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ABSTRACT 

There have been several authoring methods proposed in the 

literature that are model based, essentially following the Model 

Driven Design philosophy. While useful, such methods need an 

effective way to allow the application designer to somehow 

synthesize the actual running application from the specification. 

In this paper, we describe HyperDE, an environment that 

combines Model Driven Design and Domain Specific Languages 

to enable rapid prototyping of Web applications. 

Categories and Subject Descriptors 

H.5.4 [Hyperext/Hypermedia]: Architecture; Navigation.  D.2.1 

[Software Engineering]: Requirements/Specification. D.2.2 

[Software Engineering]: Design Tools and Techniques. 

General Terms 

Design, Languages. 

Keywords 

Model-based Designs, Hypermedia Authoring. 

1. INTRODUCTION 
There have been several methods for Web application design 

proposed in the literature, such as OOHDM [15], SHDM [12], 

WebML [4], OOWS [13], Hera [[20], UWE [10]. Remarkably, 

they all follow the principles of Model Driven Design (MDD) 

[18]. Simply stated, this approach uses the notion of models to 

help the designer perform the design activity. 

A model here can be seen as a simplified, textual or graphical 

description of the artifact being designed. Preferably, a model 

should have precise, non-ambiguous semantics that enables 

understanding of the artifact being modeled. Being a 

simplification of the artifact, models introduce abstraction levels. 

Such abstractions, if well chosen, help the designer deal with the 

complexity of the artifact by hiding irrelevant detail for a 

particular aspect or set of aspects being addressed. 

Software development, according to MDD, is a process whereby a 

high-level abstract model is successively translated into 

increasingly more detailed models, in such a way that eventually 

one of the models can be directly executed by some platform. The 

model that is directly executed by a platform which satisfies all 

the requirements, including the non-functional ones,  is also called 

“code”, and is usually the last model in the refinement chain. 

Although this approach has been used for a number of years, its 

adoption is not completely widespread, at least not in its pure 

form. A major stumbling block has been the problem that the 

mapping between models, especially into actually executing code, 

has had little or no support from tools. Therefore, designers may 

use the models mostly as thinking tools, and at some stage they 

are forced to manually map these models into code. This process 

is error prone, and once the code has been generated, changes or 

updates to the application are directly implemented in the code, 

instead of adjusting the models and re-generating the code. 

On the other hand, several more recent proposals attempt to 

alleviate this  problem by having automated translations (or 

transformations) between models, supported by appropriate tools. 

Among the most prominent are MDA [5] and Software Factories 

[6]. 

Specifically for designing Web applications, most of the 

aforementioned methods have associated development 

environments that support code generation from model 

specifications, either fully or partially automated. The code 

generated contains both boiler plate code that encodes the pre-

defined model semantics, and user specified code that is specific 

to the application at hand. 

There are usually two places where user-specified code appears in 

applications generated using such support environments – the 

code implementing the business logic that is specific to the 

application, and code in the templates that render the interfaces to 

the application, which typically have to access or process data 

values to be exhibited in the model representation, or to store 

values in it. 

 However, this code has only indirect access to the model, through 

implementation structures in which it is encoded. As a 

consequence, the designer/developer must, to some extent, 

understand the implementation architecture of the support 

environment to correctly produce the additional required code. 

In this paper, we show how the HyperDE1 environment supports 

the rapid prototyping of Web applications through a combination 

the Model Driven Development approach with the use of Domain 

Specific Languages (DSL’s) [19]. This combination allows the 

designer/developer to write code by directly manipulating the 

models that specify the application. In addition, since the model is 

specified following the meta-model for a method, it also possible 

to dynamically manipulate the model itself during execution, 

which enables very concise and general applications. 

Consequently, scripts in the generated DSL work as very high 

level procedural specifications of the application.  

The next section  presents a summary of SHDM, the design 

method supported by HyperDE. Then, a brief description of 

                                                                 

1 HyperDE is freely available at http://server2.tecweb.inf.puc-

rio.br:8000/projects/hyperde/trac.cgi 



HyperDE is shown, followed by the presentation of the DSL 

generated by HyperDE. Then we discuss the advantages of this 

approach, and draw some conclusions. 

