bug-gnulib
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

strstr speedup


From: Eric Blake
Subject: strstr speedup
Date: Thu, 10 Jan 2008 21:44:57 +0000 (UTC)
User-agent: Loom/3.14 (http://gmane.org/)

I'm committing this series to add a strstr module similar to memmem (in 
testing, every system that I have easy access to currently has a worst-case 
quadratic strstr: mingw, cygwin, glibc, Solaris, OpenBSD; however, there is 
hope that I will be successful in getting glibc and cygwin to use this patch).  
I split the patch into two parts, so that after the first commit, you can 
compare the similarity of memmem.c and strstr.c to make it more obvious how I 
then factored that into str-two-way.h.  The implementation of str-two-way.h 
leaves the door wide open for byte-wise case-insensitive searching (such as 
strcasestr), although I did not do that work yet.  Although several gnulib 
modules use strstr, only unictype/gen-ctype.c uses an arbitrary needle; and 
since that file is intended more as a helper application than a library 
function, I did not add any dependencies to the new strstr module.  Note that 
while memmem can acheive sublinear speed, strstr cannot, because it must 
perform a linear search for the trailing NUL of the haystack; but the idea of a 
shift table in two_way_long_needle still allows N + N/M rather than 3*N 
comparisons, which can give noticeable speedups. 

I'm also thinking that we do not need the c_strstr module - aside from its 
comments on when it is safe to use a bytewise search even in a multibyte 
locale, it behaves no differently than the POSIX specification of strstr.  
However, I can see having all three of strcasestr, c-strcasestr, and 
mbscasestr, since it is conceivable to want single-byte locale-dependent case 
insensitivity in strcasestr which differs from the locale-independent case-
insensitivity of c_strstr or the multibyte-safe mbscasestr.

>From 96facb24aa17b8d412d2f37fa91d59282d950ebb Mon Sep 17 00:00:00 2001
From: Eric Blake <address@hidden>
Date: Thu, 10 Jan 2008 07:38:11 -0700
Subject: [PATCH] Avoid quadratic strstr implementations.

* lib/strstr.c: New file.
* m4/strstr.m4: Likewise.
* modules/strstr: Likewise.
* modules/strstr-tests: Likewise.
* tests/test-strstr.c: Likewise.
* lib/string.in.h (rpl_strstr): Declare.
(memmem) [GNULIB_POSIXCHECK]: Document speed issue.
* m4/string_h.m4 (gl_HEADER_STRING_H_DEFAULTS): Support strstr.
* modules/string (Makefile.am): Likewise.
* MODULES.html.sh (string handling): Mention new module.
* doc/functions/strstr.texi (strstr): Document the bug.

Signed-off-by: Eric Blake <address@hidden>
---
 ChangeLog                 |   15 ++
 MODULES.html.sh           |    1 +
 doc/functions/strstr.texi |    6 +-
 lib/string.in.h           |   21 ++-
 lib/strstr.c              |  437 +++++++++++++++++++++++++++++++++++++++++++++
 m4/string_h.m4            |    6 +-
 m4/strstr.m4              |   48 +++++
 modules/string            |    2 +
 modules/strstr            |   27 +++
 modules/strstr-tests      |   12 ++
 tests/test-strstr.c       |  155 ++++++++++++++++
 11 files changed, 721 insertions(+), 9 deletions(-)
 create mode 100644 lib/strstr.c
 create mode 100644 m4/strstr.m4
 create mode 100644 modules/strstr
 create mode 100644 modules/strstr-tests
 create mode 100644 tests/test-strstr.c

diff --git a/ChangeLog b/ChangeLog
index 900413d..44df277 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,18 @@
+2008-01-10  Eric Blake  <address@hidden>
+
+       Avoid quadratic strstr implementations.
+       * lib/strstr.c: New file.
+       * m4/strstr.m4: Likewise.
+       * modules/strstr: Likewise.
+       * modules/strstr-tests: Likewise.
+       * tests/test-strstr.c: Likewise.
+       * lib/string.in.h (rpl_strstr): Declare.
+       (memmem) [GNULIB_POSIXCHECK]: Document speed issue.
+       * m4/string_h.m4 (gl_HEADER_STRING_H_DEFAULTS): Support strstr.
+       * modules/string (Makefile.am): Likewise.
+       * MODULES.html.sh (string handling): Mention new module.
+       * doc/functions/strstr.texi (strstr): Document the bug.
+
 2008-01-10  Bruno Haible  <address@hidden>
 
        * lib/relocatable.h (relocate): State whether result is freshly
diff --git a/MODULES.html.sh b/MODULES.html.sh
index 66e0b01..1e6f16b 100755
--- a/MODULES.html.sh
+++ b/MODULES.html.sh
@@ -1671,6 +1671,7 @@ func_all_modules ()
   func_module strnlen1
   func_module strndup
   func_module strsep
+  func_module strstr
   func_module c-strstr
   func_module trim
   func_module fstrcmp
diff --git a/doc/functions/strstr.texi b/doc/functions/strstr.texi
index 99b3630..fe0af49 100644
--- a/doc/functions/strstr.texi
+++ b/doc/functions/strstr.texi
@@ -4,10 +4,14 @@
 
 POSIX specification: @url{http://www.opengroup.org/susv3xsh/strstr.html}
 
-Gnulib module: ---
+Gnulib module: strstr
 
 Portability problems fixed by Gnulib:
 @itemize
address@hidden
+This function has quadratic instead of linear complexity on some
+platforms:
+glibc <= 2.6.1, cygwin 1.5.x, OpenBSD 4.0, Solaris 9, mingw
 @end itemize
 
 Portability problems not fixed by Gnulib:
diff --git a/lib/string.in.h b/lib/string.in.h
index 355479a..4d68cd9 100644
--- a/lib/string.in.h
+++ b/lib/string.in.h
@@ -58,8 +58,9 @@ extern void *memmem (void const *__haystack, size_t 
__haystack_len,
 #elif defined GNULIB_POSIXCHECK
 # undef memmem
 # define memmem(a,al,b,bl) \
-    (GL_LINK_WARNING ("memmem is unportable - " \
-                      "use gnulib module memmem for portability"), \
+    (GL_LINK_WARNING ("memmem is unportable and often quadratic - " \
+                      "use gnulib module memmem-simple for portability, " \
+                      "and module memmem for speed" ), \
      memmem (a, al, b, bl))
 #endif
 
@@ -289,16 +290,24 @@ extern char *strsep (char **restrict __stringp, char 
const *restrict __delim);
      strsep (s, d))
 #endif
 
-#if defined GNULIB_POSIXCHECK
+#if @GNULIB_STRSTR@
+# if @REPLACE_STRSTR@
+#  define strstr rpl_strstr
+char *strstr (const char *haystack, const char *needle)
+  __attribute__ ((__pure__));
+# endif
+#elif defined GNULIB_POSIXCHECK
 /* strstr() does not work with multibyte strings if the locale encoding is
    different from UTF-8:
    POSIX says that it operates on "strings", and "string" in POSIX is defined
    as a sequence of bytes, not of characters.  */
 # undef strstr
 # define strstr(a,b) \
-    (GL_LINK_WARNING ("strstr cannot work correctly on character strings " \
-                      "in most multibyte locales - " \
-                      "use mbsstr if you care about internationalization"), \
+    (GL_LINK_WARNING ("strstr is quadratic on many systems, and cannot " \
+                      "work correctly on character strings in most "    \
+                      "multibyte locales - " \
+                      "use mbsstr if you care about internationalization, " \
+                      "or use strstr if you care about speed"), \
      strstr (a, b))
 #endif
 
