
Rapid Prototyping of Web Applications combining

Domain Specific Languages and Model Driven Design
Demetrius Arraes Nunes

Departamento de Informática, PUC-Rio
Rua M. de S. Vicente, 222

Rio de Janeiro, RJ 22453-900, Brazil
+55 21 2521 2848

dema@tecgraf. puc-rio.br

Daniel Schwabe
Departamento de Informática, PUC-Rio

Rua M. de S. Vicente, 222
Rio de Janeiro, RJ 22453-900, Brazil

+55 21 3114 1500 x4356

dschwabe@inf. puc-rio.br

ABSTRACT

There have been several authoring methods proposed in the

literature that are model based, essentially following the Model

Driven Design philosophy. While useful, such methods need an

effective way to allow the application designer to somehow

synthesize the actual running application from the specification.

In this paper, we describe HyperDE, an environment that

combines Model Driven Design and Domain Specific Languages

to enable rapid prototyping of Web applications.

Categories and Subject Descriptors

H.5.4 [Hyperext/Hypermedia]: Architecture; Navigation. D.2.1

[Software Engineering]: Requirements/Specification. D.2.2

[Software Engineering]: Design Tools and Techniques.

General Terms

Design, Languages.

Keywords

Model-based Designs, Hypermedia Authoring.

1. INTRODUCTION
There have been several methods for Web application design

proposed in the literature, such as OOHDM [15], SHDM [12],

WebML [4], OOWS [13], Hera [[20], UWE [10]. Remarkably,

they all follow the principles of Model Driven Design (MDD)

[18]. Simply stated, this approach uses the notion of models to

help the designer perform the design activity.

A model here can be seen as a simplified, textual or graphical

description of the artifact being designed. Preferably, a model

should have precise, non-ambiguous semantics that enables

understanding of the artifact being modeled. Being a

simplification of the artifact, models introduce abstraction levels.

Such abstractions, if well chosen, help the designer deal with the

complexity of the artifact by hiding irrelevant detail for a

particular aspect or set of aspects being addressed.

Software development, according to MDD, is a process whereby a

high-level abstract model is successively translated into

increasingly more detailed models, in such a way that eventually

one of the models can be directly executed by some platform. The

model that is directly executed by a platform which satisfies all

the requirements, including the non-functional ones, is also called

“code”, and is usually the last model in the refinement chain.

Although this approach has been used for a number of years, its

adoption is not completely widespread, at least not in its pure

form. A major stumbling block has been the problem that the

mapping between models, especially into actually executing code,

has had little or no support from tools. Therefore, designers may

use the models mostly as thinking tools, and at some stage they

are forced to manually map these models into code. This process

is error prone, and once the code has been generated, changes or

updates to the application are directly implemented in the code,

instead of adjusting the models and re-generating the code.

On the other hand, several more recent proposals attempt to

alleviate this problem by having automated translations (or

transformations) between models, supported by appropriate tools.

Among the most prominent are MDA [5] and Software Factories

[6].

Specifically for designing Web applications, most of the

aforementioned methods have associated development

environments that support code generation from model

specifications, either fully or partially automated. The code

generated contains both boiler plate code that encodes the pre-

defined model semantics, and user specified code that is specific

to the application at hand.

There are usually two places where user-specified code appears in

applications generated using such support environments – the

code implementing the business logic that is specific to the

application, and code in the templates that render the interfaces to

the application, which typically have to access or process data

values to be exhibited in the model representation, or to store

values in it.

 However, this code has only indirect access to the model, through

implementation structures in which it is encoded. As a

consequence, the designer/developer must, to some extent,

understand the implementation architecture of the support

environment to correctly produce the additional required code.

In this paper, we show how the HyperDE1 environment supports

the rapid prototyping of Web applications through a combination

the Model Driven Development approach with the use of Domain

Specific Languages (DSL’s) [19]. This combination allows the

designer/developer to write code by directly manipulating the

models that specify the application. In addition, since the model is

specified following the meta-model for a method, it also possible

to dynamically manipulate the model itself during execution,

which enables very concise and general applications.

Consequently, scripts in the generated DSL work as very high

level procedural specifications of the application.

