gnash-commit
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Gnash-commit] gnash configure.ac ChangeLog libbase/Makefile.a...


From: Rob Savoye
Subject: [Gnash-commit] gnash configure.ac ChangeLog libbase/Makefile.a...
Date: Tue, 29 Apr 2008 16:50:51 +0000

CVSROOT:        /sources/gnash
Module name:    gnash
Changes by:     Rob Savoye <rsavoye>    08/04/29 16:50:50

Modified files:
        .              : configure.ac ChangeLog 
        libbase        : Makefile.am 
        libnet         : http.cpp 
Added files:
        libbase        : jemalloc.c jemtree.h 

Log message:
                * configure.ac: Add --enable-jemalloc option to use our own 
copy of
                jemalloc() instead of the system malloc. Test for local thread
                storage via __thread. Expand OS specific tests.
                * libbase/Makefile.am: Optionally build jemalloc.
                * libbase/jamalloc.c, jemtree.h: Add the jemalloc memory 
allocator
                from Mozilla/Firefox/FreeBSD, tweaked to configure and build the
                way the rest of Gnash does.
                * libnet/http.cpp: Include unistd.h to keep OpenBSD happy 
looking
                for ::read() and ::close().

CVSWeb URLs:
http://cvs.savannah.gnu.org/viewcvs/gnash/configure.ac?cvsroot=gnash&r1=1.523&r2=1.524
http://cvs.savannah.gnu.org/viewcvs/gnash/ChangeLog?cvsroot=gnash&r1=1.6446&r2=1.6447
http://cvs.savannah.gnu.org/viewcvs/gnash/libbase/Makefile.am?cvsroot=gnash&r1=1.111&r2=1.112
http://cvs.savannah.gnu.org/viewcvs/gnash/libbase/jemalloc.c?cvsroot=gnash&rev=1.1
http://cvs.savannah.gnu.org/viewcvs/gnash/libbase/jemtree.h?cvsroot=gnash&rev=1.1
http://cvs.savannah.gnu.org/viewcvs/gnash/libnet/http.cpp?cvsroot=gnash&r1=1.7&r2=1.8

Patches:
Index: configure.ac
===================================================================
RCS file: /sources/gnash/gnash/configure.ac,v
retrieving revision 1.523
retrieving revision 1.524
diff -u -b -r1.523 -r1.524
--- configure.ac        28 Apr 2008 22:34:04 -0000      1.523
+++ configure.ac        29 Apr 2008 16:50:48 -0000      1.524
@@ -118,20 +118,45 @@
 dnl Some things you can only do by looking at the platform name.
 case "${host}" in
   powerpc-apple-darwin*)
-    AC_DEFINE([__powerpc64__], [], [this is a 64 bit powerpc])
+    AC_DEFINE([__powerpc64__], [1], [this is a 64 bit powerpc])
     darwin=yes
     ;;
-  i*86-apple-darwin*)
+  *-apple-darwin*)
     darwin=yes
+    AC_DEFINE([DARWIN], [1], [this is a Darwin platform])
     ;;
-  i*86-*-openbsd*)
-    openbsd_os=openbsd
+    dnl Unfortunately, all BSD distributions are not identical, so as tacky as 
it is
+    dnl to look for the distribution name, we don't have much choice. The use 
of these
+    dnl should be avoid as much as possible.
+  *-openbsd*)
+    bsd=yes
+    openbsd=yes
+    AC_DEFINE([OPENBSD], [1], [this is an OpenBSD platform])
+    ;;
+  *-freebsd*)
+    bsd=yes
+    freebsd=yes
+    AC_DEFINE([FREEBSD], [1], [this is a FreeBSD platform])
+    ;;
+  *-netbsd*)
+    bsd=yes
+    netbsd=yes
+    AC_DEFINE([NETBSD], [1], [this is a NetBSD platform])
+    ;;
+  *-*solaris*)
+    solaris=yes
+    AC_DEFINE([SOLARIS], [1], [this is a Solaris platform])
+    ;;
+  *-*linux*)
+    linux=yes
+    AC_DEFINE([LINUX], [1], [this is a Linux platform])
     ;;
   *-cygwin* | *-mingw* | *-pw32*)
     windows=yes
+    AC_DEFINE([WIN32], [1], [this is a Win32 platform])
     ;;
-  *64-*-openbsd*)
-    openbsd_os=openbsd 
+  *64-*-*bsd*)
+    bsd_os=bsd 
     AC_DEFINE([WORDSIZE], [64], [this is a 64 platform])
     ;;
 esac
@@ -234,6 +259,38 @@
 LC_KEY=${lckey}
 AC_SUBST(LC_KEY)
 
