commit-gnuradio
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Commit-gnuradio] r3735 - gnuradio/trunk/gr-radio-astronomy/src/python


From: mleech
Subject: [Commit-gnuradio] r3735 - gnuradio/trunk/gr-radio-astronomy/src/python
Date: Sat, 7 Oct 2006 06:42:24 -0600 (MDT)

Author: mleech
Date: 2006-10-07 06:42:24 -0600 (Sat, 07 Oct 2006)
New Revision: 3735

Added:
   gnuradio/trunk/gr-radio-astronomy/src/python/ra_waterfallsink.py
Modified:
   gnuradio/trunk/gr-radio-astronomy/src/python/Makefile.am
   gnuradio/trunk/gr-radio-astronomy/src/python/usrp_ra_receiver.py
Log:
Added waterfall display, and SETI processing options to usrp_ra_receiver, which
  necessitated an RA-specific version of waterfallsink.



Modified: gnuradio/trunk/gr-radio-astronomy/src/python/Makefile.am
===================================================================
--- gnuradio/trunk/gr-radio-astronomy/src/python/Makefile.am    2006-10-07 
04:06:40 UTC (rev 3734)
+++ gnuradio/trunk/gr-radio-astronomy/src/python/Makefile.am    2006-10-07 
12:42:24 UTC (rev 3735)
@@ -49,7 +49,8 @@
 
 wxguipython_PYTHON =                   \
        ra_stripchartsink.py            \
-       ra_fftsink.py                   
+       ra_fftsink.py                   \
+       ra_waterfallsink.py
 