The next section presents a summary of SHDM, the design

method supported by HyperDE. Then, a brief description of

1 HyperDE is freely available at http://server2.tecweb.inf.puc-

rio.br:8000/projects/hyperde/trac.cgi

HyperDE is shown, followed by the presentation of the DSL

generated by HyperDE. Then we discuss the advantages of this

approach, and draw some conclusions.

2. A SUMMARY OF SHDM
The HyperDE environment allows the implementation of web

applications designed using the SHDM method [11],[12]. SHDM

is a model-driven approach to design web applications through

five different steps: Requirements Gathering, Conceptual Design,

Navigational Design, Abstract Interface Design and

Implementation. Each phase focuses on a particular aspect and

produces artifacts detailing the application to be run on the web.

The typical workflow in producing these artifacts, and thus

generating the final running application, is presented in Figure 1.

Requirements

Gathering

Scenarios,
Use Cases
and UIDs

Conceptual
Instances

[Existing
ontologies]

Navigational
Design

Navigational
Mapping

HyperDE

Navigational
Model

Abstract
Interface Project

HTML pages

Conceptual
Design

Conceptual
Ontology

Interface
Definition

Figure 1. Simplified flow of documents in SHDM as used in

HyperDE

It is a natural tendency, when building an application based

on some ontology representing the problem domain, to think of it

as an “ontology browser” – each “node” is essentially an “object”

(i.e., a resource with associated properties), and links are certain

Properties that have other such resources as values. In this sense,

this ontology serves as a conceptual model of the problem

domain.

One of the main insights from previous work in hypermedia

application design methods, which has been kept in SHDM, is the

realization that the navigation objects that are manipulated by the

user are not the actual objects of the conceptual model, but views

over these objects, defined according to user profiles and tasks to

be supported by the application (see [14] for a more extensive

discussion).

Accordingly, in SHDM we have taken the approach to define

a Web application as a navigational view over some ontology

(i.e., conceptual model) which describes the problem domain. We

profit from being able to represent both data itself and its schema

(meta-data) using the same formalism, since the fact that the

schema can be manipulated just like any other kind of data brings

greater expressiveness and conciseness to the specifications.

Since the specifications can also be treated as data, the

generation of the final application is achieved by successive

manipulations of these specifications, up to the point of

generating the concrete interface (which must per force be in a

language understood directly by the current browsers).

2.1 SHDM Meta Model
Figure 2 shows the SHDM meta model, with the main classes

highlighted. The class NavClass models the navigation nodes, and

the class Link models the links between them. Each NavClass has

NavAttributes, NavOperations and Links, and can be a

specialization of a BaseClass. Contexts are sets of objects of

NavClass, defined through a query specified in one of its

attributes; this query may have a parameter. Indexes are made out

of IndexEntries, which contain either anchors to other indexes or

anchors to elements within a context. Landmarks are anchors to

either Indexes or to Context elements. Views allow exhibiting the

contents of NavClass instances within some context, or exhibiting

Indexes.

ContextParameterParameter

Index

ArbitraryIndex ContextIndexQueryIndex

IndexAttribute

IndexEntry

ContextAnchorIndexAttribute

IndexAnchorIndexAttribute

IndexEntryAttribute

IndexAnchorIndexEntryAttribute

AnchorIndexEntryAttribute

ContextAnchorIndexEntryAttribute

Context

target

target

BaseClass

Link
source
target

Inverse_link

View

ContextViewIndexView GenericView

Index

layout

layout

NavigationController action: context

action: show_index

Landmark

ContextLandmark

IndexLandmark

target

target

NavOperation

NavAttribute

NavClass

Figure 2. SHDM Meta Model

Designing a Web application using SHDM corresponds to

instantiating this metamodel. The HyperDE environment supports

this, and will be detailed next. However, to help explain

HyperDE’s architecture and the DSL language, we first give a

brief sample application.

3. AN EXAMPLE USING HyperDE
Consider an academic department, where there are Professors who

advise Students; both produce Publications and work in some

ResearchArea. This is can be regarded as a simplified view of a

departmental website whose conceptual model is represented in

Figure 3, using a UML-like notation.

Figure 3 – The conceptual schema of an academic department

website

The possible navigations are shown in the navigation contexts

diagram shown in Figure 4, following the SHDM notation.