+# Maybe use jemalloc, which handles memory fragmentation for
+# ECAMscript languages better than the regular system malloc.
+# This seems like a good idea, as both the other player and
+# Mozilla/Firefox both recently switched to using jemalloc.
+AC_ARG_ENABLE(jemalloc,
+  AC_HELP_STRING([--enable-jemalloc],[Enable jemalloc instead of system 
malloc]),
+[case "${enableval}" in
+  yes) jemalloc=yes ;;
+  no)  jemalloc=no ;;
+  *)   AC_MSG_ERROR([bad value ${enableval} for --enable-jemalloc option]) ;;
+esac],jemalloc=no)
+
+dnl There is some weird stuff going on with NetBSD and jemalloc, so don't 
built it for now.
+if test x"${netbsd}" = x"yes"; then
+  jemalloc=no
+fi
+dnl If the compiler doesn't have local thread storage enabled, don't try to
+dnl use jemalloc.
+if test x"${jemalloc}" = x"yes"; then
+  AC_TRY_COMPILE([], [
+    extern __thread int global_i; ],
+    has_local_thread_storage=yes
+  )
+  if test x"${has_local_thread_storage}" = x"yes"; then
+    AC_DEFINE([HAVE_LOCAL_THREAD_STORAGE], [1], [Has __thread (local thread 
storage) support])
+    AC_DEFINE([USE_JEMALLOC], [], [Use jemalloc instead of system malloc])
+  else
+    jemalloc=no
+  fi
+fi
+AM_CONDITIONAL(JEMALLOC, test x$jemalloc = xyes)
+
 AC_ARG_ENABLE(debugger,
   AC_HELP_STRING([--enable-debugger],[Enable the Flash debugger]),
 [case "${enableval}" in
@@ -386,21 +443,6 @@
 esac],cygnal=no)
 AM_CONDITIONAL(CYGNAL, test x$cygnal = xyes)
 
-dnl Build adding statistics collecting on both memory and performance.
-dnl Warning: this can be a performance hit by itself, due to the overhead
-dnl of collecting and storing the information.
-AC_ARG_ENABLE(statistics,
-  AC_HELP_STRING([--enable-statistics], [Enable statistics gathering]),
-[case "${enableval}" in
-  yes) statistics=yes
-       AC_DEFINE(USE_STATISTICS, [1], [Collect statistics on memopry and 
performance])
-       ;;
-  no)  statistics=no ;;
-  *)   AC_MSG_ERROR([bad value ${enableval} for enable-statistics option]) ;;
-esac],statistics=no)
-
-AM_CONDITIONAL(STATISTICS, test x$statistics = xyes)
-
 dnl Fix the Intel 810 LOD bias problem
 AC_ARG_ENABLE(i810-lod-bias,
   AC_HELP_STRING([--enable-i810-lod-bias], [Enable fix for Intel 810 LOD bias 
problem]),
@@ -825,7 +867,7 @@
 dnl primarily only used for tuning the queueing API in Gnash. Memoryis the 
same, it's only used
 dnl by developers for tuning performance of memory allocations in Gnash.
 buffers=no
-que=yes
+que=no
 memory=no
 AC_ARG_WITH(statistics,
   AC_HELP_STRING([--with-statistics=], [Specify which statistics features to 
enable]),
@@ -1218,6 +1260,7 @@
 AC_CHECK_HEADERS(libgen.h)
 AC_CHECK_HEADERS(pwd.h)
 AC_CHECK_HEADERS(sys/utsname.h)
+AC_CHECK_LIB(lber, der_free)
 AC_CHECK_LIB(m, sqrt)
 AC_CHECK_LIB(c, getpwnam, AC_DEFINE(HAVE_GETPWNAM, 1, [Has getpwnam] ))
 