 
 # and here for applications you want installed in prefix/bin

Added: gnuradio/trunk/gr-radio-astronomy/src/python/ra_waterfallsink.py
===================================================================
--- gnuradio/trunk/gr-radio-astronomy/src/python/ra_waterfallsink.py            
                (rev 0)
+++ gnuradio/trunk/gr-radio-astronomy/src/python/ra_waterfallsink.py    
2006-10-07 12:42:24 UTC (rev 3735)
@@ -0,0 +1,510 @@
+#!/usr/bin/env python
+#
+# Copyright 2003,2004,2005 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, gru, window
+from gnuradio.wxgui import stdgui
+import wx
+import gnuradio.wxgui.plot as plot
+import Numeric
+import os
+import threading
+import math    
+
+default_fftsink_size = (640,240)
+default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
+
+class ra_waterfallsink_base(object):
+    def __init__(self, input_is_real=False, baseband_freq=0,
+                 sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate,
+                 average=False, avg_alpha=None, title='', ofunc=None, 
xydfunc=None, scaling=100):
+
+        # initialize common attributes
+        self.baseband_freq = baseband_freq
+        self.sample_rate = sample_rate
+        self.fft_size = fft_size
+        self.fft_rate = fft_rate
+        self.average = average
+        self.ofunc = ofunc
+        self.xydfunc = xydfunc
+        self.scaling = scaling
+        if avg_alpha is None:
+            self.avg_alpha = 2.0 / fft_rate
+        else:
+            self.avg_alpha = avg_alpha
+        self.title = title
+        self.input_is_real = input_is_real
+        self.msgq = gr.msg_queue(2)         # queue up to 2 messages
+
+    def set_average(self, average):
+        self.average = average
+        if average:
+            self.avg.set_taps(self.avg_alpha)
+        else:
+            self.avg.set_taps(1.0)
+
+    def set_avg_alpha(self, avg_alpha):
+        self.avg_alpha = avg_alpha
+
+    def set_baseband_freq(self, baseband_freq):
+        self.baseband_freq = baseband_freq
+
+    def set_sample_rate(self, sample_rate):
+        self.sample_rate = sample_rate
+        self._set_n()
+
+    def set_scaling(self,scaling):
+        self.scaling = scaling
+        return
+
+    def _set_n(self):
+        self.one_in_n.set_n(max(1, 
int(self.sample_rate/self.fft_size/self.fft_rate)))
+        
+class ra_waterfallsink_f(gr.hier_block, ra_waterfallsink_base):
+    def __init__(self, fg, parent, baseband_freq=0,
+                 y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate, average=False, avg_alpha=None,
+                 title='', scaling=100, size=default_fftsink_size, ofunc=None, 
xydfunc=None):
+
+        ra_waterfallsink_base.__init__(self, input_is_real=True, 
baseband_freq=baseband_freq,
+                               sample_rate=sample_rate, fft_size=fft_size,
+                               fft_rate=fft_rate,
+                               average=average, avg_alpha=avg_alpha, 
title=title, ofunc=ofunc, xydfunc=xydfunc, scaling=scaling)
+                               
+        s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size)
+        self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size,
+                                         max(1, 
int(self.sample_rate/self.fft_size/self.fft_rate)))
+        mywindow = window.blackmanharris(self.fft_size)
+        fft = gr.fft_vfc(self.fft_size, True, mywindow)
+        c2mag = gr.complex_to_mag(self.fft_size)
+        self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
+        log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+        sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, 
True)
+
+        fg.connect (s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
+        gr.hier_block.__init__(self, fg, s2p, sink)
+
+        self.win = ra_waterfall_window(self, parent, size=size)
+        self.set_average(self.average)
+
+
+class ra_waterfallsink_c(gr.hier_block, ra_waterfallsink_base):
+    def __init__(self, fg, parent, baseband_freq=0,
+                 y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate, average=False, 
+                 avg_alpha=None, scaling=100,
+                 title='', size=default_fftsink_size, ofunc=None, 
xydfunc=None):
+
+        ra_waterfallsink_base.__init__(self, input_is_real=False, 
baseband_freq=baseband_freq,
+                                     sample_rate=sample_rate, 
fft_size=fft_size,
+                                     fft_rate=fft_rate,
+                                     average=average, 
+                                     avg_alpha=avg_alpha, 
+                                     title=title, ofunc=ofunc, 
+                                     xydfunc=xydfunc, scaling=scaling)
+
+        s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size)
+        self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
+                                         max(1, 
int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+        mywindow = window.blackmanharris(self.fft_size)
+        fft = gr.fft_vcc(self.fft_size, True, mywindow)
+        c2mag = gr.complex_to_mag(self.fft_size)
+        self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
+        log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+        sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, 
True)
+
+        fg.connect(s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
+        gr.hier_block.__init__(self, fg, s2p, sink)
+
+        self.win = ra_waterfall_window(self, parent, size=size)
+        self.set_average(self.average)
+
+
+# ------------------------------------------------------------------------
+
+myDATA_EVENT = wx.NewEventType()
+EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
+
+
+class DataEvent(wx.PyEvent):
+    def __init__(self, data):
+        wx.PyEvent.__init__(self)
+        self.SetEventType (myDATA_EVENT)
+        self.data = data
+
+    def Clone (self): 
+        self.__class__ (self.GetId())
+
+
+class input_watcher (threading.Thread):
+    def __init__ (self, msgq, fft_size, event_receiver, **kwds):
+        threading.Thread.__init__ (self, **kwds)
