {"cat","dog"}}

Type: Set(Set(Any)))

Permutations

listPermutations Given a list containing any elements, including repeated
elements, lists all permutations. The algorithm used is called by Knuth
(TAOCP) “Algorithm L”, and lists all permutations in lexicographical
order. The first permutation consists of the list with elements in non-
decreasing order, and the steps to move from one permutation p with n
elements to the next consist of

1. find the largest k such that p.k > p.(k + 1)

2. find the largest j such that p.j > p.k

3. swap p.j and p.k

4. reverse that part of the list from indices k + 1 to n.

For example:

() -> L:=[1,1,2,3,3];

() -> listPermutations(L)

[[1,1,2,3,3], [1,1,3,2,3], [1,1,3,3,2], [1,2,1,3,3], [1,2,3,1,3],

[1,2,3,3,1], [1,3,1,2,3], [1,3,1,3,2], [1,3,2,1,3], [1,3,2,3,1],

[1,3,3,1,2], [1,3,3,2,1], [2,1,1,3,3], [2,1,3,1,3], [2,1,3,3,1],

[2,3,1,1,3], [2,3,1,3,1], [2,3,3,1,1], [3,1,1,2,3], [3,1,1,3,2],

[3,1,2,1,3], [3,1,2,3,1], [3,1,3,1,2], [3,1,3,2,1], [3,2,1,1,3],

[3,2,1,3,1], [3,2,3,1,1], [3,3,1,1,2], [3,3,1,2,1], [3,3,2,1,1]]

List(List(Any))

randomPermutation This uses Knuth’s shuffle algorithm; for a list L with n
elements, for each i from 1 to n− 1 it chooses a random element from the
list, and swaps it with L[i].

2



Derangements

A derangement is a permutation where none of the elements are in their original
place. For example, here is a listing of the derangements of 1, 2, 3, 4:

1 2 3 4
2 1 4 3
2 3 4 1
2 4 1 3
3 1 4 2
3 4 1 2
3 4 2 1
4 1 2 3
4 3 1 2
4 3 2 1

It can be shown that if Dn is the number of derangements, then

Dn = n

(
1

0!
− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)
Dn = nDn−1 + (−1)n

Dn = (n− 1)(Dn−1 + Dn−2)

We see from the above listing that D4 = 9.

derangements(n) produces the number of derangements of n distinct objects.
We use the last property above, along with the starting values D1 = 0
and D2 = 1.

listDerangements(L) lists all the derangements of a list, by iterating through
the list of all permutations, and only keeping those which have no fixed
points. Since

lim
n→∞

Dn

n!
= e−1

this is reasonably efficient.

For example, with the same list as above:

() -> listDerangements(L)

[[2,3,3,1,1],[3,2,3,1,1],[3,3,1,1,2],[3,3,1,2,1]]

List(List(Any))

countDerangements(L) This produces the number of derangements of any list.
If there are k distinct elements of L have multiplicities a1, a2, . . . , ak, then
the number of derangements was first published by Major Percy MacMa-
hon in “Combinbatory Analysis” (1915):

3



Let x1, x2, . . . , xk be variables and put S = x1 + x2 + · · ·+ xk. Then the
required number of derangements is the coefficient of

xa1
1 xa2

2 . . . xak

k

in the expansion of

(S − x1)a1(S − x2)a2 . . . (S − xk)ak .

Note that if any one aj satisfies 2aj > n, where n is the length of the list
L, then there will be zero derangements.

randomDerangement(L) This is a probabilistic function: it chooses permuta-
tions at random until on of them is a derangement. If the number of
derangements is known to be zero, the function halts with an error mes-
sage.