@@ -1241,7 +1284,7 @@
   struct mallinfo x = mallinfo(); ],
   AC_DEFINE(HAVE_MALLINFO, [1], [Has mallinfo()])
 )
-AM_CONDITIONAL(HAVE_MALLINFO, [test x$HAVE_MALLINFO = xyes])
+AM_CONDITIONAL(HAVE_MALLINFO, [test x$HAVE_MALLINFO = xyes -a x$jemalloc = 
xyes])
 
 AC_CHECK_LIB(rt, shm_unlink)
 AC_CHECK_FUNCS(shm_open shm_unlink)

Index: ChangeLog
===================================================================
RCS file: /sources/gnash/gnash/ChangeLog,v
retrieving revision 1.6446
retrieving revision 1.6447
diff -u -b -r1.6446 -r1.6447
--- ChangeLog   29 Apr 2008 14:47:24 -0000      1.6446
+++ ChangeLog   29 Apr 2008 16:50:48 -0000      1.6447
@@ -1,3 +1,15 @@
+2008-04-29  Rob Savoye  <address@hidden>
+
+       * configure.ac: Add --enable-jemalloc option to use our own copy of
+       jemalloc() instead of the system malloc. Test for local thread
+       storage via __thread. Expand OS specific tests.
+       * libbase/Makefile.am: Optionally build jemalloc.
+       * libbase/jamalloc.c, jemtree.h: Add the jemalloc memory allocator
+       from Mozilla/Firefox/FreeBSD, tweaked to configure and build the
+       way the rest of Gnash does.
+       * libnet/http.cpp: Include unistd.h to keep OpenBSD happy looking
+       for ::read() and ::close().
+
 2008-04-29 Benjamin Wolsey <address@hidden>
 
        * server/namedStrings.{cpp,h}: add onFullScreen.

Index: libbase/Makefile.am
===================================================================
RCS file: /sources/gnash/gnash/libbase/Makefile.am,v
retrieving revision 1.111
retrieving revision 1.112
diff -u -b -r1.111 -r1.112
--- libbase/Makefile.am 27 Apr 2008 14:11:48 -0000      1.111
+++ libbase/Makefile.am 29 Apr 2008 16:50:50 -0000      1.112
@@ -92,10 +92,21 @@
 EXTRA_DIST += tu_file_SDL.cpp 
 endif
 
+# Maybe use jemalloc, which handles memory fragmentation for
+# ECAMscript languages better than the regular system malloc.
+# This is controlled by the --enable-jemalloc (disabled by default)
+# configure option.
+if JEMALLOC
+MALLOC = jemalloc.c
+else
+MALLOC = 
+endif
+
 libgnashbase_la_SOURCES = \
        $(DMALLOC_FILE) \
        extension.cpp \
        image.cpp \
+       $(MALLOC) \
        jpeg.cpp \
        log.cpp \
        memory.cpp \
@@ -129,6 +140,7 @@
        gettext.h \
        grid_index.h \
        image.h \
+       jemtree.h \
        jpeg.h \
        gmemory.h \
        log.h \

Index: libnet/http.cpp
===================================================================
RCS file: /sources/gnash/gnash/libnet/http.cpp,v
retrieving revision 1.7
retrieving revision 1.8
diff -u -b -r1.7 -r1.8
--- libnet/http.cpp     7 Apr 2008 14:16:51 -0000       1.7
+++ libnet/http.cpp     29 Apr 2008 16:50:50 -0000      1.8
@@ -35,6 +35,7 @@
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <algorithm>
+#include <unistd.h>
 