+        self.setDaemon (1)
+        self.msgq = msgq
+        self.fft_size = fft_size
+        self.event_receiver = event_receiver
+        self.keep_running = True
+        self.start ()
+
+    def run (self):
+        while (self.keep_running):
+            msg = self.msgq.delete_head()  # blocking read of message queue
+            itemsize = int(msg.arg1())
+            nitems = int(msg.arg2())
+
+            s = msg.to_string()            # get the body of the msg as a 
string
+
+            # There may be more than one FFT frame in the message.
+            # If so, we take only the last one
+            if nitems > 1:
+                start = itemsize * (nitems - 1)
+                s = s[start:start+itemsize]
+
+            complex_data = Numeric.fromstring (s, Numeric.Float32)
+            de = DataEvent (complex_data)
+            wx.PostEvent (self.event_receiver, de)
+            del de
+    
+
+class ra_waterfall_window (wx.Panel):
+    def __init__ (self, fftsink, parent, id = -1,
+                  pos = wx.DefaultPosition, size = wx.DefaultSize,
+                  style = wx.DEFAULT_FRAME_STYLE, name = ""):
+        wx.Panel.__init__(self, parent, id, pos, size, style, name)
+
+        self.fftsink = fftsink
+        self.bm = wx.EmptyBitmap(self.fftsink.fft_size, 300, -1)
+
+        self.scale_factor = self.fftsink.scaling
+        
+        dc1 = wx.MemoryDC()
+        dc1.SelectObject(self.bm)
+        dc1.Clear()
+
+        self.pens = self.make_pens()
+
+        wx.EVT_PAINT( self, self.OnPaint )
+        wx.EVT_CLOSE (self, self.on_close_window)
+        EVT_DATA_EVENT (self, self.set_data)
+        
+        self.build_popup_menu()
+        
+        wx.EVT_CLOSE (self, self.on_close_window)
+        self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
+
+        self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, 
self)
+
+
+    def on_close_window (self, event):
+        print "ra_waterfall_window: on_close_window"
+        self.keep_running = False
+
+    def const_list(self,const,len):
+        return [const] * len
+
+    def make_colormap(self):
+        r = []
+        r.extend(self.const_list(0,96))
+        r.extend(range(0,255,4))
+        r.extend(self.const_list(255,64))
+        r.extend(range(255,128,-4))
+        
+        g = []
+        g.extend(self.const_list(0,32))
+        g.extend(range(0,255,4))
+        g.extend(self.const_list(255,64))
+        g.extend(range(255,0,-4))
+        g.extend(self.const_list(0,32))
+        
+        b = range(128,255,4)
+        b.extend(self.const_list(255,64))
+        b.extend(range(255,0,-4))
+        b.extend(self.const_list(0,96))
+        return (r,g,b)
+
+    def make_pens(self):
+        (r,g,b) = self.make_colormap()
+        pens = []
+        for i in range(0,256):
+            colour = wx.Colour(r[i], g[i], b[i])
+            pens.append( wx.Pen(colour, 2, wx.SOLID))
+        return pens
+        
+    def OnPaint(self, event):
+        dc = wx.PaintDC(self)
+        self.DoDrawing(dc)
+
+    def DoDrawing(self, dc=None):
+        if dc is None:
+            dc = wx.ClientDC(self)
+        dc.DrawBitmap(self.bm, 0, 0, False )
+    
+
+    def const_list(self,const,len):
+        a = [const]
+        for i in range(1,len):
+            a.append(const)
+        return a
+
+    def make_colormap(self):
+        r = []
+        r.extend(self.const_list(0,96))
+        r.extend(range(0,255,4))
+        r.extend(self.const_list(255,64))
+        r.extend(range(255,128,-4))
+        
+        g = []
+        g.extend(self.const_list(0,32))
+        g.extend(range(0,255,4))
+        g.extend(self.const_list(255,64))
+        g.extend(range(255,0,-4))
+        g.extend(self.const_list(0,32))
+        
+        b = range(128,255,4)
+        b.extend(self.const_list(255,64))
+        b.extend(range(255,0,-4))
+        b.extend(self.const_list(0,96))
+        return (r,g,b)
+
+    def set_data (self, evt):
+        dB = evt.data
+        L = len (dB)
+
+        if (self.fftsink.ofunc != None):
+            self.fftsink.ofunc (evt.data, L)
+
+        dc1 = wx.MemoryDC()
+        dc1.SelectObject(self.bm)
+        dc1.Blit(0,1,self.fftsink.fft_size,300,dc1,0,0,wx.COPY,False,-1,-1)
+
+        x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
+        if x >= 1e9:
+            sf = 1e-9
+            units = "GHz"
+        elif x >= 1e6:
+            sf = 1e-6
+            units = "MHz"
+        else:
+            sf = 1e-3
+            units = "kHz"
+
+
+        if self.fftsink.input_is_real:     # only plot 1/2 the points
+            d_max = L/2
+            p_width = 2
+        else:
+            d_max = L/2
+            p_width = 1
+
+        WATERFALL_WIDTH=1024
+        scale_factor = self.scale_factor
+        x_positions = Numeric.zeros(WATERFALL_WIDTH, Numeric.Float64)
+        y_values = Numeric.zeros(WATERFALL_WIDTH, Numeric.Float64)
+        x_scale = L / WATERFALL_WIDTH
+        x_scale = int(x_scale)
+        if self.fftsink.input_is_real:     # real fft
+           for x_pos in range(0, d_max):
+               value = int(dB[x_pos] * scale_factor)
+               value = min(255, max(0, value))
+               idx = int(x_pos/x_scale)
+               idx = min(WATERFALL_WIDTH-1,idx)
+               x_positions[idx] = idx
+               y_values[idx] = y_values[idx] + value
+               #dc1.SetPen(self.pens[value])
+               #dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1) 
+        else:                               # complex fft
+           for x_pos in range(0, d_max):    # positive freqs
+               value = int(dB[x_pos] * scale_factor)
+               value = min(255, max(0, value))
+               idx = int((x_pos+d_max)/x_scale)
+               idx = min(WATERFALL_WIDTH-1,idx)
+               x_positions[idx] = idx
+               y_values[idx] = y_values[idx] + value
+               #dc1.SetPen(self.pens[value])
+               #dc1.DrawRectangle(x_pos*p_width + d_max, 0, p_width, 1) 
+           for x_pos in range(0 , d_max):   # negative freqs
+               value = int(dB[x_pos+d_max] * scale_factor)