2. A SUMMARY OF SHDM 
The HyperDE environment allows the implementation of web 

applications designed using the SHDM method [11],[12]. SHDM 

is a model-driven approach to design web applications through 

five different steps: Requirements Gathering, Conceptual Design, 

Navigational Design, Abstract Interface Design and 

Implementation. Each phase focuses on a particular aspect and 

produces artifacts detailing the application to be run on the web. 

The typical workflow in producing these artifacts, and thus 

generating the final running application, is presented in Figure 1. 
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Figure 1. Simplified flow of documents  in SHDM as used in 

HyperDE 

It is a natural tendency, when building an application based 

on some ontology representing the problem domain, to think of it 

as an “ontology browser” – each “node” is essentially an “object” 

(i.e., a resource with associated properties), and links are certain 

Properties that have other such resources as values.  In this sense, 

this ontology serves as a conceptual model of the problem 

domain. 

One of the main insights from previous work in hypermedia 

application design methods, which has been kept in SHDM, is the 

realization that the navigation objects that are manipulated by the 

user are not the actual objects of the conceptual model, but views 

over these objects, defined according to user profiles and tasks to 

be supported by the application (see [14] for a more extensive 

discussion). 

Accordingly, in SHDM we have taken the approach to define 

a Web application as a navigational view over some ontology 

(i.e., conceptual model) which describes the problem domain. We 

profit from being able to represent both data itself and its schema 

(meta-data) using the same formalism, since the fact that the 

schema can be manipulated just like any other kind of data brings 

greater expressiveness and conciseness to the specifications. 

Since the specifications can also be treated as data, the 

generation of the final application is achieved by successive 

manipulations of these specifications, up to the point of 

generating the concrete interface (which must per force be in a 

language understood directly by the current browsers). 

2.1 SHDM Meta Model 
Figure 2 shows the SHDM meta model, with the main classes 

highlighted. The class NavClass models the navigation nodes, and 

the class Link models the links between them. Each NavClass has 

NavAttributes, NavOperations and Links, and can be a 

specialization of a BaseClass. Contexts are sets of objects of 

NavClass, defined through a query specified in one of its 

attributes; this query may have a parameter. Indexes are made out 

of IndexEntries, which contain either anchors to other indexes or 

anchors to elements within a context. Landmarks are anchors to 

either Indexes or to Context elements. Views allow exhibiting the 

contents of NavClass instances within some context, or exhibiting 

Indexes. 
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Figure 2. SHDM Meta Model 

Designing a Web application using SHDM corresponds to 

instantiating this metamodel. The HyperDE environment supports 

this, and will be detailed next. However, to help explain 

HyperDE’s architecture and the DSL language, we first give a 

brief sample application. 

3. AN EXAMPLE USING HyperDE 
Consider an academic department, where there are Professors who 

advise Students; both produce Publications and work in some 

ResearchArea. This is can be regarded as a simplified view of a 

departmental website whose conceptual model is represented in 

Figure 3, using a UML-like notation. 



 

Figure 3 – The conceptual schema of an academic department 

website 

The possible navigations are shown in the navigation contexts 

diagram shown in Figure 4, following the SHDM notation. 

Starting with the index of Research Areas shown in Figure 5, the 

user chooses one, e.g., “Software Engineering”, and navigates to 

the node exhibited in Figure 6.  The index of other Research 

Areas on the left bar, the landmarks in the bar at the top, and the 

breadcrumbs are all generated automatically. 
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Figure 4. Navigation Context Schema for the Academic 

Department Website 

If the user chooses a Professor in the area, say “Daniel Schwabe”, 

he will see the screen shown in Figure 7. 

 

Figure 5. The Research Areas index. 

In SHDM it is possible to specify that a node appears differently 

depending on the context in which it is being navigated. As an 

example, Figure 8 shows the same professor, but now being 

navigated in the “Professors in Alphabetical Order” context. 

 

Figure 6.  A Research Area. 

 

Figure 7. A Professor node in the context “Professors by 

Research Area”. 

It can be readily noticed that, besides using a different layout, 

additional attributes are also exhibited, such as the “Change 

Email” operation, and the “Students in Area” attribute. 