 #include "amf.h"
 #include "http.h"
@@ -1276,7 +1277,7 @@
                           st.st_size, filefd);
                do {
                    amf::Buffer *buf = new amf::Buffer;
-                   ret = read(filefd, buf->reference(), buf->size());
+                   ret = ::read(filefd, buf->reference(), buf->size());
                    if (ret == 0) { // the file is done
                        delete buf;
                        break;

Index: libbase/jemalloc.c
===================================================================
RCS file: libbase/jemalloc.c
diff -N libbase/jemalloc.c
--- /dev/null   1 Jan 1970 00:00:00 -0000
+++ libbase/jemalloc.c  29 Apr 2008 16:50:49 -0000      1.1
@@ -0,0 +1,6239 @@
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <address@hidden>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice(s), this list of conditions and the following disclaimer as
+ *    the first lines of this file unmodified other than the possible
+ *    addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice(s), this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ 
*******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems.  The following
+ * features are included for this purpose:
+ *
+ *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ *     contention and cache sloshing.
+ *
+ *   + Cache line sharing between arenas is avoided for internal data
+ *     structures.
+ *
+ *   + Memory is managed in chunks and runs (chunks can be split into runs),
+ *     rather than as individual pages.  This provides a constant-time
+ *     mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained.  Allocations are broken into
+ * categories according to size class.  Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum, the size classes in each category are as follows:
+ *
+ *   |=====================================|
+ *   | Category | Subcategory    |    Size |
+ *   |=====================================|
+ *   | Small    | Tiny           |       2 |
+ *   |          |                |       4 |
+ *   |          |                |       8 |
+ *   |          |----------------+---------|
+ *   |          | Quantum-spaced |      16 |
+ *   |          |                |      32 |
+ *   |          |                |      48 |
+ *   |          |                |     ... |
+ *   |          |                |     480 |
+ *   |          |                |     496 |
+ *   |          |                |     512 |
+ *   |          |----------------+---------|
+ *   |          | Sub-page       |    1 kB |
+ *   |          |                |    2 kB |
+ *   |=====================================|
+ *   | Large                     |    4 kB |
+ *   |                           |    8 kB |
+ *   |                           |   12 kB |
+ *   |                           |     ... |
+ *   |                           | 1012 kB |
+ *   |                           | 1016 kB |
+ *   |                           | 1020 kB |
+ *   |=====================================|
+ *   | Huge                      |    1 MB |
+ *   |                           |    2 MB |
+ *   |                           |    3 MB |
+ *   |                           |     ... |
+ *   |=====================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ *   Small : Each size class is segregated into its own set of runs.  Each run
+ *           maintains a bitmap of which regions are free/allocated.
+ *
+ *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
+ *           in the associated arena chunk header maps.
+ *
+ *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ *          Metadata are stored in a separate red-black tree.
+ *
+ 
*******************************************************************************
+ */
+
+/*
+ * This has been hacked on heavily by Rob Savoye, so it compiles
+ * within Gnash, using the same configuration settings as
+ * everything else in Gnash.
+ */
+#ifdef HAVE_CONFIG_H
+# include "gnashconfig.h"
+#endif
+
+#include "dsodefs.h"
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
