
A Guide to Natural Namin g

Daniel Keller
ETH, Projekt-Zentrum ID A

CH-8092 Zurich, Switzerlan d

Summary

The naming scheme described in this paper is a set of hints and guidelines on how t o
select names in a procedural programming language . The analysis of the structure o f
identifiers shows that type identifiers are the core of most names . Therefore the startin g
point for a meaningful naming is the set of names for the types within a program .
Short class names should be chosen for these . The other identifiers can now be derive d
from the type names. Additional hints are given to complete the naming scheme .
This naming convention is perceived as a real aid in finding good names, not as a
restricting set of rules . It has been taught and used in projects with success in the past
two years . The resulting programs are highly readable .

Introduction

Every programmer faces the problem of having to select meaningful names fo r
identifiers in a program, yet hardly a text book on programming discusses this subject .
A lot of research has gone into the structure of programs, but not into the structure o f
names .
Over the years it has been realized that programs are being read primarily by people and
that satisfying the compiler's requirements on syntactical correctness is only a necessar y
but not a sufficient criterion. Programs must also be readable in order to be easil y
understood by humans . Consistent indenting, commenting, and naming is a n
economical necessity since unreadable programs quickly become too expensive t o
maintain .

So far, finding good names has been a matter of luck and intuition — if not restricted by a
rigid naming convention of the kind that defines three-letter prefixes, a five-letter fre e
naming space and a dollar sign suffix for constants . Such a naming conventio n
inevitably leads to endless battles against its restrictions yielding unreadable variabl e
names like PRS XCNVT . On the other hand, without naming convention one i s
tempted to use the letters of the alphabet as one-character identifiers (i, x, p, r, s) ,
and, after running out of letters, using two-character identifiers like ii or xx .

This paper proposes a way out of this dilemma : a naming convention which helps i n
choosing good names without imposing any restriction . In the true sense it is not a
naming convention but a name structuring guide .

95

	

SIGPLAN Notices, Vol . 25, No . 5

Please note that the naming scheme described here only applies to strongly type d
languages which allow arbitrarily long identifiers, e .g. Pascal, Ada, C, Modula-2, and
even some BASIC dialects, but not to standard FORTRAN or Minimal BASIC . The
convention is only partially applicable to declarative languages like PROLOG or to a
language like LISP where only functions and no procedures are known .

As an introductory example, two code fragments are presented, the first as the "normal "
example, the second as the more readable one .
The purpose of one procedure in these fragments is to build up a Macintosh-like menu
bar with one menu having three command entries (see picture below) . The other
procedure asks the user for a file name with the file selector box and opens the file fo r
reading.

Fragment 1 (the "normal") :

VAR

f :

	

file ;

fnam : ARRAY[O . .31)OF CHAR ;
f1 :

	

mnu ;

	

(* the "File" menu *)

op, cl, q : cmd ;

	

(* the Open, Close, and Quit commands *)

PROCEDURE newmnu ;

	

(* build up the menu bar *)
BEGIN

mnuclear ;

	

(* makes an empty menu bar *)
(* make one menu with three commands in it *)
newM(fl, "File", sel) ;

	

(* sel = selectable *)
newC(fl, "Open . . .", sel) ;

newC(fl, "Close", nosel) ;
sep(fl) ;

	

(* adds a separator line in the menu *)
newC(fl, "Quit", sel) ;

END newmnu ;

PROCEDURE fopen ;

	

(* open the file for reading *)
VAR

ok : BOOLEAN ;
BEGIN

fselinput(fnam, ok) ;

	

(* ask for file name *)
IF ok THEN

open(f, fnam, rd) ;

cmdsel(f1, cl) ;

	

(* enable close command *)
cmdnosel(fi, op) ;

	

(* disable open command *)
fread(f) ;

END ;

END fopen ;

96

The above example looks like ordinary, well documented code, doesn't it? If you do no t
fully understand what this code is supposed to do, have a look at the second fragment -
which does exactly the same - where the names have been chosen with more care :

Fragment 2 (the "readable") :

VAR
InFile :

	

File ;

InFileName : ARRAY(0 . .31] OF CHAR ;

FileMenu :

	

Menu ;

OpenComm :

	

Command ;

CloseComm : Command ;

QuitComm :