diff --git a/lib/strstr.c b/lib/strstr.c
new file mode 100644
index 0000000..80b18b0
--- /dev/null
+++ b/lib/strstr.c
@@ -0,0 +1,437 @@
+/* Copyright (C) 1991,92,93,94,96,97,98,2000,2004,2007,2008 Free Software
+   Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License along
+   with this program; if not, write to the Free Software Foundation,
+   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
+
+/* This particular implementation was written by Eric Blake, 2008.  */
+
+#ifndef _LIBC
+# include <config.h>
+#endif
+
+/* Specification of strstr.  */
+#include <string.h>
+
+#include <limits.h>
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#ifndef _LIBC
+# define __builtin_expect(expr, val)   (expr)
+#endif
+
+/* We use the Two-Way string matching algorithm, which guarantees
+   linear complexity with constant space.  Additionally, for long
+   needles, we also use a bad character shift table similar to the
+   Boyer-Moore algorithm to achieve better performance.
+
+   See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
+   and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
+*/
+
+/* Point at which computing a bad-byte shift table is likely to be
+   worthwhile.  Small needles should not compute a table, since it
+   adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
+   speedup no greater than a factor of NEEDLE_LEN.  The larger the
+   needle, the better the potential performance gain.  On the other
+   hand, on non-POSIX systems with CHAR_BIT larger than eight, the
+   memory required for the table is prohibitive.  */
+#if CHAR_BIT < 10
+# define LONG_NEEDLE_THRESHOLD 32U
+#else
+# define LONG_NEEDLE_THRESHOLD SIZE_MAX
+#endif
+
+#define MAX(a, b) ((a < b) ? (b) : (a))
+
+/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
+   Return the index of the first byte in the right half, and set
+   *PERIOD to the global period of the right half.
+
+   The global period of a string is the smallest index (possibly its
+   length) at which all remaining bytes in the string are repetitions
+   of the prefix (the last repetition may be a subset of the prefix).
+
+   When NEEDLE is factored into two halves, a local period is the
+   length of the smallest word that shares a suffix with the left half
+   and shares a prefix with the right half.  All factorizations of a
+   non-empty NEEDLE have a local period of at least 1 and no greater
+   than NEEDLE_LEN.
+
+   A critical factorization has the property that the local period
+   equals the global period.  All strings have at least one critical
+   factorization with the left half smaller than the global period.
+
+   Given an ordered alphabet, a critical factorization can be computed
+   in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
+   larger of two ordered maximal suffixes.  The ordered maximal
+   suffixes are determined by lexicographic comparison of
+   periodicity.  */
+static size_t
+critical_factorization (const unsigned char *needle, size_t needle_len,
+                       size_t *period)
+{
+  /* Index of last byte of left half, or SIZE_MAX.  */
+  size_t max_suffix, max_suffix_rev;
+  size_t j; /* Index into NEEDLE for current candidate suffix.  */
+  size_t k; /* Offset into current period.  */
+  size_t p; /* Intermediate period.  */
+  unsigned char a, b; /* Current comparison bytes.  */
+
+  /* Invariants:
+     0 <= j < NEEDLE_LEN - 1
+     -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
+     min(max_suffix, max_suffix_rev) < global period of NEEDLE
+     1 <= p <= global period of NEEDLE
+     p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
+     1 <= k <= p
+  */
+
+  /* Perform lexicographic search.  */
+  max_suffix = SIZE_MAX;
+  j = 0;
+  k = p = 1;
+  while (j + k < needle_len)
+    {
+      a = needle[j + k];
+      b = needle[max_suffix + k];
+      if (a < b)
+       {
+         /* Suffix is smaller, period is entire prefix so far.  */
+         j += k;
+         k = 1;
+         p = j - max_suffix;
+       }
+      else if (a == b)
+       {
+         /* Advance through repetition of the current period.  */
+         if (k != p)
+           ++k;
+         else
+           {
+             j += p;
+             k = 1;
+           }
+       }
+      else /* b < a */
+       {
+         /* Suffix is larger, start over from current location.  */
+         max_suffix = j++;
+         k = p = 1;
+       }
+    }
+  *period = p;
+
+  /* Perform reverse lexicographic search.  */
+  max_suffix_rev = SIZE_MAX;
+  j = 0;
+  k = p = 1;
+  while (j + k < needle_len)
+    {
+      a = needle[j + k];
+      b = needle[max_suffix_rev + k];
+      if (b < a)
+       {
+         /* Suffix is smaller, period is entire prefix so far.  */
+         j += k;
+         k = 1;
+         p = j - max_suffix_rev;
+       }
+      else if (a == b)
+       {
+         /* Advance through repetition of the current period.  */
+         if (k != p)
+           ++k;
+         else
+           {
+             j += p;
+             k = 1;
+           }
+       }
+      else /* a < b */
+       {
+         /* Suffix is larger, start over from current location.  */
+         max_suffix_rev = j++;
+         k = p = 1;
+       }
+    }
+
+  /* Choose the longer suffix.  Return the first byte of the right
+     half, rather than the last byte of the left half.  */
+  if (max_suffix_rev + 1 < max_suffix + 1)
+    return max_suffix + 1;
+  *period = p;
+  return max_suffix_rev + 1;
+}
+
+/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
+   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
+   for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.  Performance is linear,
+   with 2 * NEEDLE_LEN comparisons in preparation, and at most 3 *
+   HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.  */
+static char *
+two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
+                     const unsigned char *needle, size_t needle_len)
+{
+  size_t i; /* Index into current byte of NEEDLE.  */
+  size_t j; /* Index into current window of HAYSTACK.  */
+  size_t period; /* The period of the right half of needle.  */
+  size_t suffix; /* The index of the right half of needle.  */
+
+  /* Factor the needle into two halves, such that the left half is
+     smaller than the global period, and the right half is
+     periodic (with a period as large as NEEDLE_LEN - suffix).  */
+  suffix = critical_factorization (needle, needle_len, &period);
+
+  /* Perform the search.  Each iteration compares the right half
+     first.  */
+  if (memcmp (needle, needle + period, suffix) == 0)
+    {
+      /* Entire needle is periodic; a mismatch can only advance by the
+        period, so use memory to avoid rescanning known occurrences
+        of the period.  */
+      size_t memory = 0;
+      j = 0;
+      while (!memchr (&haystack[haystack_len], '\0',
+                     j + needle_len - haystack_len)
+            && (haystack_len = j + needle_len))
+       {
+         /* Scan for matches in right half.  */
+         i = MAX (suffix, memory);
+         while (i < needle_len && needle[i] == haystack[i + j])
+           ++i;
+         if (needle_len <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (memory < i + 1 && needle[i] == haystack[i + j])
+               --i;
+             if (i + 1 < memory + 1)
+               return (char *) (haystack + j);
+             /* No match, so remember how many repetitions of period
+                on the right half were scanned.  */
+             j += period;
+             memory = needle_len - period;
+           }
+         else
+           {
+             j += i - suffix + 1;
+             memory = 0;
+           }
+       }
+    }
+  else
+    {
+      /* The two halves of needle are distinct; no extra memory is
