discuss-gnuradio
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Discuss-gnuradio] 'module' object has no attribute 'audio_sink_oss'


From: David Carr
Subject: [Discuss-gnuradio] 'module' object has no attribute 'audio_sink_oss'
Date: Mon, 09 Aug 2004 21:14:48 -0500
User-agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040627 MultiZilla/1.6.4.0b

I encountered this error while running the code listed below. I have python 2.3.3, gnuradio-core-2.1 and gr-audio-oss-0.1 installed.

python fm_demod_file.py 0
>>> gr_fir_scc: using SSE
>>> gr_fir_fff: using SSE
Traceback (most recent call last):
 File "fm_demod_file.py", line 163, in ?
   main (sys.argv[1:])
 File "fm_demod_file.py", line 140, in main
   fg = build_graph (IF_freq, None)
 File "fm_demod_file.py", line 49, in build_graph
   audio_sink = gr.audio_sink_oss (int (audio_rate)) # FIXME oss
AttributeError: 'module' object has no attribute 'audio_sink_oss'

Thanks for your help, I'm sure its something dumb.
-David Carr

the code:
#!/usr/bin/env python

from gnuradio import gr
import sys

#def high_speed_adc (fg, input_rate):
#    return gr.file_source (gr.sizeof_short, "ssrp_rx.dat", True)

#
# return a gr.flow_graph
#
def build_graph (freq1, freq2):
   input_rate = 4e6
   cfir_decimation = 125
   audio_decimation = 5

   quad_rate = input_rate / cfir_decimation
   audio_rate = quad_rate / audio_decimation

   fg = gr.flow_graph ()
# use high speed ADC as input source
   # src = gr.high_speed_adc (input_rate)
   #src = high_speed_adc (fg, input_rate)
   src = gr.file_source(gr.sizeof_short, "ssrp_rx.dat", True)
# compute FIR filter taps for channel selection
   channel_coeffs = \
     gr.firdes.low_pass (
       1.0,          # gain
       input_rate,   # sampling rate
       250e3,        # low pass cutoff freq
       8*100e3,      # width of trans. band
       gr.firdes.WIN_HAMMING)

   # input: short; output: complex
   chan_filter1 = \
     gr.freq_xlating_fir_filter_scf (
       cfir_decimation,
       channel_coeffs,
       freq1,        # 1st station freq
       input_rate)
(head1, tail1) = \
     build_pipeline (fg, quad_rate,
                     audio_decimation)
# sound card as final sink
   audio_sink = gr.audio_sink_oss (int (audio_rate)) # FIXME oss

   # now wire it all together
   fg.connect (src, chan_filter1)
   fg.connect (chan_filter1, head1)
   fg.connect (tail1, (audio_sink, 0))

   # two stations at once?
   if freq2:
       # Extract the second station and connect
       # it to a second pipeline...

       # input: short; output: complex
       chan_filter2 = \
         gr.freq_xlating_fir_filter_scf (
           cfir_decimation,
           channel_coeffs,
           freq2,        # 2nd station freq
           input_rate)

       (head2, tail2) = \
         build_pipeline (fg, quad_rate,
                         audio_decimation)

       fg.connect (src, chan_filter2)
       fg.connect (chan_filter2, head2)
       fg.connect (tail2, (audio_sink, 1))
return fg

def build_pipeline (fg, quad_rate, audio_decimation):
   '''Given a flow_graph, fg, construct a pipeline
   for demodulating a broadcast FM signal.  The
   input is the downconverteed complex baseband
   signal. The output is the demodulated audio.

   build_pipeline returns a two element tuple
   containing the input and output endpoints.
   '''
   fm_demod_gain = 2200.0/32768.0
   audio_rate = quad_rate / audio_decimation
   volume = 1.0

   # input: complex; output: float
   fm_demod = \
     gr.quadrature_demod_cf (volume*fm_demod_gain)

   # compute FIR filter taps for audio filter
   width_of_transition_band = audio_rate / 32
   audio_coeffs = \
     gr.firdes.low_pass (
       1.0,            # gain
       quad_rate,      # sampling rate
       audio_rate/2 - width_of_transition_band,
       width_of_transition_band,
       gr.firdes.WIN_HAMMING)

   # input: float; output: float
   audio_filter = \
     gr.fir_filter_fff (audio_decimation,
                        audio_coeffs)

   fg.connect (fm_demod, audio_filter)
   return ((fm_demod, 0), (audio_filter, 0))
def main (args):
   nargs = len (args)
   if nargs == 1:
       freq1 = float (args[0]) * 1e6
       freq2 = None
   elif nargs == 2:
       freq1 = float (args[0]) * 1e6
       freq2 = float (args[1]) * 1e6
   else:
       sys.stderr.write ('usage: fm_demod freq1 [freq2]\n')
       sys.exit (1)

   # connect to RF front end
   #rf_front_end = gr.microtune_4937_eval_board ()
   #if not rf_front_end.board_present_p ():
   #    raise IOError, 'RF front end not found'

   # set front end gain
   #rf_front_end.set_AGC (300)
   #IF_freq = rf_front_end.get_output_freq ()
   IF_freq = 455000

   if not freq2:      # one station

       #rf_front_end.set_RF_freq (freq1)
       fg = build_graph (IF_freq, None)

   else:              # two stations

       if abs (freq1 - freq2) > 5.5e6:
           raise IOError, 'freqs too far apart'

       target_freq = (freq1 + freq2) / 2
       #actual_freq = rf_front_end.set_RF_freq (target_freq)
       #actual_freq = target_freq
fg = build_graph (IF_freq + freq1 - actual_freq,
                         IF_freq + freq2 - actual_freq)
print "Just before run!" fg.run () # FIXME

   # fg.start ()        # fork thread(s) and return
   # raw_input ('Press Enter to quit: ')
   # fg.stop ()

if __name__ == '__main__':
   main (sys.argv[1:])
   print "Just after main!"







reply via email to

[Prev in Thread] Current Thread [Next in Thread]