+ * defaults the A and J runtime options to off.  These settings are appropriate
+ * for production systems.
+ */
+#ifndef USE_STATS_MEMORY
+# define MALLOC_PRODUCTION 1
+#endif
+
+#ifndef MALLOC_PRODUCTION
+   /*
+    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+    * inline functions.
+    */
+#  define MALLOC_DEBUG 1
+
+   /* MALLOC_STATS enables statistics calculation. */
+#  define MALLOC_STATS 1
+
+   /* Memory filling (junk/zero). */
+#  define MALLOC_FILL 1
+
+   /* Allocation tracing. */
+#  define MALLOC_UTRACE 1
+
+   /* Support optional abort() on OOM. */
+#  define MALLOC_XMALLOC 1
+
+   /* Support SYSV semantics. */
+#  define MALLOC_SYSV 1
+#endif
+
+/*
+ * MALLOC_LAZY_FREE enables the use of a per-thread vector of slots that free()
+ * can atomically stuff object pointers into.  This can reduce arena lock
+ * contention.
+ */
+/* #define     MALLOC_LAZY_FREE 1 */
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+/* #define     MALLOC_BALANCE 1 */
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS).  In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+#if (!defined(DARWIN) && !defined(WIN32))
+# define MALLOC_DSS 
+#endif
+
+#ifdef LINUX
+# define       _GNU_SOURCE /* For mremap(2). */
+# define       issetugid() 0
+# if 0 /* Enable in order to test decommit code on Linux. */
+#  define MALLOC_DECOMMIT 1
+/*
+ * The decommit code for Unix doesn't bother to make sure deallocated DSS
+ * chunks are writable.
+ */
+# undef MALLOC_DSS
+# endif
+#endif
+
+#include <sys/types.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#ifdef WIN32
+# include <cruntime.h>
+# include <internal.h>
+# include <windows.h>
+# include <io.h>
+# include "jemtree.h"
+
+# pragma warning( disable: 4267 4996 4146 )
+
+# define       bool BOOL
+# define       false FALSE
+# define       true TRUE
+# define       inline __inline
+# define       SIZE_T_MAX SIZE_MAX
+# define       STDERR_FILENO 2
+# define       PATH_MAX MAX_PATH
+# define       vsnprintf _vsnprintf
+# define       assert(f) /* we can't assert in the CRT */
+
+static unsigned long tlsIndex = 0xffffffff;
+
+# define       __thread
+# define       _pthread_self() __threadid()
+# define       issetugid() 0
+
+/* use MSVC intrinsics */
+# pragma intrinsic(_BitScanForward)
+static __forceinline int
+ffs(int x)
+{
+       unsigned long i;
+
+       if (_BitScanForward(&i, x) != 0)
+               return (i + 1);
+
+       return (0);
+}
+
+typedef unsigned char uint8_t;
+typedef unsigned uint32_t;
+typedef unsigned long long uint64_t;
+typedef unsigned long long uintmax_t;
+
+# define       MALLOC_DECOMMIT
+#endif  /* end of WIN32 */
+
+#ifdef HAVE_PTHREADS
+# include <pthread.h>
+#endif
+
+#ifndef WIN32
+# include <sys/cdefs.h>
+# ifndef __DECONST
+#  define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+# endif
+# include <sys/mman.h>
+# ifndef MADV_FREE
+#  define MADV_FREE    MADV_DONTNEED
+# endif
+# include <sys/param.h>
+# include <sys/time.h>
+# include <sys/types.h>
+# include <sys/sysctl.h>
+# include "jemtree.h"
+# include <sys/uio.h>
+
+# include <errno.h>
+# include <limits.h>
+# ifndef SIZE_T_MAX
+#  define SIZE_T_MAX   SIZE_MAX
+# endif
+# if defined(DARWIN) || defined(LINUX)
+#  define _pthread_self pthread_self
+#  define _pthread_mutex_init pthread_mutex_init
+#  define _pthread_mutex_trylock pthread_mutex_trylock
+#  define _pthread_mutex_lock pthread_mutex_lock
+#  define _pthread_mutex_unlock pthread_mutex_unlock
+# endif
+# include <sched.h>
+# include <stdarg.h>
+# include <stdbool.h>
+# include <stdio.h>
+# include <stdint.h>
+# include <stdlib.h>
+# include <string.h>
+# ifndef DARWIN
+#  include <strings.h>
+# endif
+# include <unistd.h>
+
+# ifdef DARWIN
+#  include <libkern/OSAtomic.h>
+#  include <mach/mach_error.h>
+#  include <mach/mach_init.h>
+#  include <mach/vm_map.h>
+#  include <malloc/malloc.h>
+# endif  /* end of DARWIN */
+#endif   /* end of WIN32 */
+
+#ifdef DARWIN
+static const bool g_isthreaded = true;
+#endif
+
+#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+