Starting with the index of Research Areas shown in Figure 5, the

user chooses one, e.g., “Software Engineering”, and navigates to

the node exhibited in Figure 6. The index of other Research

Areas on the left bar, the landmarks in the bar at the top, and the

breadcrumbs are all generated automatically.

Person

by Publication

Professor

Alpha

by Area

Student

by Area

Alpha

by Professor

Publication

by Person

Research Area

Alpha

by Person

Students

Students by
Professor

Professors

Students

Research Areas

Students

Professors

Research Areas

Figure 4. Navigation Context Schema for the Academic

Department Website

If the user chooses a Professor in the area, say “Daniel Schwabe”,

he will see the screen shown in Figure 7.

Figure 5. The Research Areas index.

In SHDM it is possible to specify that a node appears differently

depending on the context in which it is being navigated. As an

example, Figure 8 shows the same professor, but now being

navigated in the “Professors in Alphabetical Order” context.

Figure 6. A Research Area.

Figure 7. A Professor node in the context “Professors by

Research Area”.

It can be readily noticed that, besides using a different layout,

additional attributes are also exhibited, such as the “Change

Email” operation, and the “Students in Area” attribute.

Figure 8. The Professor node shown in Figure 7, but seen in

the context “Professors in Alphabetical Order”

Whereas the layouts in Figure 7 were custom defined, the one in

Figure 8 is a default layout that is applicable to all nodes,

regardless of its actual class.

4. THE ARCHITECTURE OF HYPERDE
The HyperDE environment is based on the MNVC

framework [9], which extends the MVC framework with

navigation primitives. It allows the designer to input SHDM

navigational models (the “model” in the MVC framework), and

interface definitions (the “view” in the MVC framework), and

generates complete applications adherent to the specification. It

also provides an interface to create and edit instance data,

although, strictly speaking, this should actually be part of the

generated application. Figure 9 shows the architecture of

HyperDE.

 Adheres to

HyperDE

HTML pages

SHDM Navigation
Vocabulary

(RDFS)
Navigational

Model

Interface Definition
(extended HTML

templates)

Uses

Creates/Edits
and Uses

Creates/Edits
and Uses Instance Data

Is Instance Of

Modified Ruby
on Rails

Framework

Sesame RDF
Database

Creates/Edits
and Uses generates

Figure 9. The architecture of the HyperDE environment.

HyperDE is implemented as a modification of the Ruby on Rails

framework (http://www.rubyonrails.com), where the persistence

layer (ActiveRecord) has been replaced by another one based on

the Sesame RDF database. The SHDM meta-models, the user

defined navigation models, as well as the application instance

data, are all stored as RDF data.

All HyperDE functions can be accessed via Web interfaces. In

addition, HyperDE also generates a Domain Specific Language

(DSL) as an extension of Ruby, allowing direct manipulation

within Ruby scripts of both the model and SHDM’s meta-model.

Figure 10. The interface for editing a Navigational Class

Figure 10 shows the editing interface for a Navigational Class. As

expected, it allows defining all the class attributes, its superclass,

its links and its operations. Notice that this screen merely

instantiates the NavClass metaclass.

Figure 11 shows the interface for editing a Navigational Context.

The most important attribute is the query which defines the nodes

that belong this context.

Figure 11. The interface for editing a Navigational Context.

Figure 12 shows the interface for defining an Index structure.

Similarly to the Context definition, the query attribute is the most

prominent in characterizing an Index.

Figure 12. The interface for defining an Index structure.

In the examples shown, the queries are expressed using the

SeRQL query language [3] , which allows full exploration of the

underlying RDF [1] representation. The context query in Figure

11 is stated as

SELECT DISTINCT id, type FROM
{id} rdf:type {sr:Publication}; serql:directType
{type},

{link} sr:node_id {id}; rdf:type {sr:AuthoredBy};
sr:target_node_id {?} rdf:type {Person}

 USING NAMESPACE sr =
<http://sr#>

Instead of explaining each detail, we rephrase it in natural

language as “select all resources of type “Publication” that have a

link of type “AuthoredBy” to a Person whose value is passed as a

parameter.” The parameter is indicated by the “?”, which is not

part of SeRQL, but is added by HyperDE.