+        required, and any mismatch results in a maximal shift.  */
+      period = MAX (suffix, needle_len - suffix) + 1;
+      j = 0;
+      while (!memchr (&haystack[haystack_len], '\0',
+                     j + needle_len - haystack_len)
+            && (haystack_len = j + needle_len))
+       {
+         /* Scan for matches in right half.  */
+         i = suffix;
+         while (i < needle_len && needle[i] == haystack[i + j])
+           ++i;
+         if (needle_len <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (i != SIZE_MAX && needle[i] == haystack[i + j])
+               --i;
+             if (i == SIZE_MAX)
+               return (char *) (haystack + j);
+             j += period;
+           }
+         else
+           j += i - suffix + 1;
+       }
+    }
+  return NULL;
+}
+
+/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
+   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
+   for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.  Performance is linear,
+   with 3 * NEEDLE_LEN + (1U << CHAR_BIT) operations in preparation,
+   and at most 3 * HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.
+   The extra initialization cost allows for as few as HAYSTACK_LEN +
+   HAYSTACK_LEN / NEEDLE_LEN.  */
+static char *
+two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
+                    const unsigned char *needle, size_t needle_len)
+{
+  size_t i; /* Index into current byte of NEEDLE.  */
+  size_t j; /* Index into current window of HAYSTACK.  */
+  size_t period; /* The period of the right half of needle.  */
+  size_t suffix; /* The index of the right half of needle.  */
+  size_t shift_table[1U << CHAR_BIT]; /* See below.  */
+
+  /* Factor the needle into two halves, such that the left half is
+     smaller than the global period, and the right half is
+     periodic (with a period as large as NEEDLE_LEN - suffix).  */
+  suffix = critical_factorization (needle, needle_len, &period);
+
+  /* Populate shift_table.  For each possible byte value c,
+     shift_table[c] is the distance from the last occurrence of c to
+     the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
+     shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
+  for (i = 0; i < 1U << CHAR_BIT; i++)
+    shift_table[i] = needle_len;
+  for (i = 0; i < needle_len; i++)
+    shift_table[needle[i]] = needle_len - i - 1;
+
+  /* Perform the search.  Each iteration compares the right half
+     first.  */
+  if (memcmp (needle, needle + period, suffix) == 0)
+    {
+      /* Entire needle is periodic; a mismatch can only advance by the
+        period, so use memory to avoid rescanning known occurrences
+        of the period.  */
+      size_t memory = 0;
+      j = 0;
+      while (!memchr (&haystack[haystack_len], '\0',
+                     j + needle_len - haystack_len)
+            && (haystack_len = j + needle_len))
+       {
+         /* Check the last byte first; if it does not match, then
+            shift to the next possible match location.  */
+         size_t shift = shift_table[haystack[j + needle_len - 1]];
+         if (0 < shift)
+           {
+             if (memory && shift < period)
+               {
+                 /* Since needle is periodic, but the last period has
+                    a byte out of place, there can be no match until
+                    after the mismatch.  */
+                 shift = needle_len - period;
+                 memory = 0;
+               }
+             j += shift;
+             continue;
+           }
+         /* Scan for matches in right half.  The last byte has
+            already been matched, by virtue of the shift table.  */
+         i = MAX (suffix, memory);
+         while (i < needle_len - 1 && needle[i] == haystack[i + j])
+           ++i;
+         if (needle_len - 1 <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (memory < i + 1 && needle[i] == haystack[i + j])
+               --i;
+             if (i + 1 < memory + 1)
+               return (char *) (haystack + j);
+             /* No match, so remember how many repetitions of period
+                on the right half were scanned.  */
+             j += period;
+             memory = needle_len - period;
+           }
+         else
+           {
+             j += i - suffix + 1;
+             memory = 0;
+           }
+       }
+    }
+  else
+    {
+      /* The two halves of needle are distinct; no extra memory is
+        required, and any mismatch results in a maximal shift.  */
+      period = MAX (suffix, needle_len - suffix) + 1;
+      j = 0;
+      while (!memchr (&haystack[haystack_len], '\0',
+                     j + needle_len - haystack_len)
+            && (haystack_len = j + needle_len))
+       {
+         /* Check the last byte first; if it does not match, then
+            shift to the next possible match location.  */
+         size_t shift = shift_table[haystack[j + needle_len - 1]];
+         if (0 < shift)
+           {
+             j += shift;
+             continue;
+           }
+         /* Scan for matches in right half.  The last byte has
+            already been matched, by virtue of the shift table.  */
+         i = suffix;
+         while (i < needle_len - 1 && needle[i] == haystack[i + j])
+           ++i;
+         if (needle_len - 1 <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (i != SIZE_MAX && needle[i] == haystack[i + j])
+               --i;
+             if (i == SIZE_MAX)
+               return (char *) (haystack + j);
+             j += period;
+           }
+         else
+           j += i - suffix + 1;
+       }
+    }
+  return NULL;
+}
+
+/* Return the first occurrence of NEEDLE in HAYSTACK.  Return HAYSTACK
+   if NEEDLE is empty, otherwise NULL if NEEDLE is not found in
+   HAYSTACK.  */
+char *
+strstr (const char *haystack_start, const char *needle_start)
+{
+  const char *haystack = haystack_start;
+  const char *needle = needle_start;
+  size_t needle_len; /* Length of NEEDLE.  */
+  size_t haystack_len; /* Known minimum length of HAYSTACK.  */
+  bool ok = true; /* True if NEEDLE is prefix of HAYSTACK.  */
+
+  /* Determine length of NEEDLE, and in the process, make sure
+     HAYSTACK is at least as long (no point processing all of a long
+     NEEDLE if HAYSTACK is too short).  */
+  while (*haystack && *needle)
+    ok &= *haystack++ == *needle++;
+  if (*needle)
+    return NULL;
+  if (ok)
+    return (char *) haystack_start;
+
+  /* Reduce the size of haystack using strchr, since it has a smaller
+     linear coefficient than the Two-Way algorithm.  */
+  needle_len = needle - needle_start;
+  haystack = strchr (haystack_start + 1, *needle_start);
+  if (!haystack || __builtin_expect (needle_len == 1, 0))
+    return (char *) haystack;
+  needle -= needle_len;
+  haystack_len = (haystack > haystack_start + needle_len ? 1
+                 : needle_len + haystack_start - haystack);
+
+  /* Perform the search.  Abstract memory is considered to be an array
+     of 'unsigned char' values, not an array of 'char' values.  See
+     ISO C 99 section 6.2.6.1.  */
+  if (needle_len < LONG_NEEDLE_THRESHOLD)
+    return two_way_short_needle ((const unsigned char *) haystack,
+                                haystack_len,
+                                (const unsigned char *) needle, needle_len);
+  return two_way_long_needle ((const unsigned char *) haystack, haystack_len,
+                             (const unsigned char *) needle, needle_len);
+}
+
+#undef LONG_NEEDLE_THRESHOLD
+#undef MAX
diff --git a/m4/string_h.m4 b/m4/string_h.m4
index 99a0dab..1598c39 100644
--- a/m4/string_h.m4
+++ b/m4/string_h.m4
@@ -1,11 +1,11 @@
 # Configure a GNU-like replacement for <string.h>.
 