+#ifdef MALLOC_DEBUG
+# ifdef NDEBUG
+#  undef NDEBUG
+# endif
+#else
+# ifndef NDEBUG
+#  define NDEBUG
+# endif
+#endif
+#ifndef WIN32
+# include <assert.h>
+#endif
+
+#ifdef MALLOC_DEBUG
+/* Disable inlining to make debugging easier. */
+# ifdef inline
+#  undef inline
+# endif
+
+# define inline
+#endif  /* end of MALLOC_DEBUG */
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define        STRERROR_BUF            64
+
+/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
+#define QUANTUM_2POW_MIN      4
+#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW
+# define SIZEOF_PTR_2POW               MOZ_MEMORY_SIZEOF_PTR_2POW
+#else
+# define SIZEOF_PTR_2POW       2
+#endif
+// __as __isthreaded is already defined on FreeBSD with a different value that 
does
+// the same thing, rename our version to be unique. Althought jemalloc is the 
default
+// allocator on FreeBSD< we still want to use our own version, as it has 
additional Gnash
+// specific tweaks.
+#ifndef DARWIN
+static const bool g_isthreaded = true;
+#else
+# define NO_TLS
+#endif
+#if 0
+#ifdef __i386__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      2
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      3
+#endif
+#ifdef __alpha__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __sparc64__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      3
+#  define NO_TLS
+#endif
+#ifdef __amd64__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      3
+#  define CPU_SPINWAIT         __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+#  define QUANTUM_2POW_MIN     3
+#  define SIZEOF_PTR_2POW      2
+#  define NO_TLS
+#endif
+#ifdef __powerpc__
+#  define QUANTUM_2POW_MIN     4
+#  define SIZEOF_PTR_2POW      2
+#endif
+#endif
+
+#define        SIZEOF_PTR              (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW       2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+   /* MALLOC_BALANCE requires TLS. */
+#  ifdef MALLOC_BALANCE
+#    undef MALLOC_BALANCE
+#  endif
+   /* MALLOC_LAZY_FREE requires TLS. */
+#  ifdef MALLOC_LAZY_FREE
+#    undef MALLOC_LAZY_FREE
+#  endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define        CHUNK_2POW_DEFAULT      20
+
+/* Maximum number of dirty pages per arena. */
+#define        DIRTY_MAX_DEFAULT       (1U << 9)
+
+/*
+ * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
+ * so over-estimates are okay (up to a point), but under-estimates will
+ * negatively affect performance.
+ */
+#define        CACHELINE_2POW          6
+#define        CACHELINE               ((size_t)(1U << CACHELINE_2POW))
+
+/* Smallest size class to support. */
+#define        TINY_MIN_2POW           1
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2.  Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define        SMALL_MAX_2POW_DEFAULT  9
+#define        SMALL_MAX_DEFAULT       (1U << SMALL_MAX_2POW_DEFAULT)
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints.  The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant).  This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define        RUN_BFP                 12
+/*                                    \/   Implicit binary fixed point. */
+#define        RUN_MAX_OVRHD           0x0000003dU
+#define        RUN_MAX_OVRHD_RELAX     0x00001800U
+
+/*
+ * Put a cap on small object run size.  This overrides RUN_MAX_OVRHD.  Note
+ * that small runs must be small enough that page offsets can fit within the
+ * CHUNK_MAP_POS_MASK bits.
+ */
+#define        RUN_MAX_SMALL_2POW      15
+#define        RUN_MAX_SMALL           (1U << RUN_MAX_SMALL_2POW)
+
+#ifdef MALLOC_LAZY_FREE
+   /* Default size of each arena's lazy free cache. */
+#  define LAZY_FREE_2POW_DEFAULT 8
+   /*
+    * Number of pseudo-random probes to conduct before considering the cache to
+    * be overly full.  It takes on average n probes to detect fullness of
+    * (n-1)/n.  However, we are effectively doing multiple non-independent
+    * trials (each deallocation is a trial), so the actual average threshold