While the use of SeRQL gives the designer the greatest expressive

power, it is, in most cases, too specialized and it is not expected

that the common user of HyperDE would know it. To alleviate

this problem, we use a simple DSL that is based on the

observation that, in practice, as observed by our experience of ten

years applying this method and its predecessor, most queries fall

under one of the two boiler plate formats:

1. Select X related to Y based on relation R ordered by

attribute A – e.g., Publications by Person related by

AuthoredBy ordered by title, or

2. Select all instances of class X ordered by attribute Y –

e.g., Students in Alphabetical order of name.

Based on this observation, we allow the query above to be stated

in the following DSL

1. [x_by_y, source_type: Publication,
target_type: Person, link_type: AuthoredBy,
order: title]

2. [alpha, type: Student, order: name]

This DSL has the advantage of making the context definition

completely independent of the underlying database. In fact, we

have also implemented an earlier version of HyperDE that uses a

relational database as the persistence store. The disadvantage of

this DSL is that it is not possible to state all possible queries in it,

but, as we stated, our experience shows that the vast majority of

cases are covered by these formats. Notice also that is possible to

extend the DSL to other query boiler plate templates (e.g., X by Y

by Z).

5. THE USE OF DSL’s IN HYPERDE
We have argued that, regardless of the abstraction level of the

specification language used to specify an application, there are

portions which typically will require the designer/implementer to

write some kind of code, such as for the business logic or for

retrieving or storing values that flow in the interface.

This code can, in turn, be given in a language that is directly

executable, or again resort an abstraction layer that requires

further series of translations until it can be executed. In most

environments, the language of choice is some programming

language that is directly executable in the desired target

environment.

In such cases, these programs must manipulate the model’s

representation in terms of the programming language primitives,

which adds a layer of detail that is cumbersome at best. An

alternative for this is to generate a DSL that makes the datatypes

of the model also be the datatypes of some programming

language. The advantages of this approach have already been

argued in [6].

Consider, for example, the following piece of code, intended to

manipulate an instance of a VCard, a popular ontology (see [6]).

DAMLModel model = … // code that loads the VCARD
ontology and some data based on that ontology

DAMLClass vcardClass =
 (DAMLClass)
model.getDAMLValue(vcardBaseURI+"#VCARD");

DAMLProperty fnProp =
 (DAMLProperty)
model.getDAMLValue(vcardBaseURI+"#FN");

DAMLProperty emailProp =
 (DAMLProperty)
model.getDAMLValue(vcardBaseURI+"#EMAIL");

Iterator i = vcardClass.getInstances();

while (i.hasNext()) {
 DAMLInstance vcard = (DAMLInstance) i.next();

 Iterator i2 =
 vcard.accessProperty(emailProp).getAll(true);

 while (i2.hasNext()) {
 DAMLInstance email = (DAMLInstance)
i2.next();

 if
(email.getProperty(RDF.value).getString().equals(
 "amanda_cartwright@example.org")) {

 DAMLDataInstance fullname =
 (DAMLDataInstance)
vcard.accessProperty(fnProp).getDAMLValue();

 if (fullname != null)
 System.out.println("Name: "+
fullname.getValue().getString());

 }
 }
}

The code below shows the equivalent function in a DSL defined

over the ontology, on top of Ruby:

VCard.find_all.each { |vc|

 vc.emails.each { |email|

 print vc.fn if email ==
“amanda_cartwright@example.org” && vc.fn?

 }

}

Following this approach, we have defined a DSL on top of Ruby,

based on the SHDM model and metamodel, in the following way

1. Each instance of NavClass becomes a Ruby class;

2. Each NavAttribute of NavClass becomes an attribute of the

corresponding Ruby class. In addition, a method

“find_by_xxx” is also defined, allowing to search objects of

this class according to values of this attribute; (Actually, a

whole family of “find_by_xxx” and “find_all_by_xxx”

methods are created dynamically allowing one to write such

expressions as Professor.find_by_name_and_research_area

or Student.find_all_by_year_and_department)

3. Each NavOperation of NavClass becomes a method of the

corresponding Ruby class;

4. Each link having NavClass as the source type becomes an

attribute of special type “Array”, whose elements are objects

of the target type of the link.