-# Copyright (C) 2007 Free Software Foundation, Inc.
+# Copyright (C) 2007, 2008 Free Software Foundation, Inc.
 # This file is free software; the Free Software Foundation
 # gives unlimited permission to copy and/or distribute it,
 # with or without modifications, as long as this notice is preserved.
 
-# serial 2
+# serial 3
 
 # Written by Paul Eggert.
 
@@ -43,6 +43,7 @@ AC_DEFUN([gl_HEADER_STRING_H_DEFAULTS],
   GNULIB_STRNLEN=0;     AC_SUBST([GNULIB_STRNLEN])
   GNULIB_STRPBRK=0;     AC_SUBST([GNULIB_STRPBRK])
   GNULIB_STRSEP=0;      AC_SUBST([GNULIB_STRSEP])
+  GNULIB_STRSTR=0;      AC_SUBST([GNULIB_STRSTR])
   GNULIB_STRCASESTR=0;  AC_SUBST([GNULIB_STRCASESTR])
   GNULIB_STRTOK_R=0;    AC_SUBST([GNULIB_STRTOK_R])
   GNULIB_MBSLEN=0;      AC_SUBST([GNULIB_MBSLEN])
@@ -78,4 +79,5 @@ AC_DEFUN([gl_HEADER_STRING_H_DEFAULTS],
   HAVE_DECL_STRERROR=1;                AC_SUBST([HAVE_DECL_STRERROR])
   REPLACE_STRERROR=0;          AC_SUBST([REPLACE_STRERROR])
   REPLACE_MEMMEM=0;            AC_SUBST([REPLACE_MEMMEM])
+  REPLACE_STRSTR=0;            AC_SUBST([REPLACE_STRSTR])
 ])
diff --git a/m4/strstr.m4 b/m4/strstr.m4
new file mode 100644
index 0000000..4fe15bd
--- /dev/null
+++ b/m4/strstr.m4
@@ -0,0 +1,48 @@
+# strstr.m4 serial 1
+dnl Copyright (C) 2008 Free Software Foundation, Inc.
+dnl This file is free software; the Free Software Foundation
+dnl gives unlimited permission to copy and/or distribute it,
+dnl with or without modifications, as long as this notice is preserved.
+
+dnl Check that strstr is efficient.
+AC_DEFUN([gl_FUNC_STRSTR],
+[
+  AC_REQUIRE([gl_HEADER_STRING_H_DEFAULTS])
+  AC_CACHE_CHECK([whether strstr works in linear time],
+    [gl_cv_func_strstr_linear],
+    [AC_RUN_IFELSE([AC_LANG_PROGRAM([
+#include <string.h> /* for memmem */
+#include <stdlib.h> /* for malloc */
+#include <unistd.h> /* for alarm */
+], [[size_t m = 1000000;
+    char *haystack = (char *) malloc (2 * m + 2);
+    char *needle = (char *) malloc (m + 2);
+    void *result = 0;
+    /* Failure to compile this test due to missing alarm is okay,
+       since all such platforms (mingw) also have quadratic strstr.  */
+    alarm (5);
+    /* Check for quadratic performance.  */
+    if (haystack && needle)
+      {
+       memset (haystack, 'A', 2 * m);
+       haystack[2 * m] = 'B';
+       haystack[2 * m + 1] = 0;
+       memset (needle, 'A', m);
+       needle[m] = 'B';
+       needle[m + 1] = 0;
+       result = strstr (haystack, needle);
+      }
+    return !result;]])],
+      [gl_cv_func_strstr_linear=yes], [gl_cv_func_strstr_linear=no],
+      [dnl pessimistically assume the worst, since even glibc 2.6.1
+       dnl has quadratic complexity in its strstr
+       gl_cv_func_strstr_linear="guessing no"])])
+  if test "$gl_cv_func_strstr_linear" != yes; then
+    REPLACE_STRSTR=1
+    AC_LIBOBJ([strstr])
+  fi
+]) # gl_FUNC_MEMMEM
+
+# Prerequisites of lib/memmem.c.
+AC_DEFUN([gl_PREREQ_MEMMEM], [:])
+])
diff --git a/modules/string b/modules/string
index 6f3226d..431a322 100644
--- a/modules/string
+++ b/modules/string
@@ -48,6 +48,7 @@ string.h: string.in.h
              -e 's|@''GNULIB_STRNLEN''@|$(GNULIB_STRNLEN)|g' \
              -e 's|@''GNULIB_STRPBRK''@|$(GNULIB_STRPBRK)|g' \
              -e 's|@''GNULIB_STRSEP''@|$(GNULIB_STRSEP)|g' \
+             -e 's|@''GNULIB_STRSTR''@|$(GNULIB_STRSTR)|g' \
              -e 's|@''GNULIB_STRCASESTR''@|$(GNULIB_STRCASESTR)|g' \
              -e 's|@''GNULIB_STRTOK_R''@|$(GNULIB_STRTOK_R)|g' \
              -e 's|@''GNULIB_STRERROR''@|$(GNULIB_STRERROR)|g' \
@@ -67,6 +68,7 @@ string.h: string.in.h
              -e 's|@''HAVE_DECL_STRTOK_R''@|$(HAVE_DECL_STRTOK_R)|g' \
              -e 's|@''HAVE_DECL_STRERROR''@|$(HAVE_DECL_STRERROR)|g' \
              -e 's|@''REPLACE_MEMMEM''@|$(REPLACE_MEMMEM)|g' \
+             -e 's|@''REPLACE_STRSTR''@|$(REPLACE_STRSTR)|g' \
              -e 's|@''REPLACE_STRERROR''@|$(REPLACE_STRERROR)|g' \
              -e '/definition of GL_LINK_WARNING/r $(LINK_WARNING_H)' \
              < $(srcdir)/string.in.h; \
diff --git a/modules/strstr b/modules/strstr
new file mode 100644
index 0000000..4f93df9
--- /dev/null
+++ b/modules/strstr
@@ -0,0 +1,27 @@
+Description:
+strstr() function: efficiently locate first substring in a buffer.
+
+Files:
+lib/strstr.c
+m4/strstr.m4
+
+Depends-on:
+string
+stdbool
+memchr
+memcmp
+
+configure.ac:
+gl_FUNC_STRSTR
+gl_STRING_MODULE_INDICATOR([strstr])
+
+Makefile.am:
+
+Include:
+<string.h>
+
+License:
+LGPLv2+
+
+Maintainer:
+all, Eric Blake
diff --git a/modules/strstr-tests b/modules/strstr-tests
new file mode 100644
index 0000000..23e67b0
--- /dev/null
+++ b/modules/strstr-tests
@@ -0,0 +1,12 @@
+Files:
+tests/test-strstr.c
+
+Depends-on:
+
+configure.ac:
+AC_CHECK_DECLS_ONCE([alarm])
+
+Makefile.am:
+TESTS += test-strstr
+check_PROGRAMS += test-strstr
+
diff --git a/tests/test-strstr.c b/tests/test-strstr.c
new file mode 100644
index 0000000..a4cc0fc
--- /dev/null
+++ b/tests/test-strstr.c
@@ -0,0 +1,155 @@
+/*
+ * Copyright (C) 2004, 2007, 2008 Free Software Foundation
+ * Written by Bruno Haible and Eric Blake
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+#include <config.h>
+
+#include <string.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+
+#define ASSERT(expr) \
+  do                                                                        \
+    {                                                                       \
+      if (!(expr))                                                          \
+       {                                                                    \
+         fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
+         abort ();                                                          \
+       }                                                                    \
+    }                                                                       \
+  while (0)
+
+int
+main (int argc, char *argv[])
+{
+#if HAVE_DECL_ALARM
+  /* Declare failure if test takes too long, by using default abort
+     caused by SIGALRM.  All known platforms that lack alarm also have
+     a quadratic strstr, and the replacement strstr is known to not
+     take too long.  */
+  alarm (10);
+#endif
+
+  {
+    const char input[] = "foo";
+    const char *result = strstr (input, "");
+    ASSERT (result == input);
+  }
+
+  {
+    const char input[] = "foo";
+    const char *result = strstr (input, "o");
+    ASSERT (result == input + 1);
+  }
+
+  {
+    const char input[] = "ABC ABCDAB ABCDABCDABDE";
+    const char *result = strstr (input, "ABCDABD");
+    ASSERT (result == input + 15);
+  }
+
+  {
+    const char input[] = "ABC ABCDAB ABCDABCDABDE";
+    const char *result = strstr (input, "ABCDABE");
+    ASSERT (result == NULL);
+  }
+
+  {
+    const char input[] = "ABC ABCDAB ABCDABCDABDE";
+    const char *result = strstr (input, "ABCDABCD");
+    ASSERT (result == input + 11);
+  }
+
+  /* Check that a very long haystack is handled quickly if the needle is
+     short and occurs near the beginning.  */
+  {
+    size_t repeat = 10000;
+    size_t m = 1000000;
+    char *needle =
+      "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
+      "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
+    char *haystack = (char *) malloc (m + 1);
+    if (haystack != NULL)
+      {
+       memset (haystack, 'A', m);
+       haystack[0] = 'B';
+       haystack[m] = '\0';
+
+       for (; repeat > 0; repeat--)
+         {
+           ASSERT (strstr (haystack, needle) == haystack + 1);
+         }
+
+       free (haystack);
+      }
+  }
+
+  /* Check that a very long needle is discarded quickly if the haystack is
+     short.  */
+  {
+    size_t repeat = 10000;
+    size_t m = 1000000;
+    char *haystack =
+      "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
+      "ABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABAB";
+    char *needle = (char *) malloc (m + 1);
+    if (needle != NULL)
+      {
+       memset (needle, 'A', m);
+       needle[m] = '\0';
+
+       for (; repeat > 0; repeat--)
+         {
+           ASSERT (strstr (haystack, needle) == NULL);
+         }
+
+       free (needle);
+      }
+  }
+
+  /* Check that the asymptotic worst-case complexity is not quadratic.  */
+  {
+    size_t m = 1000000;
+    char *haystack = (char *) malloc (2 * m + 2);
+    char *needle = (char *) malloc (m + 2);
+    if (haystack != NULL && needle != NULL)
+      {
+       const char *result;
+
+       memset (haystack, 'A', 2 * m);
+       haystack[2 * m] = 'B';
+       haystack[2 * m + 1] = '\0';
+
+       memset (needle, 'A', m);
+       needle[m] = 'B';
+       needle[m + 1] = '\0';
+
+       result = strstr (haystack, needle);
+       ASSERT (result == haystack + m);
+      }
+    if (needle != NULL)
+      free (needle);
+    if (haystack != NULL)
+      free (haystack);
+  }
+
+  /* Sublinear speed is only possible in memmem; strstr must examine
+     every character of haystack to find its length.  */
+
+  return 0;
+}
-- 
1.5.3.5


>From c358da1eb79a1af4d7e4b887ca3896fb7f3fdcdb Mon Sep 17 00:00:00 2001
From: Eric Blake <address@hidden>
Date: Thu, 10 Jan 2008 12:06:35 -0700
Subject: [PATCH] Share two-way algorithm.

* lib/str-two-way.h: New file, merged from...
* lib/memmem.c: ...here...
* lib/strstr.c: ...and here.
* modules/memmem (Files): Use it.
* modules/strstr (Files): Likewise.

Signed-off-by: Eric Blake <address@hidden>
---
 ChangeLog             |    7 +
 lib/memmem.c          |  355 +----------------------------------------
 lib/str-two-way.h     |  426 +++++++++++++++++++++++++++++++++++++++++++++++++
 lib/strstr.c          |  364 +-----------------------------------------
 modules/memmem-simple |    1 +
 modules/strstr        |    1 +
 6 files changed, 443 insertions(+), 711 deletions(-)
 create mode 100644 lib/str-two-way.h

diff --git a/ChangeLog b/ChangeLog
index 44df277..7c7c885 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,12 @@
 2008-01-10  Eric Blake  <address@hidden>
 
+       Share two-way algorithm.
+       * lib/str-two-way.h: New file, merged from...
+       * lib/memmem.c: ...here...
+       * lib/strstr.c: ...and here.
+       * modules/memmem (Files): Use it.
+       * modules/strstr (Files): Likewise.
+
        Avoid quadratic strstr implementations.
        * lib/strstr.c: New file.
        * m4/strstr.m4: Likewise.
diff --git a/lib/memmem.c b/lib/memmem.c
index 622a034..186d840 100644
--- a/lib/memmem.c
+++ b/lib/memmem.c
@@ -25,361 +25,13 @@
 /* Specification of memmem.  */
 #include <string.h>
 
-#include <limits.h>
-#include <stddef.h>
-#include <stdint.h>
-
 #ifndef _LIBC
 # define __builtin_expect(expr, val)   (expr)
 #endif
 