+    * for clearing the cache is somewhat lower.
+    */
+#  define LAZY_FREE_NPROBES    5
+#endif
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU.  If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+#  define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock.  Backing off past a certain point
+ * can actually waste time.
+ */
+#define        SPIN_LIMIT_2POW         11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define        BLOCK_COST_2POW         4
+
+#ifdef MALLOC_BALANCE
+   /*
+    * We use an exponential moving average to track recent lock contention,
+    * where the size of the history window is N, and alpha=2/(N+1).
+    *
+    * Due to integer math rounding, very small values here can cause
+    * substantial degradation in accuracy, thus making the moving average decay
+    * faster than it would with precise calculation.
+    */
+#  define BALANCE_ALPHA_INV_2POW       9
+
+   /*
+    * Threshold value for the exponential moving contention average at which to
+    * re-assign a thread.
+    */
+#  define BALANCE_THRESHOLD_DEFAULT    (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks.  We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+#if defined(WIN32)
+#define malloc_mutex_t CRITICAL_SECTION
+#define malloc_spinlock_t CRITICAL_SECTION
+#elif defined(DARWIN)
+typedef struct {
+       OSSpinLock      lock;
+} malloc_mutex_t;
+typedef struct {
+       OSSpinLock      lock;
+} malloc_spinlock_t;
+#elif defined(USE_JEMALLOC)
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+#else
+/* XXX these should #ifdef these for freebsd (and linux?) only */
+typedef struct {
+       spinlock_t      lock;
+} malloc_mutex_t;
+typedef malloc_spinlock_t malloc_mutex_t;
+#endif
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+#ifdef WIN32
+/* No init lock for Windows. */
+#elif defined(DARWIN)
+static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
+#elif defined(LINUX)
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+#elif defined(USE_JEMALLOC)
+static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
+#else
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+#endif
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+/* Borrowed from malloc.h, as this is Linux specific. This has been
+ * added to jemalloc so the existing memory profiling in Gnash will
+ * continue to work. Most of these fields aren't used by the Gnash
+ * memory profiling, but we leave them here for a semblance of
+ * portability. The only fields Gnash uses are arena, uordblks. and
+ * fordblks.
+ *
+ * This gets more interesting, as jemalloc maintains multiple
+ * arenas, one for each CPU in a multiprocessor system. We cheat
+ * by just accumulating the stats for all arenas, since our primary
+ * purpose is to track memory leaks.
+ */
+struct mallinfo {
+  int arena;    /* non-mmapped space allocated from system */
+  int ordblks;  /* number of free chunks UNUSED */
+  int smblks;   /* number of fastbin blocks UNUSED */
+  int hblks;    /* number of mmapped regions UNUSED */
+  int hblkhd;   /* space in mmapped regions UNUSED */
+  int usmblks;  /* maximum total allocated space UNUSED */
+  int fsmblks;  /* space available in freed fastbin blocks UNUSED */
+  int uordblks; /* total allocated space */
+  int fordblks; /* total free space */
+  int keepcost; /* top-most, releasable space UNUSED */
+};
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+       /*
+        * Number of allocation requests that corresponded to the size of this
+        * bin.
+        */
+       uint64_t        nrequests;
+
+       /* Total number of runs created for this bin's size class. */
+       uint64_t        nruns;
+
+       /*
+        * Total number of runs reused by extracting them from the runs tree for
+        * this bin's size class.
+        */
+       uint64_t        reruns;
+
+       /* High-water mark for this bin. */
+       unsigned long   highruns;
+
+       /* Current number of runs in this bin. */