 

Figure 8. The Professor node shown in Figure 7, but seen in 

the context “Professors in Alphabetical Order” 

Whereas the layouts in Figure 7 were custom defined, the one in 

Figure 8 is a default layout that is applicable to all nodes, 

regardless of its actual class. 

4. THE ARCHITECTURE OF HYPERDE 
The HyperDE environment is based on the MNVC 

framework [9], which extends the MVC framework with 

navigation primitives. It allows the designer to input SHDM 

navigational models (the “model” in the MVC framework), and 

interface definitions (the “view” in the MVC framework), and 

generates complete applications adherent to the specification.  It 

also provides an interface to create and edit instance data, 

although, strictly speaking, this should actually be part of the 

generated application. Figure 9 shows the architecture of 

HyperDE. 
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Figure 9. The architecture of the HyperDE environment. 

HyperDE is implemented as a modification of the Ruby on Rails 

framework (http://www.rubyonrails.com), where the persistence 

layer (ActiveRecord) has been replaced by another one based on 

the Sesame RDF database. The SHDM meta-models, the user 

defined navigation models, as well as the application instance 

data, are all stored as RDF data. 

All HyperDE functions can be accessed via Web interfaces. In 

addition, HyperDE also generates a Domain Specific Language 

(DSL) as an extension of Ruby, allowing direct manipulation 

within Ruby scripts of both the model and SHDM’s meta-model. 

 

Figure 10. The interface for editing a Navigational Class 

Figure 10 shows the editing interface for a Navigational Class. As 

expected, it allows defining all the class attributes, its superclass, 

its links and its operations. Notice that this screen merely 

instantiates the NavClass metaclass. 

Figure 11 shows the interface for editing a Navigational Context. 

The most important attribute is the query which defines the nodes 

that belong this context. 

 

Figure 11. The interface for editing a Navigational Context.  



Figure 12 shows the interface for defining an Index structure. 

Similarly to the Context definition, the query attribute is the most 

prominent in characterizing an Index. 

 

Figure 12. The interface for defining an Index structure. 

In the examples shown, the queries are expressed using the 

SeRQL query language [3] , which allows full exploration of the 

underlying RDF [1] representation. The  context query in Figure 

11 is stated as 

SELECT DISTINCT id, type FROM 
{id} rdf:type {sr:Publication}; serql:directType 
{type}, 

{link} sr:node_id {id}; rdf:type {sr:AuthoredBy}; 
sr:target_node_id {?} rdf:type {Person}  

                    USING NAMESPACE sr = 
<http://sr#> 

 

Instead of explaining each detail, we rephrase it in natural 

language as “select all resources of type “Publication” that have a 

link of type “AuthoredBy” to a Person whose value is passed as a 

parameter.” The parameter is indicated by the “?”, which is not 

part of SeRQL, but is added by HyperDE. 

While the use of SeRQL gives the designer the greatest expressive 

power, it is, in most cases, too specialized and it is not expected 

that the common user of HyperDE would know it. To alleviate 

this problem, we use a simple DSL that is based on the 

observation that, in practice, as observed by our experience of ten 

years applying this method and its predecessor, most queries fall 

under one of the two boiler plate formats: 

1. Select X related to Y based on relation R ordered by 

attribute A – e.g., Publications by Person related by 

AuthoredBy ordered by title, or 

2. Select all instances of class X ordered by attribute Y – 

e.g., Students in Alphabetical order of name. 

Based on this observation, we allow the query above to be stated 

in the following DSL 

1. [x_by_y, source_type: Publication, 
target_type: Person, link_type: AuthoredBy, 
order: title] 

2. [alpha, type: Student, order: name] 

This DSL has the advantage of making the context definition 

completely independent of the underlying database. In fact, we 

have also implemented an earlier version of HyperDE that uses a 

relational database as the persistence store. The disadvantage of 

this DSL is that it is not possible to state all possible queries in it, 

but, as we stated, our experience shows that the vast majority of 

cases are covered by these formats. Notice also that is possible to 

extend the DSL to other query boiler plate templates (e.g., X by Y 

by Z). 