-/* We use the Two-Way string matching algorithm, which guarantees
-   linear complexity with constant space.  Additionally, for long
-   needles, we also use a bad character shift table similar to the
-   Boyer-Moore algorithm to achieve sub-linear performance.
-
-   See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
-   and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
-*/
-
-/* Point at which computing a bad-byte shift table is likely to be
-   worthwhile.  Small needles should not compute a table, since it
-   adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
-   speedup no greater than a factor of NEEDLE_LEN.  The larger the
-   needle, the better the potential performance gain.  On the other
-   hand, on non-POSIX systems with CHAR_BIT larger than eight, the
-   memory required for the table is prohibitive.  */
-#if CHAR_BIT < 10
-# define LONG_NEEDLE_THRESHOLD 32U
-#else
-# define LONG_NEEDLE_THRESHOLD SIZE_MAX
-#endif
-
-#define MAX(a, b) ((a < b) ? (b) : (a))
-
-/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
-   Return the index of the first byte in the right half, and set
-   *PERIOD to the global period of the right half.
-
-   The global period of a string is the smallest index (possibly its
-   length) at which all remaining bytes in the string are repetitions
-   of the prefix (the last repetition may be a subset of the prefix).
-
-   When NEEDLE is factored into two halves, a local period is the
-   length of the smallest word that shares a suffix with the left half
-   and shares a prefix with the right half.  All factorizations of a
-   non-empty NEEDLE have a local period of at least 1 and no greater
-   than NEEDLE_LEN.
-
-   A critical factorization has the property that the local period
-   equals the global period.  All strings have at least one critical
-   factorization with the left half smaller than the global period.
-
-   Given an ordered alphabet, a critical factorization can be computed
-   in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
-   larger of two ordered maximal suffixes.  The ordered maximal
-   suffixes are determined by lexicographic comparison of
-   periodicity.  */
-static size_t
-critical_factorization (const unsigned char *needle, size_t needle_len,
-                       size_t *period)
-{
-  /* Index of last byte of left half, or SIZE_MAX.  */
-  size_t max_suffix, max_suffix_rev;
-  size_t j; /* Index into NEEDLE for current candidate suffix.  */
-  size_t k; /* Offset into current period.  */
-  size_t p; /* Intermediate period.  */
-  unsigned char a, b; /* Current comparison bytes.  */
-
-  /* Invariants:
-     0 <= j < NEEDLE_LEN - 1
-     -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
-     min(max_suffix, max_suffix_rev) < global period of NEEDLE
-     1 <= p <= global period of NEEDLE
-     p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
-     1 <= k <= p
-  */
-
-  /* Perform lexicographic search.  */
-  max_suffix = SIZE_MAX;
-  j = 0;
-  k = p = 1;
-  while (j + k < needle_len)
-    {
-      a = needle[j + k];
-      b = needle[max_suffix + k];
-      if (a < b)
-       {
-         /* Suffix is smaller, period is entire prefix so far.  */
-         j += k;
-         k = 1;
-         p = j - max_suffix;
-       }
-      else if (a == b)
-       {
-         /* Advance through repetition of the current period.  */
-         if (k != p)
-           ++k;
-         else
-           {
-             j += p;
-             k = 1;
-           }
-       }
-      else /* b < a */
-       {
-         /* Suffix is larger, start over from current location.  */
-         max_suffix = j++;
-         k = p = 1;
-       }
-    }
-  *period = p;
-
-  /* Perform reverse lexicographic search.  */
-  max_suffix_rev = SIZE_MAX;
-  j = 0;
-  k = p = 1;
-  while (j + k < needle_len)
-    {
-      a = needle[j + k];
-      b = needle[max_suffix_rev + k];
-      if (b < a)
-       {
-         /* Suffix is smaller, period is entire prefix so far.  */
-         j += k;
-         k = 1;
-         p = j - max_suffix_rev;
-       }
-      else if (a == b)
-       {
-         /* Advance through repetition of the current period.  */
-         if (k != p)
-           ++k;
-         else
-           {
-             j += p;
-             k = 1;
-           }
-       }
-      else /* a < b */
-       {
-         /* Suffix is larger, start over from current location.  */
-         max_suffix_rev = j++;
-         k = p = 1;
-       }
-    }
-
-  /* Choose the longer suffix.  Return the first byte of the right
-     half, rather than the last byte of the left half.  */
-  if (max_suffix_rev + 1 < max_suffix + 1)
-    return max_suffix + 1;
-  *period = p;
-  return max_suffix_rev + 1;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
-   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
-   for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.  Performance is linear,
-   with 2 * NEEDLE_LEN comparisons in preparation, and at most 2 *
-   HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.  */
-static void *
-two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
-                     const unsigned char *needle, size_t needle_len)
-{
-  size_t i; /* Index into current byte of NEEDLE.  */
-  size_t j; /* Index into current window of HAYSTACK.  */
-  size_t period; /* The period of the right half of needle.  */
-  size_t suffix; /* The index of the right half of needle.  */
-
-  /* Factor the needle into two halves, such that the left half is
-     smaller than the global period, and the right half is
-     periodic (with a period as large as NEEDLE_LEN - suffix).  */
-  suffix = critical_factorization (needle, needle_len, &period);
-
-  /* Perform the search.  Each iteration compares the right half
-     first.  */
-  if (memcmp (needle, needle + period, suffix) == 0)
-    {
-      /* Entire needle is periodic; a mismatch can only advance by the
-        period, so use memory to avoid rescanning known occurrences
-        of the period.  */
-      size_t memory = 0;
-      j = 0;
-      while (j <= haystack_len - needle_len)
-       {
-         /* Scan for matches in right half.  */
-         i = MAX (suffix, memory);
-         while (i < needle_len && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (memory < i + 1 && needle[i] == haystack[i + j])
-               --i;
-             if (i + 1 < memory + 1)
-               return (void *) (haystack + j);
-             /* No match, so remember how many repetitions of period
-                on the right half were scanned.  */
-             j += period;
-             memory = needle_len - period;
-           }
-         else
-           {
-             j += i - suffix + 1;
-             memory = 0;
-           }
-       }
-    }
-  else
-    {
-      /* The two halves of needle are distinct; no extra memory is
-        required, and any mismatch results in a maximal shift.  */
-      period = MAX (suffix, needle_len - suffix) + 1;
-      j = 0;
-      while (j <= haystack_len - needle_len)
-       {
-         /* Scan for matches in right half.  */
-         i = suffix;
-         while (i < needle_len && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (i != SIZE_MAX && needle[i] == haystack[i + j])
-               --i;
-             if (i == SIZE_MAX)
-               return (void *) (haystack + j);
-             j += period;
-           }
-         else
-           j += i - suffix + 1;
-       }
-    }
-  return NULL;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
-   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
-   for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.  Performance is linear,
-   with 3 * NEEDLE_LEN + (1U << CHAR_BIT) operations in preparation,
-   and at most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.
-   The extra initialization cost allows for potential sublinear
-   performance O(HAYSTACK_LEN / NEEDLE_LEN).  */
-static void *
-two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
-                    const unsigned char *needle, size_t needle_len)
-{
-  size_t i; /* Index into current byte of NEEDLE.  */
-  size_t j; /* Index into current window of HAYSTACK.  */
-  size_t period; /* The period of the right half of needle.  */
-  size_t suffix; /* The index of the right half of needle.  */
-  size_t shift_table[1U << CHAR_BIT]; /* See below.  */
-
-  /* Factor the needle into two halves, such that the left half is
-     smaller than the global period, and the right half is
-     periodic (with a period as large as NEEDLE_LEN - suffix).  */
-  suffix = critical_factorization (needle, needle_len, &period);
-
-  /* Populate shift_table.  For each possible byte value c,
-     shift_table[c] is the distance from the last occurrence of c to
-     the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
-     shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
-  for (i = 0; i < 1U << CHAR_BIT; i++)
-    shift_table[i] = needle_len;
-  for (i = 0; i < needle_len; i++)
-    shift_table[needle[i]] = needle_len - i - 1;
-
-  /* Perform the search.  Each iteration compares the right half
-     first.  */
-  if (memcmp (needle, needle + period, suffix) == 0)
-    {
-      /* Entire needle is periodic; a mismatch can only advance by the
-        period, so use memory to avoid rescanning known occurrences
-        of the period.  */
-      size_t memory = 0;
-      j = 0;
-      while (j <= haystack_len - needle_len)
-       {
-         /* Check the last byte first; if it does not match, then
-            shift to the next possible match location.  */
-         size_t shift = shift_table[haystack[j + needle_len - 1]];
-         if (0 < shift)
-           {
-             if (memory && shift < period)
-               {
-                 /* Since needle is periodic, but the last period has
-                    a byte out of place, there can be no match until
-                    after the mismatch.  */
-                 shift = needle_len - period;
-                 memory = 0;
-               }
-             j += shift;
-             continue;
-           }
-         /* Scan for matches in right half.  The last byte has
-            already been matched, by virtue of the shift table.  */
-         i = MAX (suffix, memory);
-         while (i < needle_len - 1 && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len - 1 <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (memory < i + 1 && needle[i] == haystack[i + j])
-               --i;
-             if (i + 1 < memory + 1)
-               return (void *) (haystack + j);
-             /* No match, so remember how many repetitions of period
-                on the right half were scanned.  */
-             j += period;
-             memory = needle_len - period;
-           }
-         else
-           {
-             j += i - suffix + 1;
-             memory = 0;
-           }
-       }
-    }
-  else
-    {
-      /* The two halves of needle are distinct; no extra memory is
-        required, and any mismatch results in a maximal shift.  */
-      period = MAX (suffix, needle_len - suffix) + 1;
-      j = 0;
-      while (j <= haystack_len - needle_len)
-       {
-         /* Check the last byte first; if it does not match, then
-            shift to the next possible match location.  */
-         size_t shift = shift_table[haystack[j + needle_len - 1]];
-         if (0 < shift)
-           {
-             j += shift;
-             continue;
-           }
-         /* Scan for matches in right half.  The last byte has
-            already been matched, by virtue of the shift table.  */
-         i = suffix;
-         while (i < needle_len - 1 && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len - 1 <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (i != SIZE_MAX && needle[i] == haystack[i + j])
-               --i;
-             if (i == SIZE_MAX)
-               return (void *) (haystack + j);
-             j += period;
-           }
-         else
-           j += i - suffix + 1;
-       }
-    }
-  return NULL;
-}
+#define RETURN_TYPE void *
+#define AVAILABLE(h, h_l, j, n_l) ((j) <= (h_l) - (n_l))
+#include "str-two-way.h"
 