The built-in Ruby operators are redefined to handle the expected

semantics. For instance, if a new element is inserted in the array

that corresponds to a link, this is interpreted as creating a new link

instance. Consider for instance the following code

schwabe = Professor.find_by_name “Daniel Schwabe”

area = ResearchArea.find_by_name “Hypermidia”

for student in schwabe.advises

 unless student.works_in.include?(area)

 student.works_in << area

 end

end

The first statement assigns to variable schwabe the object whose

name attribute is “Daniel Schwabe”, and similarly for

hypermedia. Next, a loop is performed over each element of the

array schwabe.advises, which is made out of student objects, since

the target type for the Advises link is Student. For each element, it

is tested if the research area hypermedia belongs to the array

student.works_in, which contains the research areas in which the

student works. If this is not the case, the research area

hypermedia is added to this array, which causes a new link

between the student and the research area hypermedia to be

created and inserted in the database.

The use of the DSL is illustrated in the students_in_area attribute

of class Professor, defined in Figure 10. The intended value for

this attribute is defined by “all students advised by professors who

work in the same area as the professor in question”. The code in

the DSL for this computed attribute is given below.

ary = []

for area in self.works_in

 for prof in area.has_professor

 ary << prof.advises

 end

end

ary.flatten!

ary.map { |student| student.name }.uniq.join(",")

First an auxiliary variable ary is initialized with an empty array.

Next, for each area in which the professor (“self”) works, iterate

over each professor that works in that area, appending this

professor’s advisees to the auxiliary array. At the end of the

nested loop, ary contains an array of arrays of students, which is

then transformed into a flat array through the flatten! method.

Finally, a map function over the array of students extracts each

student’s name, which is next filtered for duplicates (uniq), and

then fed onto the join function to generate a single string with a

comma separated list of all the names.

We mentioned earlier that the interface templates is another place

where typically code appears, many times interspersed with html,

as in the case of JSP or ASP.

Views in HyperDe are defined in a similar fashion, interspersing

Ruby expressions with html. These Ruby expressions can include

calls for several pre-defined functions, such as “breadcrumbs”,

which automatically generates a clickable trace of pages

previously navigated by the user. The HTML code below renders

the part of the Professor page in Figure 7 where the context

information is presented (the gray bar just below the black bar). In

this case, the page shows 2/2 Prev |, which is the relative

position of this node in the context (2) and the total number of

nodes in the context (2), and a link the previous node.

In the highlighted part, we show the DSL expression that

computes this information. This illustrates how SHDM

metaclasses are handled by the DSL exactly in the same way as

the model classes. The “Context” metaclass has, among others,

the “position” attribute, which returns the position of the current

node in the context, and the “nodes” attribute, which is an array of

the nodes in the context, and “size” returns its size (i.e., the size of

the context). Similarly, HyperDe defines the helper functions

“context_previous” and “context_next”, which return HTML

anchors to the previous and next nodes in the context. Notice that,

in this particular case, since the node being exhibited is the last

one in the context, the “next” functions returns an empty string.

 …

<tr><td width="160"
bgcolor="#99ffcc"> </td><td colspan="2">

<div class="coluna1" style="width:100%;
padding:0.5em;background-color:#eeeeee; margin-
bottom:1em; text-align:right">

<%= @context.position+1 %> / <%=
@context.nodes.size %>

<%= context_previous ["< prev",
:url] %>

 |

<%= context_next ["next >", :url
] %>

</div>

</td>

</tr>

Consider the interface shown in Figure 8. We can see that it

exposes the “Change E-Mail” operation of the node, which is of

class “Professor” and inherits it from class “Person” where it is

defined (see Figure 10). The code defined for this operation is

self.email = controller.params["new_email"]

self.save

The first line updates the “email” attribute of the current node,

defined by the DSL, to the value returned by the “new_email”

form field of the view, as mediated by the controller.

The HTML code that appears in the corresponding view is

<input type="text" name="new_email" value="<%=
@node.email %>">

<%= op "change_email", { :label => "Change
Email", :view => "attributes", :update =>
"node_attributes", :label_loading => "wait..." },

['<input type=button value="%s" onclick="%s">',
:label, :onclick] %>

This code, which uses the HyperDe pre-defined templates, defines

a form with an input field named “new_email”, and calls the

operation “change_email” when the form is submitted.

Since the metaclasses of SHDM are also part of the DSL, it is

possible to define context selection queries in a very general way.