+               value = min(255, max(0, value))
+               idx = int((x_pos)/x_scale)
+               idx = min(WATERFALL_WIDTH-1,idx)
+               x_positions[idx] = idx
+               y_values[idx] = y_values[idx] + value
+               #dc1.SetPen(self.pens[value])
+               #dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1) 
+
+        for i in range(0,WATERFALL_WIDTH):
+            yv = y_values[i]/x_scale
+            yv = int(min(255,yv))
+            dc1.SetPen(self.pens[yv])
+            dc1.DrawRectangle(i*p_width, 0, p_width, 1)
+
+        self.DoDrawing (None)
+
+    def on_average(self, evt):
+        # print "on_average"
+        self.fftsink.set_average(evt.IsChecked())
+
+    def on_right_click(self, event):
+        menu = self.popup_menu
+        for id, pred in self.checkmarks.items():
+            item = menu.FindItemById(id)
+            item.Check(pred())
+        self.PopupMenu(menu, event.GetPosition())
+
+    def on_scaling(self, evt):
+        Id = evt.GetId()
+        if Id == self.id_scaling_100:
+            self.fftsink.set_scaling(100)
+        elif Id == self.id_scaling_150:
+            self.fftsink.set_scaling(150)
+        elif Id == self.id_scaling_200:
+            self.fftsink.set_scaling(200)
+        elif Id == self.id_scaling_250:
+            self.fftsink.set_scaling(250)
+        elif Id == self.id_scaling_300:
+            self.fftsink.set_scaling(300)
+
+    def build_popup_menu(self):
+        self.id_scaling_100 = wx.NewId()
+        self.id_scaling_150 = wx.NewId()
+        self.id_scaling_200 = wx.NewId()
+        self.id_scaling_250 = wx.NewId()
+        self.id_scaling_300 = wx.NewId()
+        self.id_average = wx.NewId()
+
+        self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
+        self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_100)
+        self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_150)
+        self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_200)
+        self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_250)
+        self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_300)
+
+
+        # make a menu
+        menu = wx.Menu()
+        self.popup_menu = menu
+        menu.AppendCheckItem(self.id_average, "Average")
+        menu.AppendCheckItem(self.id_scaling_100, "100 scale factor")
+        menu.AppendCheckItem(self.id_scaling_150, "150 scale factor")
+        menu.AppendCheckItem(self.id_scaling_200, "200 scale factor")
+        menu.AppendCheckItem(self.id_scaling_250, "250 scale factor")
+        menu.AppendCheckItem(self.id_scaling_300, "300 scale factor")
+
+        self.checkmarks = {
+            self.id_average : lambda : self.fftsink.average,
+            self.id_scaling_100 : lambda : self.fftsink.scaling == 100,
+            self.id_scaling_150 : lambda : self.fftsink.scaling == 150,
+            self.id_scaling_200 : lambda : self.fftsink.scaling == 200,
+            self.id_scaling_250 : lambda : self.fftsink.scaling == 250,
+            self.id_scaling_300 : lambda : self.fftsink.scaling == 300,
+            }
+
+
+def next_up(v, seq):
+    """
+    Return the first item in seq that is > v.
+    """
+    for s in seq:
+        if s > v:
+            return s
+    return v
+
+def next_down(v, seq):
+    """
+    Return the last item in seq that is < v.
+    """
+    rseq = list(seq[:])
+    rseq.reverse()
+
+    for s in rseq:
+        if s < v:
+            return s
+    return v
+
+
+# ----------------------------------------------------------------
+#                    Deprecated interfaces
+# ----------------------------------------------------------------
+
+# returns (block, win).
+#   block requires a single input stream of float
+#   win is a subclass of wxWindow
+
+def make_ra_waterfallsink_f(fg, parent, title, fft_size, input_rate):
+    
+    block = ra_waterfallsink_f(fg, parent, title=title, fft_size=fft_size,
+                             sample_rate=input_rate)
+    return (block, block.win)
+
+# returns (block, win).
+#   block requires a single input stream of gr_complex
+#   win is a subclass of wxWindow
+
+def make_ra_waterfallsink_c(fg, parent, title, fft_size, input_rate):
+    block = ra_waterfallsink_c(fg, parent, title=title, fft_size=fft_size,
+                             sample_rate=input_rate)
+    return (block, block.win)
+
+
+# ----------------------------------------------------------------
+# Standalone test app
+# ----------------------------------------------------------------
+
+class test_app_flow_graph (stdgui.gui_flow_graph):
+    def __init__(self, frame, panel, vbox, argv):
+        stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
+
+        fft_size = 512
+
+        # build our flow graph
+        input_rate = 20.000e3
+
+        # Generate a complex sinusoid
+        src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
+        #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
+
+        # We add these throttle blocks so that this demo doesn't
+        # suck down all the CPU available.  Normally you wouldn't use these.
+        thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate)
+
+        sink1 = ra_waterfallsink_c (self, panel, title="Complex Data", 
fft_size=fft_size,
+                                  sample_rate=input_rate, baseband_freq=100e3)
+        vbox.Add (sink1.win, 1, wx.EXPAND)
+        self.connect (src1, thr1, sink1)
+
+        # generate a real sinusoid
+        src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
+        #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
+        thr2 = gr.throttle(gr.sizeof_float, input_rate)
+        sink2 = ra_waterfallsink_f (self, panel, title="Real Data", 
fft_size=fft_size,
+                                  sample_rate=input_rate, baseband_freq=100e3)
+        vbox.Add (sink2.win, 1, wx.EXPAND)
+        self.connect (src2, thr2, sink2)
+
+def main ():
+    app = stdgui.stdapp (test_app_flow_graph,
+                         "Waterfall Sink Test App")
+    app.MainLoop ()
+
+if __name__ == '__main__':
+    main ()