	

Command ;

PROCEDURE BuildUpMenuBar ;

BEGIN
MakeEmptyMenuBar ;

AddMenu(FileMenu, "File", Enabled) ;
AddCommand(FileMenu, OpenComm, "Open . . .", Enabled) ;

AddCommand(FileMenu, CloseComm, "Close", Disabled) ;
AddSeparator(FileMenu) ;

AddCommand(FileMenu, QuitComm, "Quit", Enabled) ;

END BuildUpMenuBar ;

PROCEDURE OpenAndReadFile ;
VAR

ok : BOOLEAN ;

BEGI N
ShowFileSelectorBox(InFileName, ok) ;

IF ok THEN

Open(InFile, InFileName, ReadOnly) ;

EnableCommand(FileMenu, CloseComm) ;

DisableCommand(FileMenu, OpenComm) ;
ReadData(InFile) ;

END ;

END OpenAndReadFile ;

This second example is clearly easier to read, even without the comments . The
commands are more obvious - provided that the referenced and imported procedure s
do what their names imply . Note that the structure of both fragments is identical, onl y
the names have been replaced .

The remainder of the paper explains why the second code fragment is easier to read .
The structure of some good names is analyzed and rules and guidelines for selecting
names are presented .

97

The Structure of Names

In a strongly typed procedural programming language names must be given t o
identifiers of programs, modules, constants, types, variables, and procedures . Usually
the sequence in which the names of the various objects are chosen is random, but i t
should not be. There is a clear advantage in choosing the names in a certain order .
The following section discusses the structure of names for the different objects . After
that it will become clear that the proposed sequence in naming is preferable .

Type Name s

The simplest and shortest names are the names for type identifiers . Therefore the y
must be chosen before any other name, especially before the names for variables of thi s
type . Type names should be short generic class names . They may also be composed of
two such class names .

Examples : Table, Error, State, Word, Name, File, Address, Graph, Title ,
Menu, StateTable, FileName, Tablelndex .

Procedure Names

A procedure is (literally) called by its name which stands for a group of statements to b e
executed . Therefore the name should express the implied action ("DoThis!") b y
including a verb . Since procedures usually operate on a specific type, the structure "verb
+ type name" is best suited for a procedure name .
(A special note for non-English programmers : the verb should be in its imperative form
- which in most languages is different from the infinitive form) .

Examples : StoreWord, DisplayError, ShowPrinterStatus, PrintPage ,
InvertMenuTitle, OpenWindow, DrawLine, PrintAddress ,
GetFirstElement, CheckMachineState, FindNam e

Variable and Function Name s

In strongly typed languages a variable is of a particular type . Therefore the structure
"adjective + type name" for variable names is an obvious suggestion . It does not hav e
to be an adjective, it can also take on the more general form "qualified type name" .
This convention also applies to function procedures (subroutines returning a value)
because they are used like variables within expressions .

Examples : FirstState, NextState, LastElement, BigWindow, HomeAddress ,
RunningTitle, HeadPointer, TitlePage, EndOfList, MaxLength ,
CurrentSymbol, OptimalLevel, ScreenWidt h

98

Constants

They often describe a limit within a program . In these cases it is appropriate to use the
prefix "Max" in connection with the type name . Otherwise treat the names fo r
constants like variable names .

Examples : MaxLineLength, MaxLinesPerPage, MaxNoOfEntries ,
MaxBitmapSize, MaxOpenWindows, MinWindowWidth ,
DefaultRepeatRate, FastClick, SlowClic k

The Naming Orde r

It is a logical consequence of the naming structure described above that the type names
must be chosen first . This is no surprise when looking at object oriented programmin g
or the technique of abstract data types .
After having chosen the type names one can start to name the procedures, variables ,
and constants. Finally, the program and module names can be chosen ; they are the leas t
important for readability and conflicting names .

This sequence in naming the programming objects is important : if one has named the
variables first (which is usually the case) then the best names for the types are alread y
gone . Example :

A variable state has been declared of type StateType . This is fine as long as onl y
one variable of this type is used. The naming problem starts when a second variabl e
of the same type is needed . First shot : State2 . This is certainly better than naming
it 's', but why not pick really good names like CurrentState, Laststate ,
NormalState, ErrorState, etc. for the variables and name the type State as
described above?