The permutations and derangement functions are also implemented for strings:
() -> listStringPermutations("EERIE")

["EEERI", "EEEIR", "EEREI", "EERIE", "EEIER", "EEIRE", "EREEI",

"EREIE", "ERIEE", "EIEER", "EIERE", "EIREE", "REEEI", "REEIE",

"REIEE", "RIEEE", "IEEER", "IEERE", "IEREE", "IREEE"]

List(String)

() -> listStringDerangements("banana")

["abanan","anaban","ananab"]

List(String)

Set partitions

A partition of a set S is a splitting of S into a set of subsets Ti of S which are
pairwise disjoint, and whose union is S. For example, a three element set has
five partitions:

{1, 2, 3} → {{1, 2, 3}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, {{1}, {2}, {3}}}.

There is one partition into one subset, three partitions into two subsets, and
one partitions into three subsets. The number of partitions of an n element set
S into k subsets is given by the Stirling number of the second kind S2(n, k).
This is already implemented:

() -> stirling2(3,2)

3

Type: PositiveInteger

The sum of all Stirling numbers of the second kind for a given n is called the
Bell number, denoted Bn. Using Knuth’s bracketing notation [nk ] for S2(n, k),
we have

Bn =

n∑
k=0

[n
k

]
.

4



Stirling numbers of the second kind can also be given by using Touchard poly-
nomials as generating functions. These can be defined recursively by

T0(x) = 1

Tn(x) = x

(
1 +

d

dx

)
Tn−1(x) for n ≥ 1

Then [nk ] is the coefficient of xk in Tn(x).
Here are the functions:

listPartitions This function lists all partitions as codes, so that for example,
if S = {2, 4, 6, 8, 10} and the code is [1, 2, 1, 3, 1] then the corresponding
subset partition is {{2, 6, 10}, {4}, {8}}. That is, element Si of S belongs
to subset Ci.

() -> listPartitions(3)

[[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3]]

Type: List(List(Integer))

setPartitions returns the partitions of a set, by mapping the elements of the
set onto the codes generated by the previous algorithm.

() -> S:Set Any:=set[2.5,’x+’y,"A"]

() -> setPartitions(S)

{{{2.5,y + x,"A"}}, {{2.5,y + x},{"A"}}, {{2.5,"A"},{y + x}},
{{2.5},{y + x,"A"}}, {{2.5},{y + x},{"A"}}}

Type: Set(Set(Any))

listSizePartitions(n,k) is a slight variant of listPartitions and lists only
those codes whose maximum value is k. These will correspond to partitions
into exactly k subsets.

() -> P:=listSizePartitions(5,3)

[[1,1,1,2,3], [1,1,2,1,3], [1,1,2,2,3], [1,1,2,3,1], [1,1,2,3,2],

[1,1,2,3,3], [1,2,1,1,3], [1,2,1,2,3], [1,2,1,3,1], [1,2,1,3,2],

[1,2,1,3,3], [1,2,2,1,3], [1,2,2,2,3], [1,2,2,3,1], [1,2,2,3,2],

[1,2,2,3,3], [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,3], [1,2,3,2,1],

[1,2,3,2,2], [1,2,3,2,3], [1,2,3,3,1], [1,2,3,3,2], [1,2,3,3,3]]

List(List(Integer))

The number of such partitions should be the Stirling number [nk ]:

() -> #P

25

Type: PositiveInteger

() -> stirling2(5,3)

25

Type: PositiveInteger

5



setSizePartitions(S,k) turns the list of codes into partitions of S into k
subsets.

bell(n) returns the n-th Bell number

touchard(n,x) returns the n-th Touchard polynomial:

() -> p := touchard(7,x)

7 6 5 4 3 2

x + 21x + 140x + 350x + 301x + 63x + x

Type: Polynomial(Fraction(Integer))

We can check that the coefficients are the Stirling numbers:

() -> [coefficient(p,x,k) for k in 0..7]

[0,1,63,301,350,140,21,1]

Type: List(Polynomial(Fraction(Integer)))

() -> [stirling2(7,k) for k in 0..7]

[0,1,63,301,350,140,21,1]

Type: List(Integer)

The values are the same, although the lists are of different types.

6


