discuss-gnuradio
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Discuss-gnuradio] Testing crystal accuracy


From: Marcus Müller
Subject: Re: [Discuss-gnuradio] Testing crystal accuracy
Date: Tue, 12 Jan 2016 19:16:56 +0100
User-agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.4.0

Hi Jason,
now to comments to your comments:

On 12.01.2016 18:43, Jason Matusiak wrote:
Thanks for the quick response Marcus!!!!

Since my Latex isn't very good (as in pretty much non-existent). Let me
see if I can rewrite what you recommended in my dumbed down language and
see if I am close.:

*I have two dongles, dongle 1 will be my modified dongle, dongle 2 will
be my un-modified dongle.

*Put a a known reference tone into each of the dongles where Ftune =
Fref - Foffset
** Foffset should be roughly a third of the sample rate
Exactly what I had in mind.
**An example at a sample rate of 1.024Msps would be a reference tone at
98MHz, and then tune the dongles to 97.659MHz

*I'll now see a baseband signal for both dongles whose offsets won't be
exactly the same.
Yep.

*Multiple the resulting signals found above against each other (offset,1
* offset,2)
*Pass that through a LPF with a cutoff of Fsample/4, or 256khZ in this
case
**This will give the difference between the frequencies at frequency at
Foffset,1 +/- Foffset,2

*perform a QT freq sync or a quad demod into a QT time sink to compare.

Is that close?
For close being identical , yes :)
  I think I am missing something in there, and I have a
feeling that it has to do with the multiplication step as that makes the
least amount of sense to me.  Any way to enlighten me on what I am
missing above?  Thanks!
That's modulation. So, the math behind that is:

Let's consider both tones to be cosines. Thanks to Euler, we know we can express a cosine as ($j$ is the imaginary unit, $j=\sqrt{-1}$)

$\cos x =
      \frac{1}{2}\left(e^{j x}+e^{-j x}\right)$; therefore, $\cos \left( f_1
      x \right) = \frac{1}{2}\left(e^{j f_1 x}+e^{-j f_1 x}\right)$.

Now, $\cos \left( f_1
      x \right) \cos \left( f_2 x \right) = \frac14 \left(e^{j f_1
      x}+e^{-j f_1 x}\right)\left(e^{j f_2 x}+e^{-j f_2 x}\right)$.

Let's expand the multiplication of the two (), and use the fact that $a^b a^c =
      a^{b+c}$:


\documentclass{article}
      \usepackage[utf8x]{inputenc}
      \usepackage{amsmath}
      \usepackage{amsfonts}
      \usepackage{amssymb}
      \usepackage[usenames,dvipsnames]{xcolor}
      \usepackage{trfsigns}
      \DeclareMathOperator*{\argmin}{arg\,min}
      \usepackage{tikz}
      \usepackage{circuitikz}
      \usepackage[binary-units=true]{siunitx}
      \sisetup{exponent-product = \cdot}
      \DeclareSIUnit{\dBm}{dBm}
      \newcommand{\imp}{\SI{50}{\ohm}}
      \newcommand{\wrongimp}{\SI{75}{\ohm}}
      \pagestyle{empty}
      \begin{document}
      \begin{align*}
      e^{j f_1 x}e^{j f_2 x}&+e^{j f_1 x}e^{-j f_2 x}&+ e^{-j
      f_1 x}e^{j f_2 x}&+ e^{-j f_1 x}e^{-j f_1 x}\\
      =e^{j f_1 x+j f_2 x}&+e^{j f_1 x-j f_2 x}&+ e^{-j f_1 x+j
      f_2 x}&+ e^{-j f_1 x+-j f_2 x}\\
      = e^{j ( f_1 +f_2)x}&+e^{j( f_1 - f_2)x}&+ e^{j( -f_1+
      f_2)x}&+ e^{j(- f_1 - f_2)x}\\
      = {\color{blue}e^{j ( f_1 +f_2)x}}&+{\color{OliveGreen}e^{j(
      f_1 - f_2)x}}&+{\color{OliveGreen} e^{-j( f_1- f_2)x}}&+
      {\color{blue} e^{-j( f_1 + f_2)x}}\\
      \end{align*}
      \end{document}

Now, let's sort this, and lo!
\documentclass{article}
      \usepackage[utf8x]{inputenc}
      \usepackage{amsmath}
      \usepackage{amsfonts}
      \usepackage{amssymb}
      \usepackage[usenames,dvipsnames]{xcolor}
      \usepackage{trfsigns}
      \DeclareMathOperator*{\argmin}{arg\,min}
      \usepackage{tikz}
      \usepackage{circuitikz}
      \usepackage[binary-units=true]{siunitx}
      \sisetup{exponent-product = \cdot}
      \DeclareSIUnit{\dBm}{dBm}
      \newcommand{\imp}{\SI{50}{\ohm}}
      \newcommand{\wrongimp}{\SI{75}{\ohm}}
      \pagestyle{empty}
      \begin{document}
      \begin{align*}
      = {\color{blue}e^{j ( f_1 +f_2)x}}+ {\color{blue} e^{-j( f_1 +
      f_2)x}} &+{\color{OliveGreen}e^{j( f_1 -
      f_2)x}}+{\color{OliveGreen} e^{-j( f_1- f_2)x}}\\
      = \left( {\color{blue}e^{j ( f_1 +f_2)x} + e^{-j( f_1 + f_2)x}}
      \right)&+\left({\color{OliveGreen}e^{j( f_1 - f_2)x} +e^{-j(
      f_1- f_2)x}}\right)\\
      = 2 \cos\left((f_1+f_2)x\right) &+
      2\cos\left((f_1-f_2)x\right)\text.
      \end{align*}
      \end{document}
Which means that
\documentclass{article}
      \usepackage[utf8x]{inputenc}
      \usepackage{amsmath}
      \usepackage{amsfonts}
      \usepackage{amssymb}
      \usepackage[usenames,dvipsnames]{xcolor}
      \usepackage{trfsigns}
      \DeclareMathOperator*{\argmin}{arg\,min}
      \usepackage{tikz}
      \usepackage{circuitikz}
      \usepackage[binary-units=true]{siunitx}
      \sisetup{exponent-product = \cdot}
      \DeclareSIUnit{\dBm}{dBm}
      \newcommand{\imp}{\SI{50}{\ohm}}
      \newcommand{\wrongimp}{\SI{75}{\ohm}}
      \pagestyle{empty}
      \begin{document}
      \begin{align*}
      \cos \left( f_1 x \right) \cos \left( f_2 x \right) &= \frac14
      \left[ 2 \cos\left((f_1+f_2)x\right) +
      2\cos\left((f_1-f_2)x\right)\right]\\
      &=\frac12 \cos\left((f_1+f_2)x\right) +
      \frac12\cos\left((f_1-f_2)x\right)
      \end{align*}
      \end{document}

Now you see where the low pass filter comes into play:
it filters out the $\cos\left((f_1+f_2)x\right)$ component, leaving you with $\frac12
      \cos\left((f_1-f_2)x\right)$, which is an oscillation with the difference frequency.

Best regards,
Marcus



reply via email to

[Prev in Thread] Current Thread [Next in Thread]