For instance, the DSL expression below defines a context that

shows all the elements of a subclass of a class name (string)

passed a parameter to it:

{ |subclass| subclass.constantize.find_all }

Specifying a context in this way has the advantage that it is

possible to define, for example, an index that will list all subclass

names, and each entry would point to the instance of that

subclass. Since this definition is independent of the particular

subclasses, it remains unaltered each time the application schema

is changed by adding new subclasses to the class in question.

For instance, in an online store, we can apply this technique to

class “Product”, and allow the user to include new subclasses of

products without requiring recompilation at all. In practice this

achieves a similar effect as having an application framework for

online stores, where each specific application has to be redefined

each time the classes are changed.

6. DISCUSSION AND CONCLUSIONS

6.1 Evaluation
There are several dimensions in which one can evaluate HyperDe.

From the application point of view, two relevant metrics are

volume of data, and application complexity. The latter can be

measured by the size of the model (i.e., number of classes,

contexts, indexes, views, etc…), and the former is related to the

number of instances of a given model. Therefore, it is possible to

have a very large application that is simple – it has many instances

of only few classes, links or contexts, or a small application that is

very complex – it has many classes, links or contexts, with few

instances of each. Figure 13 shows where HyperDe is situated in

this space; it is able to handle complex applications (in the order

of several dozens of classes, contexts, links, etc…).

HyperDe

C
o

m
p
le

x
it
y

Size (high)

(high)

Figure 13. Complexity and Size of Hypermedia Applications

The software infrastructure is based on Ruby, which is an

interpreted language, and most likely will be hard pressed to

perform for large volume applications, although we have not yet

tested its limits.

A second dimension to evaluate HyperDe is development time.

The current HyperDe architecture allows very rapid design and

prototyping of web applications using SHDM. We have not yet

done a formal measurement of development time with and without

HyperDe. Nevertheless, we have used HyperDe for several

projects, mainly by students, and they were able to design

moderately complex applications in the span of one to two days.

By comparison, equivalent projects took at least a couple of

weeks to be developed without the use of such an environment.

A third dimension under which we have examined HyperDe is

flexibility and evolvability. Due to the fact that it is entirely

model-based, HyperDe is extremely flexible in allowing and

immediately reflecting changes made in the design. In addition, by

using the techniques discussed in the previous sections, such as

meta-programming, it is possible to design applications that can

support schema evolution without change to the code to a very

large extent, much greater than in the case of compiled languages.

Due to the speed of development, and the flexibility and

evolvability supported by HyperDe, we feel it is well suited for

rapid prototyping of web applications.

Finally, a fourth dimension to consider is expressivity and

conciseness. We believe that the examples shown in this paper

support our claim that the use of models and DSL’s allows more

concise code, at the proper level of abstraction, when compared to

translation-based approaches.

6.2 Related Work
As mentioned earlier, HyperDe is a model-based development

environment similar to WebRatio, which is based on WebML;

OOWS Tools, which is based on OOWS; ArgoUML, which is

based on UWE, and Hera Tool Suite, which his based on Hera.

The distinguishing features of HyperDe with respect to all of them

are

• The particular model supported;

• The use of meta-models, and making them accessible as

part of the design;

• The use of DSL’s.

HyperDe is the only environment combining these three aspects.

6.3 Future Work and Conclusions
We have presented HyperDe, an environment that supports the

design and implementation of web-based applications, which

combines model-based development with domain specific

languages. We argued that this combination allows for flexible

and rapid prototyping of applications, as evidenced by several

projects conducted in our group and with students.

The development of HyperDe continues, and among the ongoing

directions we can cite

• Support for faced navigation (see [8][12]);

• Applying a similar approach to derive DSL’s based on

RDF schemas, as opposed to SHDM schemas;

• Support for the SHDM abstract interface model as

defined in [17];

• Support for adaptation of the application based on

several contextual information;

• Experimentation with alternative persistence

mechanisms and RDF stores;

• Extension of the SHDM model to allow direct use of

ontologies specified with RDF Schema [2] , enriched

with navigational information.

Acknowledgement. Daniel Schwabe was partially supported by a

grant from CNPq, Brazil.

7. REFERENCES
[1] Beckett, D. RDF/XML Syntax Specification (Revised), W3C

Recommendation 10 February 2004.