 /* Return the first occurrence of NEEDLE in HAYSTACK.  Return HAYSTACK
    if NEEDLE_LEN is 0, otherwise NULL if NEEDLE is not found in
@@ -422,4 +74,3 @@ memmem (const void *haystack_start, size_t haystack_len,
 }
 
 #undef LONG_NEEDLE_THRESHOLD
-#undef MAX
diff --git a/lib/str-two-way.h b/lib/str-two-way.h
new file mode 100644
index 0000000..3aa3a1b
--- /dev/null
+++ b/lib/str-two-way.h
@@ -0,0 +1,426 @@
+/* Byte-wise substring search, using the Two-Way algorithm.
+   Copyright (C) 2008 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Written by Eric Blake <address@hidden>, 2008.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License along
+   with this program; if not, write to the Free Software Foundation,
+   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
+
+/* Before including this file, you need to include <config.h> and
+   <string.h>, and define:
+     RESULT_TYPE             A macro that expands to the return type.
+     AVAILABLE(h, h_l, j, n_l)
+                            A macro that returns nonzero if there are
+                            at least N_L bytes left starting at H[J].
+                            H is 'unsigned char *', H_L, J, and N_L
+                            are 'size_t'; H_L is an lvalue.  For
+                            NUL-terminated searches, H_L can be
+                            modified each iteration to avoid having
+                            to compute the end of H up front.
+
+  For case-insensitivity, you may optionally define:
+     CMP_FUNC(p1, p2, l)     A macro that returns 0 iff the first L
+                            characters of P1 and P2 are equal.
+     CANON_ELEMENT(c)        A macro that canonicalizes an element right after
+                            it has been fetched from one of the two strings.
+                            The argument is an 'unsigned char'; the result
+                            must be an 'unsigned char' as well.
+
+  This file undefines the macros documented above, and defines
+  LONG_NEEDLE_THRESHOLD.
+*/
+
+#include <limits.h>
+#include <stdint.h>
+
+/* We use the Two-Way string matching algorithm, which guarantees
+   linear complexity with constant space.  Additionally, for long
+   needles, we also use a bad character shift table similar to the
+   Boyer-Moore algorithm to achieve improved (potentially sub-linear)
+   performance.
+
+   See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
+   and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
+*/
+
+/* Point at which computing a bad-byte shift table is likely to be
+   worthwhile.  Small needles should not compute a table, since it
+   adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
+   speedup no greater than a factor of NEEDLE_LEN.  The larger the
+   needle, the better the potential performance gain.  On the other
+   hand, on non-POSIX systems with CHAR_BIT larger than eight, the
+   memory required for the table is prohibitive.  */
+#if CHAR_BIT < 10
+# define LONG_NEEDLE_THRESHOLD 32U
+#else
+# define LONG_NEEDLE_THRESHOLD SIZE_MAX
+#endif
+
+#define MAX(a, b) ((a < b) ? (b) : (a))
+
+#ifndef CANON_ELEMENT
+# define CANON_ELEMENT(c) c
+#endif
+#ifndef CMP_FUNC
+# define CMP_FUNC memcmp
+#endif
+
+/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
+   Return the index of the first byte in the right half, and set
+   *PERIOD to the global period of the right half.
+
+   The global period of a string is the smallest index (possibly its
+   length) at which all remaining bytes in the string are repetitions
+   of the prefix (the last repetition may be a subset of the prefix).
+
+   When NEEDLE is factored into two halves, a local period is the
+   length of the smallest word that shares a suffix with the left half
+   and shares a prefix with the right half.  All factorizations of a
+   non-empty NEEDLE have a local period of at least 1 and no greater
+   than NEEDLE_LEN.
+
+   A critical factorization has the property that the local period
+   equals the global period.  All strings have at least one critical
+   factorization with the left half smaller than the global period.
+
+   Given an ordered alphabet, a critical factorization can be computed
+   in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
+   larger of two ordered maximal suffixes.  The ordered maximal
+   suffixes are determined by lexicographic comparison of
+   periodicity.  */
+static size_t
+critical_factorization (const unsigned char *needle, size_t needle_len,
+                       size_t *period)
+{
+  /* Index of last byte of left half, or SIZE_MAX.  */
+  size_t max_suffix, max_suffix_rev;
+  size_t j; /* Index into NEEDLE for current candidate suffix.  */
+  size_t k; /* Offset into current period.  */
+  size_t p; /* Intermediate period.  */
+  unsigned char a, b; /* Current comparison bytes.  */
+
+  /* Invariants:
+     0 <= j < NEEDLE_LEN - 1
+     -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
+     min(max_suffix, max_suffix_rev) < global period of NEEDLE
+     1 <= p <= global period of NEEDLE
+     p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
+     1 <= k <= p
+  */
+
+  /* Perform lexicographic search.  */
+  max_suffix = SIZE_MAX;
+  j = 0;
+  k = p = 1;
+  while (j + k < needle_len)
+    {
+      a = CANON_ELEMENT (needle[j + k]);
+      b = CANON_ELEMENT (needle[max_suffix + k]);
+      if (a < b)
+       {
+         /* Suffix is smaller, period is entire prefix so far.  */
+         j += k;
+         k = 1;
+         p = j - max_suffix;
+       }
+      else if (a == b)
+       {
+         /* Advance through repetition of the current period.  */
+         if (k != p)
+           ++k;
+         else
+           {
+             j += p;
+             k = 1;
+           }
+       }
+      else /* b < a */
+       {
+         /* Suffix is larger, start over from current location.  */
+         max_suffix = j++;
+         k = p = 1;
+       }
+    }
+  *period = p;
+
+  /* Perform reverse lexicographic search.  */
+  max_suffix_rev = SIZE_MAX;
+  j = 0;
+  k = p = 1;
+  while (j + k < needle_len)
+    {
+      a = CANON_ELEMENT (needle[j + k]);
+      b = CANON_ELEMENT (needle[max_suffix_rev + k]);
+      if (b < a)
+       {
+         /* Suffix is smaller, period is entire prefix so far.  */
+         j += k;
+         k = 1;
+         p = j - max_suffix_rev;
+       }
+      else if (a == b)
+       {
+         /* Advance through repetition of the current period.  */
+         if (k != p)
+           ++k;
+         else
+           {
+             j += p;
+             k = 1;
+           }
+       }
+      else /* a < b */
+       {
+         /* Suffix is larger, start over from current location.  */
+         max_suffix_rev = j++;
+         k = p = 1;
+       }
+    }
+
+  /* Choose the longer suffix.  Return the first byte of the right
+     half, rather than the last byte of the left half.  */
+  if (max_suffix_rev + 1 < max_suffix + 1)
+    return max_suffix + 1;
+  *period = p;
+  return max_suffix_rev + 1;
+}
+
+/* Return the first location of non-empty NEEDLE within HAYSTACK, or
+   NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
+   method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
+   Performance is guaranteed to be linear, with an initialization cost
+   of 2 * NEEDLE_LEN comparisons.
+
+   If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
+   most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
+   If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
+   HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.  */
+static RETURN_TYPE
+two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
+                     const unsigned char *needle, size_t needle_len)
+{
+  size_t i; /* Index into current byte of NEEDLE.  */
+  size_t j; /* Index into current window of HAYSTACK.  */
+  size_t period; /* The period of the right half of needle.  */
+  size_t suffix; /* The index of the right half of needle.  */
+
+  /* Factor the needle into two halves, such that the left half is