Property changes on: 
gnuradio/trunk/gr-radio-astronomy/src/python/ra_waterfallsink.py
___________________________________________________________________
Name: svn:executable
   + *

Modified: gnuradio/trunk/gr-radio-astronomy/src/python/usrp_ra_receiver.py
===================================================================
--- gnuradio/trunk/gr-radio-astronomy/src/python/usrp_ra_receiver.py    
2006-10-07 04:06:40 UTC (rev 3734)
+++ gnuradio/trunk/gr-radio-astronomy/src/python/usrp_ra_receiver.py    
2006-10-07 12:42:24 UTC (rev 3735)
@@ -25,7 +25,7 @@
 import usrp_dbid
 from gnuradio import eng_notation
 from gnuradio.eng_option import eng_option
-from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, 
waterfallsink, form, slider
+from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, 
ra_waterfallsink, form, slider
 from optparse import OptionParser
 import wx
 import sys
@@ -79,13 +79,25 @@
         parser.add_option("-A", "--calib_coeff", type="eng_float", 
default=1.0, help="Calibration coefficient")
         parser.add_option("-B", "--calib_offset", type="eng_float", 
default=0.0, help="Calibration coefficient")
         parser.add_option("-Q", "--calib_eqn", default="x = x * 1.0", 
help="Calibration equation")
+        parser.add_option("-W", "--waterfall", action="store_true", 
default=False, help="Use Waterfall FFT display")
+        parser.add_option("-S", "--setimode", action="store_true", 
default=False, help="Enable SETI processing of spectral data")
+        parser.add_option("-T", "--setitimer", type="eng_float", default=15.0, 
help="Timer for computing doppler chirp for SETI analysis")
+        parser.add_option("-K", "--setik", type="eng_float", default=1.5, 
help="K value for SETI analysis")
         (options, args) = parser.parse_args()
         if len(args) != 0:
             parser.print_help()
             sys.exit(1)
 