5. THE USE OF DSL’s IN HYPERDE 
We have argued that, regardless of the abstraction level of the 

specification language used to specify an application, there are 

portions which typically will require the designer/implementer to 

write some kind of code, such as for the business logic or for 

retrieving or storing values that flow in the interface. 

This code can, in turn, be given in a language that is directly 

executable, or again resort an abstraction layer that requires 

further series of translations until it can be executed. In most 

environments, the language of choice is some programming 

language that is directly executable in the desired target 

environment. 

In such cases, these programs must manipulate the model’s 

representation in terms of the programming language primitives, 

which adds a layer of detail that is cumbersome at best. An 

alternative for this is to generate a DSL that makes the datatypes 

of the model also be the datatypes of some programming 

language. The advantages of this approach have already been 

argued in [6]. 

Consider, for example, the following piece of code, intended to 

manipulate an instance of a VCard, a popular ontology (see [6]). 

DAMLModel model = … // code that loads the VCARD 
ontology and some data based on that ontology 
 

DAMLClass vcardClass = 
    (DAMLClass) 
model.getDAMLValue(vcardBaseURI+"#VCARD"); 
 
DAMLProperty fnProp = 
    (DAMLProperty) 
model.getDAMLValue(vcardBaseURI+"#FN"); 
 
DAMLProperty emailProp =  
    (DAMLProperty) 
model.getDAMLValue(vcardBaseURI+"#EMAIL"); 
 
Iterator i = vcardClass.getInstances(); 
 

while (i.hasNext()) { 
    DAMLInstance vcard = (DAMLInstance) i.next(); 
 
    Iterator i2 = 
     vcard.accessProperty(emailProp).getAll(true); 
 

    while (i2.hasNext()) { 
        DAMLInstance email = (DAMLInstance) 
i2.next(); 
 
        if 
(email.getProperty(RDF.value).getString().equals( 
            "amanda_cartwright@example.org" ) ) { 
 

            DAMLDataInstance fullname = 
                (DAMLDataInstance) 
vcard.accessProperty(fnProp).getDAMLValue(); 
 
            if ( fullname != null ) 
                System.out.println("Name: "+ 
fullname.getValue().getString()); 
 



        } 
    } 
} 

 

The code below shows the equivalent function in a DSL defined 

over the ontology, on top of Ruby: 

VCard.find_all.each { |vc|  

    vc.emails.each { |email|     

        print vc.fn if email == 
“amanda_cartwright@example.org” && vc.fn? 

    }  

}      
 

Following this approach, we have defined a DSL on top of Ruby, 

based on the SHDM model and metamodel, in the following way 

1. Each instance of NavClass becomes a Ruby class; 

2. Each NavAttribute of NavClass becomes an attribute of the 

corresponding Ruby class. In addition, a method 

“find_by_xxx” is also defined, allowing to search objects of 

this class according to values of this attribute; (Actually, a 

whole family of “find_by_xxx” and “find_all_by_xxx” 

methods are created dynamically allowing one to write such 

expressions as Professor.find_by_name_and_research_area 

or Student.find_all_by_year_and_department) 

3. Each NavOperation of NavClass becomes a method of the 

corresponding Ruby class; 

4. Each link having NavClass as the source type becomes an 

attribute of special type “Array”, whose elements are objects 

of the target type of the link. 

The built-in Ruby operators are redefined to handle the expected 

semantics. For instance, if a new element is inserted in the array 

that corresponds to a link, this is interpreted as creating a new link 

instance. Consider for instance the following code 

schwabe = Professor.find_by_name “Daniel Schwabe” 

area = ResearchArea.find_by_name “Hypermidia” 

for student in schwabe.advises 

  unless student.works_in.include?(area) 

    student.works_in << area 

  end 

end 

 

The first statement assigns to variable schwabe the object whose 

name attribute is “Daniel Schwabe”, and similarly for 

hypermedia. Next, a loop is performed over each element of the 

array schwabe.advises, which is made out of student objects, since 

the target type for the Advises link is Student. For each element, it 

is tested if the research area hypermedia belongs to the array 

student.works_in, which contains the research areas in which the 

student works. If this is not the case, the research area 

hypermedia is added to this array, which causes a new link 

between the student and the research area hypermedia  to be 

created and inserted in the database. 