+     smaller than the global period, and the right half is
+     periodic (with a period as large as NEEDLE_LEN - suffix).  */
+  suffix = critical_factorization (needle, needle_len, &period);
+
+  /* Perform the search.  Each iteration compares the right half
+     first.  */
+  if (CMP_FUNC (needle, needle + period, suffix) == 0)
+    {
+      /* Entire needle is periodic; a mismatch can only advance by the
+        period, so use memory to avoid rescanning known occurrences
+        of the period.  */
+      size_t memory = 0;
+      j = 0;
+      while (AVAILABLE (haystack, haystack_len, j, needle_len))
+       {
+         /* Scan for matches in right half.  */
+         i = MAX (suffix, memory);
+         while (i < needle_len && (CANON_ELEMENT (needle[i])
+                                   == CANON_ELEMENT (haystack[i + j])))
+           ++i;
+         if (needle_len <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (memory < i + 1 && (CANON_ELEMENT (needle[i])
+                                       == CANON_ELEMENT (haystack[i + j])))
+               --i;
+             if (i + 1 < memory + 1)
+               return (RETURN_TYPE) (haystack + j);
+             /* No match, so remember how many repetitions of period
+                on the right half were scanned.  */
+             j += period;
+             memory = needle_len - period;
+           }
+         else
+           {
+             j += i - suffix + 1;
+             memory = 0;
+           }
+       }
+    }
+  else
+    {
+      /* The two halves of needle are distinct; no extra memory is
+        required, and any mismatch results in a maximal shift.  */
+      period = MAX (suffix, needle_len - suffix) + 1;
+      j = 0;
+      while (AVAILABLE (haystack, haystack_len, j, needle_len))
+       {
+         /* Scan for matches in right half.  */
+         i = suffix;
+         while (i < needle_len && (CANON_ELEMENT (needle[i])
+                                   == CANON_ELEMENT (haystack[i + j])))
+           ++i;
+         if (needle_len <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
+                                      == CANON_ELEMENT (haystack[i + j])))
+               --i;
+             if (i == SIZE_MAX)
+               return (RETURN_TYPE) (haystack + j);
+             j += period;
+           }
+         else
+           j += i - suffix + 1;
+       }
+    }
+  return NULL;
+}
+
+/* Return the first location of non-empty NEEDLE within HAYSTACK, or
+   NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
+   method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
+   Performance is guaranteed to be linear, with an initialization cost
+   of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
+
+   If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
+   most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
+   and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
+   If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
+   HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
+   sublinear performance is not possible.  */
+static RETURN_TYPE
+two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
+                    const unsigned char *needle, size_t needle_len)
+{
+  size_t i; /* Index into current byte of NEEDLE.  */
+  size_t j; /* Index into current window of HAYSTACK.  */
+  size_t period; /* The period of the right half of needle.  */
+  size_t suffix; /* The index of the right half of needle.  */
+  size_t shift_table[1U << CHAR_BIT]; /* See below.  */
+
+  /* Factor the needle into two halves, such that the left half is
+     smaller than the global period, and the right half is
+     periodic (with a period as large as NEEDLE_LEN - suffix).  */
+  suffix = critical_factorization (needle, needle_len, &period);
+
+  /* Populate shift_table.  For each possible byte value c,
+     shift_table[c] is the distance from the last occurrence of c to
+     the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
+     shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
+  for (i = 0; i < 1U << CHAR_BIT; i++)
+    shift_table[i] = needle_len;
+  for (i = 0; i < needle_len; i++)
+    shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
+
+  /* Perform the search.  Each iteration compares the right half
+     first.  */
+  if (CMP_FUNC (needle, needle + period, suffix) == 0)
+    {
+      /* Entire needle is periodic; a mismatch can only advance by the
+        period, so use memory to avoid rescanning known occurrences
+        of the period.  */
+      size_t memory = 0;
+      size_t shift;
+      j = 0;
+      while (AVAILABLE (haystack, haystack_len, j, needle_len))
+       {
+         /* Check the last byte first; if it does not match, then
+            shift to the next possible match location.  */
+         shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
+         if (0 < shift)
+           {
+             if (memory && shift < period)
+               {
+                 /* Since needle is periodic, but the last period has
+                    a byte out of place, there can be no match until
+                    after the mismatch.  */
+                 shift = needle_len - period;
+                 memory = 0;
+               }
+             j += shift;
+             continue;
+           }
+         /* Scan for matches in right half.  The last byte has
+            already been matched, by virtue of the shift table.  */
+         i = MAX (suffix, memory);
+         while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
+                                       == CANON_ELEMENT (haystack[i + j])))
+           ++i;
+         if (needle_len - 1 <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (memory < i + 1 && (CANON_ELEMENT (needle[i])
+                                       == CANON_ELEMENT (haystack[i + j])))
+               --i;
+             if (i + 1 < memory + 1)
+               return (RETURN_TYPE) (haystack + j);
+             /* No match, so remember how many repetitions of period
+                on the right half were scanned.  */
+             j += period;
+             memory = needle_len - period;
+           }
+         else
+           {
+             j += i - suffix + 1;
+             memory = 0;
+           }
+       }
+    }
+  else
+    {
+      /* The two halves of needle are distinct; no extra memory is
+        required, and any mismatch results in a maximal shift.  */
+      size_t shift;
+      period = MAX (suffix, needle_len - suffix) + 1;
+      j = 0;
+      while (AVAILABLE (haystack, haystack_len, j, needle_len))
+       {
+         /* Check the last byte first; if it does not match, then
+            shift to the next possible match location.  */
+         shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
+         if (0 < shift)
+           {
+             j += shift;
+             continue;
+           }
+         /* Scan for matches in right half.  The last byte has
+            already been matched, by virtue of the shift table.  */
+         i = suffix;
+         while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
+                                       == CANON_ELEMENT (haystack[i + j])))
+           ++i;
+         if (needle_len - 1 <= i)
+           {
+             /* Scan for matches in left half.  */
+             i = suffix - 1;
+             while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
+                                      == CANON_ELEMENT (haystack[i + j])))
+               --i;
+             if (i == SIZE_MAX)
+               return (RETURN_TYPE) (haystack + j);
+             j += period;
+           }
+         else
+           j += i - suffix + 1;
+       }
+    }
+  return NULL;
+}
+
+#undef AVAILABLE
+#undef CANON_ELEMENT
+#undef MAX
+#undef RETURN_TYPE
diff --git a/lib/strstr.c b/lib/strstr.c
index 80b18b0..338be82 100644
--- a/lib/strstr.c
+++ b/lib/strstr.c
@@ -25,370 +25,17 @@
 /* Specification of strstr.  */
 #include <string.h>
 