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-

20040210/

[2] Brickley, D.; Guha, R. V. RDF Vocabulary Description

Language 1.0: RDF Schema, W3C Recommendation 10

February 2004. http://www.w3.org/TR/2004/REC-rdf-

schema-20040210/

[3] BROEKSTRA, J.; KAMPMAN, A. “Sesame: A generic

Architecture for Storing and Querying RDF and RDF

Schema”, Deliverable 10, On-To-Knowledge project,

October 2001, http://www.openrdf.org/.

[4] Ceri, S. et al.: Designing Data-Intensive Web Applications.

Morgan Kaufmann, 2003

[5] Frankel, D.S.; Model Driven Architecture: Applying MDA to

Enterprise Computing, John Wiley & Sons, 2003

[6] Goldman, N. M. Ontology-Oriented Programming: Static

Typing for the Inconsistent Programmer, Lecture Notes on

Computer Science - The Semantic Web - ISWC 2003,

Springer-Verlag Heidelberg, Volume 2870 / 2003 - Outubro,

2003, pp. 850-865

[7] Greenfield, J.; Short, K., Software Factories: Assembling

Applications with Patterns, Frameworks, Models & Tools.

J.Wiley and Sons Ltd., 2004.

[8] Hearst, M. et al.: Finding the Flow in Web Site Search.

Communications of the ACM, 45 (9), September 2002,

pp.42-49

[9] Jacyntho, M. D., Schwabe, D. , Rossi, G. A software

architecture for structuring complex web applications.

Journal of Web Engineering, Vol 1, No 1, (2002).

[10] Koch, N.; Kraus, A.: The Expressive Power of UML-based

Web Engineering, 2nd Int. Workshop on Web-Oriented

Software Technology (IWWOST´02). CYTED, 105-119,

Málaga, Spain. 2002.

[11] Lima, F.; Schwabe, D.: Modeling Applications for the

Semantic Web. Proceedings. of the 3rd Int. Conference on

Web Engineering (ICWE 2003), Oviedo, Spain, July 2003.

Lecture Notes in Computer Science 2722, Springer Verlag,

Heidelberg, 2003. pp 417-426. ISBN 3-540-40522-4.

[12] Lima, F.; Schwabe, D.: Application Modeling for the

Semantic Web. Proceedings of LA-Web 2003, Santiago,

Chile, Nov. 2003. IEEE Press, pp. 93-102, ISBN (available

at http://www.la-web.org).

[13] Pastor, O. et al.: “Conceptual Modelling versus Semantic

Web: the two sides of the same coin?”. Proceedings of

WWW2004 Workshop, Application Design, Development,

and Implementation Issues in the Semantic Web, New York,

2004.

[14] Rossi, G., Schwabe, D. and Lyardet, F.: Web Application

Models Are More than Conceptual Models. Proceedings. of

the ER'99, Paris, France, November 1999, Springer, 239-

252.

[15] Schwabe, D.; Rossi, G.: An object-oriented approach to

Web-based application design. Theory and Practice of Object

Systems (TAPOS), October 1998, 207-225.

[16] Schwabe, D. et al.: Design and Implementation of Semantic

Web Applications. Proceedings of WWW2004 Workshop,

Application Design, Development, and Implementation

Issues in the Semantic Web, New York, 2004.

[17] Silva de Moura, S.; Schwabe, D.: Interface development for

hypermedia applications in the semantic web. Proceedings.

of WebMedia and LA-Web, 2004, Ribeirão Preto, Brazil,

October 2004. IEEE Press, pp 106-113.

[18] Thomas, D., Barry, B.M.; “Model Driven Development: The

Case for Domain Oriented Programming”, Companion of the

18th OOPSLA, ACM Press, 2003, pp. 2-7.

[19] Van Deursen, A.; Klint, P.; Visser, J.; “Domain Specific

Languages: An Annotated Bibliography”,

http://homepages.cwi.nl/~arie/papers/dslbib/

[20] Vdovjak, R., Frasincar, F., Houben, G.J. and Barna, P.

“Engineering Semantic Web Information Systems in Hera”.

In: Journal of Web Engineering, Vol. 2, No. 1&2, p. 3-26,

Rinton Press, 2003.