The use of the DSL is illustrated in the students_in_area attribute 

of class Professor, defined in Figure 10. The intended value for 

this attribute is defined by “all students advised by professors who 

work in the same area as the professor in question”. The code in 

the DSL for this computed attribute is given below. 

ary = [] 

for area in self.works_in  

  for prof in area.has_professor 

    ary << prof.advises 

  end 

end 

ary.flatten! 

ary.map { |student| student.name }.uniq.join(",") 

First an auxiliary variable ary is initialized with an empty array. 

Next, for each area in which the professor (“self”) works, iterate 

over each professor that works in that area, appending this 

professor’s advisees to the auxiliary array. At the end of the 

nested loop, ary contains an array of arrays of students, which is 

then transformed into a flat array through the flatten! method. 

Finally, a map function over the array of students extracts each 

student’s name, which is next filtered for duplicates (uniq), and 

then fed onto the join function to generate a single string with a 

comma separated list of all the names. 

We mentioned earlier that the interface templates is another place 

where typically code appears, many times interspersed with html, 

as in the case of JSP or ASP. 

Views in HyperDe are defined in a similar fashion, interspersing 

Ruby expressions with html. These Ruby expressions can include 

calls for several pre-defined functions, such as “breadcrumbs”, 

which automatically generates a clickable trace of pages 

previously navigated by the user. The HTML code below renders 

the part of the Professor page in Figure 7 where the context 

information is presented (the gray bar just below the black bar). In 

this case, the page shows 2/2 Prev |, which is the relative 

position of this node in the context  (2) and the total number of 

nodes in the context (2), and a link the previous node. 

In the highlighted part, we show the DSL expression that 

computes this information. This illustrates how SHDM 

metaclasses are handled by the DSL exactly in the same way as 

the model classes. The “Context” metaclass has, among others, 

the “position” attribute, which returns the position of the current 

node in the context, and the “nodes” attribute, which is an array of 

the nodes in the context, and “size” returns its size (i.e., the size of 

the context). Similarly, HyperDe defines the helper functions 

“context_previous” and “context_next”, which return HTML 

anchors to the previous and next nodes in the context. Notice that, 

in this particular case, since the node being exhibited is the last 

one in the context, the “next” functions returns an empty string.  

 … 

<tr><td width="160" 
bgcolor="#99ffcc">&nbsp;</td><td colspan="2"> 

 

<div class="coluna1" style="width:100%; 
padding:0.5em;background-color:#eeeeee; margin-
bottom:1em; text-align:right"> 

<%= @context.position+1 %> / <%= 
@context.nodes.size %>  

 

<%= context_previous [ "<a href='%s'>< prev</a>", 
:url ] %> 

&nbsp;|&nbsp; 

<%= context_next [ "<a href='%s'>next ></a>", :url 
] %> 

</div> 

</td> 

</tr> 



 

Consider the interface shown in Figure 8. We can see that it 

exposes the “Change E-Mail” operation of the node, which is of 

class “Professor” and inherits it from class “Person” where it is 

defined (see Figure 10). The code defined for this operation is 

self.email = controller.params["new_email"] 

self.save 

The first line updates the “email” attribute of the current node, 

defined by the DSL, to the value returned by the “new_email” 

form field of the view, as mediated by the controller. 

The HTML code that appears in the corresponding view is 

<input type="text" name="new_email" value="<%= 
@node.email %>"> 

<%= op "change_email", { :label => "Change 
Email", :view => "attributes", :update => 
"node_attributes", :label_loading => "wait..." },  

[ '<input type=button value="%s" onclick="%s">', 
:label, :onclick ] %> 

This code, which uses the HyperDe pre-defined templates, defines 

a form with an input field named “new_email”, and calls the 

operation “change_email” when the form is submitted. 

Since the metaclasses of SHDM are also part of the DSL, it is 

possible to define context selection queries in a very general way. 