99

General Hints for Namin g

The following is a collection of hints and guidelines . Some of these can be found in
Ledgard's excellent book (1) about professional programming, some of the hints are
"folklore" with unknown sources .

The most important criterion when choosing a name is : how easily can another
programmer understand the program (and not only yourself) . If understanding a nam e
wasn't important we could name the variables v1, v2, v3, v4 . . . v568 couldn' t
we?

o Names must be pronounceable .

Make long names, do not truncate as if you still had to program in FORTRAN . As a
"rule of mouth" : If you can 't read a name out loud, it 's not a good name.
Do not hesitate to use long names, even if you are not a top typist . Use a good editor ,
it can help you with an easy cut and paste for identifiers .
Sometimes it is argued that long names make the lines too long . This may be true ,
but I have yet to see a program where the names are really too long . The usual cas e
is that the names are too short (who has not pondered for hours about the meaning
of names like x, ir2q, n, p0, p1, xx, grp, cfv ?)

Examples : GroupID instead of grpID, NameLength and not namln ,
PowersOfTwo and not pwrsOf2, ResetPrinter and no t
RSTPRT .

o Use capitalizing (or underscores) to mark the beginning of a new word within a
name .

Capitalizing (or using underscores) makes the names easier to read . I prefer
capitalizing because it does not lengthen the names unnecessarily .

Examples : LatestEntry, NextState, TopOfStac k
or: latest_entry, next_state, top_of_stac k

o Abbreviate with care .

Abbreviations always carry the risk of being misunderstood (does TermProces s
mean TerminateProcess or TerminalProcess) . Usually they are also hard t o
pronounce ("NxtGrp") .
Only use commonly known abbreviations, like the "ID" in ProcessID, or
abbreviations which are known and agreed upon within a company or group . In the

100

latter case they should be documented for each project so that an programmers use
the same abbreviations consistently .

Abbreviate a name only if it saves more than three characters . Take the famous JMP

and Mov: one letter has been saved, what for ?

Examples : error and not err, next and not nxt, name and not nam ,
but : MaxLineLength is probably better than MaximumLineLength .

o Do not use digits within a nam e

Numbers within a name are easy to misread : 0 and 0, 1 and 1, 2 and Z ,
S and 5 .
If a program really requires three pointers p1, p2, p3 for instance, should they no t
better be declared as an ARRAY [1 . . 3] OF POINTER TO . . . instead (or named
PreviosPtr, CurrentPtr, NextPtr if this is what they mean) ?

o Boolean variable and function names should state a fact that can be true or false .

This is easy to achieve with the inclusion of "is" in the name .

Examples : PrinterIsReady, QueuelsEmpty, or simply : done, lOfaile d
(note how naturally this reads : IF PrinterlsReady THEN . . .)

Conclusion s

This naming scheme has been used in several programming courses and in two projects
so far. It has proven to be very useful . The programs became easier to read an d
understand.

As an interesting side-effect the good names make many comments superfluous .
Comments appear only in the code to flag something unusual or not obvious (apar t
from the module header and the comments to each declaration of a constant or a
variable) . This is quite contrary to the common belief "the more comments the better" .

It is also interesting to note that people reading such programs usually find them easy t o
read, but cannot see why they were easy to read. The naming scheme goes unnoticed for
the reader, a clear advantage over a convention which needs an explanation .

Best of all, it is not a pain to use (like so many other programming guidelines, whic h
have to be enforced) ; this one is a real help in finding good names .

101

Limitations

The naming scheme does not help very much for naming record fields and forma l
parameters of procedures . One idea can serve as a guideline : the scope of a name
influences its length. Global variables, procedures, or constants have a bigger scope tha n
local variables or formal parameters . A bigger scope requires that the name be longer in
order to be uniquely identifiable . Therefore local variables, formal parameters and
record fields can have shorter names .

Additional conventions - like using a small first letter for variables and types, a capita l
first letter for procedures and constants - can be used on top of this one . However, when
the names are chosen carefully and using the above described suggestions, one does no t
need such artificial conventions, the names clearly express what they stand for .

Literature

(1) Henry Ledgard with John Tauer : "Professional Software, Vol II, Programming
Practice", Addison-Wesley, 1987

102