-#include <limits.h>
 #include <stdbool.h>
-#include <stddef.h>
-#include <stdint.h>
 
 #ifndef _LIBC
 # define __builtin_expect(expr, val)   (expr)
 #endif
 
-/* We use the Two-Way string matching algorithm, which guarantees
-   linear complexity with constant space.  Additionally, for long
-   needles, we also use a bad character shift table similar to the
-   Boyer-Moore algorithm to achieve better performance.
-
-   See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
-   and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
-*/
-
-/* Point at which computing a bad-byte shift table is likely to be
-   worthwhile.  Small needles should not compute a table, since it
-   adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
-   speedup no greater than a factor of NEEDLE_LEN.  The larger the
-   needle, the better the potential performance gain.  On the other
-   hand, on non-POSIX systems with CHAR_BIT larger than eight, the
-   memory required for the table is prohibitive.  */
-#if CHAR_BIT < 10
-# define LONG_NEEDLE_THRESHOLD 32U
-#else
-# define LONG_NEEDLE_THRESHOLD SIZE_MAX
-#endif
-
-#define MAX(a, b) ((a < b) ? (b) : (a))
-
-/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
-   Return the index of the first byte in the right half, and set
-   *PERIOD to the global period of the right half.
-
-   The global period of a string is the smallest index (possibly its
-   length) at which all remaining bytes in the string are repetitions
-   of the prefix (the last repetition may be a subset of the prefix).
-
-   When NEEDLE is factored into two halves, a local period is the
-   length of the smallest word that shares a suffix with the left half
-   and shares a prefix with the right half.  All factorizations of a
-   non-empty NEEDLE have a local period of at least 1 and no greater
-   than NEEDLE_LEN.
-
-   A critical factorization has the property that the local period
-   equals the global period.  All strings have at least one critical
-   factorization with the left half smaller than the global period.
-
-   Given an ordered alphabet, a critical factorization can be computed
-   in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
-   larger of two ordered maximal suffixes.  The ordered maximal
-   suffixes are determined by lexicographic comparison of
-   periodicity.  */
-static size_t
-critical_factorization (const unsigned char *needle, size_t needle_len,
-                       size_t *period)
-{
-  /* Index of last byte of left half, or SIZE_MAX.  */
-  size_t max_suffix, max_suffix_rev;
-  size_t j; /* Index into NEEDLE for current candidate suffix.  */
-  size_t k; /* Offset into current period.  */
-  size_t p; /* Intermediate period.  */
-  unsigned char a, b; /* Current comparison bytes.  */
-
-  /* Invariants:
-     0 <= j < NEEDLE_LEN - 1
-     -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
-     min(max_suffix, max_suffix_rev) < global period of NEEDLE
-     1 <= p <= global period of NEEDLE
-     p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
-     1 <= k <= p
-  */
-
-  /* Perform lexicographic search.  */
-  max_suffix = SIZE_MAX;
-  j = 0;
-  k = p = 1;
-  while (j + k < needle_len)
-    {
-      a = needle[j + k];
-      b = needle[max_suffix + k];
-      if (a < b)
-       {
-         /* Suffix is smaller, period is entire prefix so far.  */
-         j += k;
-         k = 1;
-         p = j - max_suffix;
-       }
-      else if (a == b)
-       {
-         /* Advance through repetition of the current period.  */
-         if (k != p)
-           ++k;
-         else
-           {
-             j += p;
-             k = 1;
-           }
-       }
-      else /* b < a */
-       {
-         /* Suffix is larger, start over from current location.  */
-         max_suffix = j++;
-         k = p = 1;
-       }
-    }
-  *period = p;
-
-  /* Perform reverse lexicographic search.  */
-  max_suffix_rev = SIZE_MAX;
-  j = 0;
-  k = p = 1;
-  while (j + k < needle_len)
-    {
-      a = needle[j + k];
-      b = needle[max_suffix_rev + k];
-      if (b < a)
-       {
-         /* Suffix is smaller, period is entire prefix so far.  */
-         j += k;
-         k = 1;
-         p = j - max_suffix_rev;
-       }
-      else if (a == b)
-       {
-         /* Advance through repetition of the current period.  */
-         if (k != p)
-           ++k;
-         else
-           {
-             j += p;
-             k = 1;
-           }
-       }
-      else /* a < b */
-       {
-         /* Suffix is larger, start over from current location.  */
-         max_suffix_rev = j++;
-         k = p = 1;
-       }
-    }
-
-  /* Choose the longer suffix.  Return the first byte of the right
-     half, rather than the last byte of the left half.  */
-  if (max_suffix_rev + 1 < max_suffix + 1)
-    return max_suffix + 1;
-  *period = p;
-  return max_suffix_rev + 1;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
-   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
-   for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.  Performance is linear,
-   with 2 * NEEDLE_LEN comparisons in preparation, and at most 3 *
-   HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.  */
-static char *
-two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
-                     const unsigned char *needle, size_t needle_len)
-{
-  size_t i; /* Index into current byte of NEEDLE.  */
-  size_t j; /* Index into current window of HAYSTACK.  */
-  size_t period; /* The period of the right half of needle.  */
-  size_t suffix; /* The index of the right half of needle.  */
-
-  /* Factor the needle into two halves, such that the left half is
-     smaller than the global period, and the right half is
-     periodic (with a period as large as NEEDLE_LEN - suffix).  */
-  suffix = critical_factorization (needle, needle_len, &period);
-
-  /* Perform the search.  Each iteration compares the right half
-     first.  */
-  if (memcmp (needle, needle + period, suffix) == 0)
-    {
-      /* Entire needle is periodic; a mismatch can only advance by the
-        period, so use memory to avoid rescanning known occurrences
-        of the period.  */
-      size_t memory = 0;
-      j = 0;
-      while (!memchr (&haystack[haystack_len], '\0',
-                     j + needle_len - haystack_len)
-            && (haystack_len = j + needle_len))
-       {
-         /* Scan for matches in right half.  */
-         i = MAX (suffix, memory);
-         while (i < needle_len && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (memory < i + 1 && needle[i] == haystack[i + j])
-               --i;
-             if (i + 1 < memory + 1)
-               return (char *) (haystack + j);
-             /* No match, so remember how many repetitions of period
-                on the right half were scanned.  */
-             j += period;
-             memory = needle_len - period;
-           }
-         else
-           {
-             j += i - suffix + 1;
-             memory = 0;
-           }
-       }
-    }
-  else
-    {
-      /* The two halves of needle are distinct; no extra memory is
-        required, and any mismatch results in a maximal shift.  */
-      period = MAX (suffix, needle_len - suffix) + 1;
-      j = 0;
-      while (!memchr (&haystack[haystack_len], '\0',
-                     j + needle_len - haystack_len)
-            && (haystack_len = j + needle_len))
-       {
-         /* Scan for matches in right half.  */
-         i = suffix;
-         while (i < needle_len && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (i != SIZE_MAX && needle[i] == haystack[i + j])
-               --i;
-             if (i == SIZE_MAX)
-               return (char *) (haystack + j);
-             j += period;
-           }
-         else
-           j += i - suffix + 1;
-       }
-    }
-  return NULL;
-}
-
-/* Return the first location of NEEDLE within HAYSTACK, or NULL.  This
-   method requires 0 < NEEDLE_LEN <= HAYSTACK_LEN, and is optimized
-   for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.  Performance is linear,
-   with 3 * NEEDLE_LEN + (1U << CHAR_BIT) operations in preparation,
-   and at most 3 * HAYSTACK_LEN - NEEDLE_LEN comparisons in searching.
-   The extra initialization cost allows for as few as HAYSTACK_LEN +
-   HAYSTACK_LEN / NEEDLE_LEN.  */
-static char *
-two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
-                    const unsigned char *needle, size_t needle_len)
-{
-  size_t i; /* Index into current byte of NEEDLE.  */
-  size_t j; /* Index into current window of HAYSTACK.  */
-  size_t period; /* The period of the right half of needle.  */
-  size_t suffix; /* The index of the right half of needle.  */
-  size_t shift_table[1U << CHAR_BIT]; /* See below.  */
-
-  /* Factor the needle into two halves, such that the left half is
-     smaller than the global period, and the right half is
-     periodic (with a period as large as NEEDLE_LEN - suffix).  */
-  suffix = critical_factorization (needle, needle_len, &period);
-
-  /* Populate shift_table.  For each possible byte value c,
-     shift_table[c] is the distance from the last occurrence of c to
-     the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
-     shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
-  for (i = 0; i < 1U << CHAR_BIT; i++)
-    shift_table[i] = needle_len;
-  for (i = 0; i < needle_len; i++)
-    shift_table[needle[i]] = needle_len - i - 1;
-
-  /* Perform the search.  Each iteration compares the right half
-     first.  */
-  if (memcmp (needle, needle + period, suffix) == 0)
-    {
-      /* Entire needle is periodic; a mismatch can only advance by the
-        period, so use memory to avoid rescanning known occurrences
-        of the period.  */
-      size_t memory = 0;
-      j = 0;
-      while (!memchr (&haystack[haystack_len], '\0',
-                     j + needle_len - haystack_len)
-            && (haystack_len = j + needle_len))
-       {
-         /* Check the last byte first; if it does not match, then
-            shift to the next possible match location.  */
-         size_t shift = shift_table[haystack[j + needle_len - 1]];
-         if (0 < shift)
-           {
-             if (memory && shift < period)
-               {
-                 /* Since needle is periodic, but the last period has
-                    a byte out of place, there can be no match until
-                    after the mismatch.  */
-                 shift = needle_len - period;
-                 memory = 0;
-               }
-             j += shift;
-             continue;
-           }
-         /* Scan for matches in right half.  The last byte has
-            already been matched, by virtue of the shift table.  */
-         i = MAX (suffix, memory);
-         while (i < needle_len - 1 && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len - 1 <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (memory < i + 1 && needle[i] == haystack[i + j])
-               --i;
-             if (i + 1 < memory + 1)
-               return (char *) (haystack + j);
-             /* No match, so remember how many repetitions of period
-                on the right half were scanned.  */
-             j += period;
-             memory = needle_len - period;
-           }
-         else
-           {
-             j += i - suffix + 1;
-             memory = 0;
-           }
-       }
-    }
-  else
-    {
-      /* The two halves of needle are distinct; no extra memory is
-        required, and any mismatch results in a maximal shift.  */
-      period = MAX (suffix, needle_len - suffix) + 1;
-      j = 0;
-      while (!memchr (&haystack[haystack_len], '\0',
-                     j + needle_len - haystack_len)
-            && (haystack_len = j + needle_len))
-       {
-         /* Check the last byte first; if it does not match, then
-            shift to the next possible match location.  */
-         size_t shift = shift_table[haystack[j + needle_len - 1]];
-         if (0 < shift)
-           {
-             j += shift;
-             continue;
-           }
-         /* Scan for matches in right half.  The last byte has
-            already been matched, by virtue of the shift table.  */
-         i = suffix;
-         while (i < needle_len - 1 && needle[i] == haystack[i + j])
-           ++i;
-         if (needle_len - 1 <= i)
-           {
-             /* Scan for matches in left half.  */
-             i = suffix - 1;
-             while (i != SIZE_MAX && needle[i] == haystack[i + j])
-               --i;
-             if (i == SIZE_MAX)
-               return (char *) (haystack + j);
-             j += period;
-           }
-         else
-           j += i - suffix + 1;
-       }
-    }
-  return NULL;
-}
+#define RETURN_TYPE char *
+#define AVAILABLE(h, h_l, j, n_l)                      \
+  (!memchr ((h) + (h_l), '\0', (j) + (n_l) - (h_l))    \
+   && ((h_l) = (j) + (n_l)))
+#include "str-two-way.h"
 
 /* Return the first occurrence of NEEDLE in HAYSTACK.  Return HAYSTACK
    if NEEDLE is empty, otherwise NULL if NEEDLE is not found in
@@ -434,4 +81,3 @@ strstr (const char *haystack_start, const char *needle_start)
 }
 
 #undef LONG_NEEDLE_THRESHOLD
-#undef MAX
diff --git a/modules/memmem-simple b/modules/memmem-simple
index bbe89cd..c84755d 100644
--- a/modules/memmem-simple
+++ b/modules/memmem-simple
@@ -2,6 +2,7 @@ Description:
 memmem() function: locate first substring in a buffer.
 
 Files:
+lib/str-two-way.h
 lib/memmem.c
 m4/memmem.m4
 
diff --git a/modules/strstr b/modules/strstr
index 4f93df9..251b2d7 100644
--- a/modules/strstr
+++ b/modules/strstr
@@ -2,6 +2,7 @@ Description:
 strstr() function: efficiently locate first substring in a buffer.
 
 Files:
+lib/str-two-way.h
 lib/strstr.c
 m4/strstr.m4
 
-- 
1.5.3.5








reply via email to

[Prev in Thread] Current Thread [Next in Thread]