For instance, the DSL expression below defines a context that 

shows all the elements of a subclass of a class name (string) 

passed a parameter to it: 

 

{ |subclass| subclass.constantize.find_all } 

 

Specifying a context in this way has the advantage that it is 

possible to define, for example, an index that will list all subclass 

names, and each entry would point to the instance of that 

subclass. Since this definition is independent of the particular 

subclasses, it remains unaltered each time the application schema 

is changed by adding new subclasses to the class in question. 

For instance, in an online store, we can apply this technique to 

class “Product”, and allow the user to include new subclasses of 

products without requiring recompilation at all. In practice this 

achieves a similar effect as having an application framework for 

online stores, where each specific application has to be redefined 

each time the classes are changed. 

6. DISCUSSION AND CONCLUSIONS 

6.1 Evaluation 
There are several dimensions in which one can evaluate HyperDe. 

From the application point of view, two relevant metrics are 

volume of data, and application complexity. The latter can be 

measured by the size of the model (i.e., number of classes, 

contexts, indexes, views, etc…), and the former is related to the 

number of instances of a given model. Therefore, it is possible to 

have a very large application that is simple – it has many instances 

of only few classes, links or contexts, or a small application that is 

very complex – it has many classes, links or contexts, with few 

instances of each. Figure 13 shows where HyperDe is situated in 

this space; it is able to handle complex applications (in the order 

of several dozens of classes, contexts, links, etc…).  
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Figure 13. Complexity and Size of Hypermedia Applications 

The software infrastructure is based on Ruby, which is an 

interpreted language, and most likely will be hard pressed to 

perform for large volume applications, although we have not yet 

tested its limits. 

A second dimension to evaluate HyperDe is development time. 

The current HyperDe architecture allows very rapid design and 

prototyping of web applications using SHDM. We have not yet 

done a formal measurement of development time with and without 

HyperDe. Nevertheless, we have used HyperDe for several 

projects, mainly by students, and they were able to design 

moderately complex applications in the span of one to two days. 

By comparison, equivalent projects took at least a couple of 

weeks to be developed without the use of such an environment. 

A third dimension under which we have examined HyperDe is 

flexibility and evolvability. Due to the fact that it is entirely 

model-based, HyperDe is extremely flexible in allowing and 

immediately reflecting changes made in the design. In addition, by 

using the techniques discussed in the previous sections, such as 

meta-programming, it is possible to design applications that can 

support schema evolution without change to the code to a very 

large extent, much greater than in the case of compiled languages. 

Due to the speed of development, and the flexibility and 

evolvability supported by HyperDe, we feel it is well suited for 

rapid prototyping of web applications.  

Finally, a fourth dimension to consider is expressivity and 

conciseness. We believe that the examples shown in this paper 

support our claim that the use of models and DSL’s allows more 

concise code, at the proper level of abstraction, when compared to 

translation-based approaches. 

6.2 Related Work 
As mentioned earlier, HyperDe is a model-based development 

environment similar to WebRatio, which is based on WebML; 

OOWS Tools, which is based on OOWS; ArgoUML, which is 

based on UWE, and Hera Tool Suite, which his based on Hera. 

The distinguishing features of HyperDe with respect to all of them 

are 

• The particular model supported; 

• The use of meta-models, and making them accessible as 

part of the design; 

• The use of DSL’s. 

HyperDe is the only environment combining these three aspects. 

6.3 Future Work and Conclusions 
We have presented HyperDe, an environment that supports the 

design and implementation of web-based applications, which 

combines model-based development with domain specific 

languages. We argued that this combination allows for flexible 



and rapid prototyping of applications, as evidenced by several 

projects conducted in our group and with students. 

The development of HyperDe continues, and among the ongoing 

directions we can cite 

• Support for faced navigation (see [8][12]); 

• Applying a similar approach to derive DSL’s based on 

RDF schemas, as opposed to SHDM schemas; 

• Support for the SHDM abstract interface model as 

defined in [17]; 

• Support for adaptation of the application based on 

several contextual information; 

• Experimentation with alternative persistence 

mechanisms and RDF stores; 

• Extension of the SHDM model to allow direct use of 

ontologies specified with RDF Schema [2] , enriched 

with navigational information. 
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