         self.show_debug_info = True
-        
+        self.waterfall = options.waterfall
+        self.setimode = options.setimode
+        self.seticounter = 0
+        self.setitimer = int(options.setitimer)
+        self.setik = options.setik
+        self.hitcounter = 0
+        self.CHIRP_LOWER = 15
+        self.CHIRP_UPPER = 50
+
         # Calibration coefficient and offset
         self.calib_coeff = options.calib_coeff
         self.calib_offset = options.calib_offset
@@ -134,12 +146,19 @@
         #   values.  Used later by self.write_spectral_data() to write
         #   spectral data to datalogging files.
         self.fft_outbuf = Numeric.zeros(options.fft_size, Numeric.Float64)
+        self.old_hits = Numeric.zeros(10, Numeric.Float64)
+        self.older_hits = Numeric.zeros(10, Numeric.Float64)
 
         # Set up FFT display
-        self.scope = ra_fftsink.ra_fft_sink_c (self, panel, 
-           fft_size=int(self.fft_size), sample_rate=input_rate,
-           fft_rate=int(self.fft_rate), title="Spectral",  
-           ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
+        if self.waterfall == False:
+           self.scope = ra_fftsink.ra_fft_sink_c (self, panel, 
+               fft_size=int(self.fft_size), sample_rate=input_rate,
+               fft_rate=int(self.fft_rate), title="Spectral",  
+               ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
+        else:
+            self.scope = ra_waterfallsink.ra_waterfallsink_c (self, panel,
+                fft_size=int(self.fft_size), sample_rate=input_rate,
+                fft_rate=int(self.fft_rate), title="Spectral", 
ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
 
         # Set up ephemeris data
         self.locality = ephem.Observer()
@@ -510,6 +529,9 @@
          # Continuum detector value
          sx = "%7.4f" % x
          s = s + "\nDet: " + str(sx)
+         sx = "%2d" % self.hitcounter
+         sy = "%2d" % self.CHIRP_LOWER
+         s = s + "\nH: " + str(sx) + " Cl: " + str(sy)
          self.myform['lmst_high'].set_value(s)
 
          #
@@ -518,6 +540,9 @@
          self.write_continuum_data(x,sidtime)
          self.write_spectral_data(self.fft_outbuf,sidtime)
 
+         if self.setimode == True:
+             self.seti_analysis(self.fft_outbuf,sidtime)
+
     def fft_outfunc(self,data,l):
         self.fft_outbuf=data
 
@@ -599,6 +624,124 @@
     
         return(data)
 
