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The conditions of observations are given by Obs. Events A, B, C are my hypothesis and the physical observables are X and Y (which can perhaps be observed experimentally). The intermediately states like {
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} are influenced by the parent states in a distinct manner- a state is independent of the other states unless it is one of it’s parents. If I can provide a prior distribution to my hypothesis variables, I have a probability for the. states X and Y being observed. Say in an experiment X and Y are observed, with certain probability, I would like to refine my hypothesis depending on this observation. The problem thus stated, should be translated into mathematical language.

The issues here are 

(a) Understanding what does one mean by assigning priors to hypothesis 

(b) How are conditional probabilities dealt with according to the above influence diagram (or network diagram)

(c) How are posteriors calculated?

· The hypothesis variables A, B, C can be thought on these lines. Say a prior distribution is assigned for these variables are of the form 
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, where 
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 is a parameter which expresses the belief for an event to occur under the observation conditions Obs. For example, consider a biased coin with such a probability distribution where 
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 is the belief of occurrence of heads. After N such observations, we predict the occurrence of heads and assign that probability as the probability of occurrence of the event (here A is such an event). For posterior probability distribution, we find the 
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after some Data has been observed- from this posterior probability of A can be calculated.

· For the other variables {
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}, the conditional dependency on their parents can be simulated by requiring that some probability distribution of these variables be dependent on some of the parameters of their parents. This means 
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 EMBED Equation.3  [image: image9.wmf])
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 =f (a) is the probability distribution of the variable 
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, and a being some parameter in description of the event A. This way 
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 can be coupled with A for conditional density. In similar manner other variables can be understood.

· Now the event X is observed. We wish to know the posteriors on its parent variables- in particular the hypothesis variables A, B, C.


If needed, the posterior on 
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 like variable of A can be calculated in the similar spirit.

· A Query on MCMC () specification:

Here I provide my understanding of the utility of MCMC technique in context of Bayesian inference.

If 
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 EMBED Equation.3  [image: image14.wmf]is the quantity of interest, then its posterior distribution given a data is 
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. This is an average of posterior distribution under each of the model Mk that is being considered. The quantity P(Mk |D) is the posterior distribution of the model given the data. This also can be provided by baye’s theorem 
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 , where P(Mk)  is prior on the model. Posterior mean of 
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can be calculated by averaging over means of a particular model Mk.

The size of the models Mk renders the summations very difficult. Hence we need a mechanism to select a few important models and then average over them. In a discrete case, the models {M} might differ from each other by one node /or an edge- addition of a new edge or a node thus modifying the model slightly. In continuous case, it might be a variation in parameter of a model descriptor – something of that sort. Hence the number of models that  need to  be considered grow enormously and we need a mechanism to consider only relevant and important models. Here comes the technique of MCMC, which generates a set of markov states, and from those states a set of states are picked up  using Metropolis- Hastings algorithm and finally the quantity of interest is averaged over those models. 

I am at loss how is all this theory translated into McSim (!). I would really be grateful if someone could clarify this aspect. 

Once I am satisfied, I promise that I contribute to the existing document with more examples.
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