+    def seti_analysis(self,fftbuf,sidtime):
+        l = len(fftbuf)
+        x = 0
+        hits = []
+        if self.seticounter < self.setitimer:
+            self.seticounter = self.seticounter + 1
+            return
+        else:
+            self.seticounter = 0
+
+        # Run through FFT output buffer, computing standard deviation (Sigma)
+        avg = 0
+        # First compute average
+        for i in range(0,l):
+            avg = avg + fftbuf[i]
+        avg = avg / l
+
+        sigma = 0.0
+        # Then compute standard deviation (Sigma)
+        for i in range(0,l):
+            d = fftbuf[i] - avg
+            sigma = sigma + (d*d)
+
+        sigma = Numeric.sqrt(sigma/l)
+
+        #
+        # Snarfle through the FFT output buffer again, looking for
+        #    outlying data points
+
+        start_f = self.observing - (self.bw/2)
+        current_f = start_f
+        f_incr = self.bw / l
+        l = len(fftbuf)
+        hit = -1
+
+        # -nyquist to DC
+        for i in range(l/2,l):
+            #
+            # If current FFT buffer has an item that exceeds the specified
+            #  sigma
+            #
+            if ((fftbuf[i] - avg) > (self.setik * sigma)):
+                hits.append(current_f)
+            current_f = current_f + f_incr
+
+        # DC to nyquist
+        for i in range(0,l/2):
+            #
+            # If current FFT buffer has an item that exceeds the specified
+            #  sigma
+            #
+            if ((fftbuf[i] - avg) > (self.setik * sigma)):
+                hits.append(current_f)
+            current_f = current_f + f_incr
+
+        if (len(hits) <= 0):
+            return
+
+        if (len(hits) > len(self.old_hits)*2):
+            return
+
+        #
+        #
+        # Calculate chirp limits from first principles
+        #
+        #
+        earth_diam = 12500
+        earth_circ = earth_diam * 3.14159
+        surface_speed = earth_circ / 24
+        surface_speed = surface_speed / 3600
+
+        c1 = (surface_speed/2) / 299792.0
+        c2 = (surface_speed*5) / 299792.0
+
+        self.CHIRP_LOWER = (c1 * self.observing) * self.setitimer
+        self.CHIRP_UPPER = (c2 * self.observing) * self.setitimer
+
+        #
+        # Run through all three hit buffers, computing difference between
+        #   frequencies found there, if they're all within the chirp limits
+        #   declare a good hit
+        #
+        good_hit = 0
+        for i in range(0,min(len(hits),len(self.old_hits))):
+            f_diff = abs(self.old_hits[i] - hits[i])
+            f_diff2 = abs(self.older_hits[i] - self.old_hits[i])
+            # If frequency difference is within range, we have a hit
+            if (f_diff >= self.CHIRP_LOWER and f_diff <= self.CHIRP_UPPER):
+                if (f_diff2 >= self.CHIRP_LOWER and f_diff <= 
self.CHIRP_UPPER):
+                    good_hit = 1
+                    self.hitcounter = self.hitcounter + 1
+                    break
+
+        if (good_hit != 0):
+            self.write_hits(hits,sidtime)
+
+        # Save old hits
+        for i in range(0,len(self.older_hits)):
+            self.older_hits[i] = self.old_hits[i]
+            self.old_hits[i] = 0
+        for i in range(0,min(len(hits),len(self.old_hits))):
+            self.old_hits[i] = hits[i]
+
+        return
+
+    def write_hits(self,hits,sidtime):
+        # Create localtime structure for producing filename
+        foo = time.localtime()
+        pfx = self.prefix
+        filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
+           foo.tm_mon, foo.tm_mday, foo.tm_hour)
+    
+        # Open the data file, appending
+        hits_file = open (filenamestr+".seti","a")
+        hits_file.write(str(ephem.hours(sidtime))+" "+str(hits)+"\n")
+        hits_file.close()
+        return
+
     def xydfunc(self,xyv):
         magn = int(Numeric.log10(self.observing))
         if (magn == 6 or magn == 7 or magn == 8):





reply via email to

[Prev in Thread] Current Thread [Next in Thread]