+       unsigned long   curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+       /* Number of bytes currently mapped. */
+       size_t          mapped;
+
+       /*
+        * Total number of purge sweeps, total number of madvise calls made,
+        * and total pages purged in order to keep dirty unused memory under
+        * control.
+        */
+       uint64_t        npurge;
+       uint64_t        nmadvise;
+       uint64_t        purged;
+#ifdef MALLOC_DECOMMIT
+       /*
+        * Total number of decommit/commit operations, and total number of
+        * pages decommitted.
+        */
+       uint64_t        ndecommit;
+       uint64_t        ncommit;
+       uint64_t        decommitted;
+#endif
+
+       /* Per-size-category statistics. */
+       size_t          allocated_small;
+       uint64_t        nmalloc_small;
+       uint64_t        ndalloc_small;
+
+       size_t          allocated_large;
+       uint64_t        nmalloc_large;
+       uint64_t        ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+       /* Number of times this arena reassigned a thread due to contention. */
+       uint64_t        nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+       /* Number of chunks that were allocated. */
+       uint64_t        nchunks;
+
+       /* High-water mark for number of chunks allocated. */
+       unsigned long   highchunks;
+
+       /*
+        * Current number of chunks allocated.  This value isn't maintained for
+        * any other purpose, so keep track of it in order to be able to set
+        * highchunks.
+        */
+       unsigned long   curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+       /* Linkage for the size/address-ordered tree. */
+       RB_ENTRY(extent_node_s) link_szad;
+
+       /* Linkage for the address-ordered tree. */
+       RB_ENTRY(extent_node_s) link_ad;
+
+       /* Pointer to the extent that this tree node is responsible for. */
+       void    *addr;
+
+       /* Total region size. */
+       size_t  size;
+};
+typedef struct extent_tree_szad_s extent_tree_szad_t;
+RB_HEAD(extent_tree_szad_s, extent_node_s);
+typedef struct extent_tree_ad_s extent_tree_ad_t;
+RB_HEAD(extent_tree_ad_s, extent_node_s);
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/*
+ * Each map element contains several flags, plus page position for runs that
+ * service small allocations.
+ */
+typedef uint8_t arena_chunk_map_t;
+#define        CHUNK_MAP_UNTOUCHED     0x80U
+#define        CHUNK_MAP_DIRTY         0x40U
+#define        CHUNK_MAP_LARGE         0x20U
+#ifdef MALLOC_DECOMMIT
+#define        CHUNK_MAP_DECOMMITTED   0x10U
+#define        CHUNK_MAP_POS_MASK      0x0fU
+#else
+#define        CHUNK_MAP_POS_MASK      0x1fU
+#endif
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+       /* Arena that owns the chunk. */
+       arena_t         *arena;
+
+       /* Linkage for the arena's chunk tree. */
+       RB_ENTRY(arena_chunk_s) link;
+
+       /*
+        * Number of pages in use.  This is maintained in order to make
+        * detection of empty chunks fast.
+        */
+       size_t          pages_used;
+
+       /* Number of dirty pages. */
+       size_t          ndirty;
+
+       /*
+        * Tree of extent nodes that are embedded in the arena chunk header
+        * page(s).  These nodes are used by arena_chunk_node_alloc().
+        */
+       extent_tree_ad_t nodes;
+       extent_node_t   *nodes_past;
+
+       /*
+        * Map of pages within chunk that keeps track of free/large/small.  For
+        * free runs, only the map entries for the first and last pages are
+        * kept up to date, so that free runs can be quickly coalesced.
+        */
+       arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef struct arena_chunk_tree_s arena_chunk_tree_t;
+RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+       /* Linkage for run trees. */
+       RB_ENTRY(arena_run_s) link;
+
+#ifdef MALLOC_DEBUG
+       uint32_t        magic;
+#  define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+       /* Bin this run is associated with. */
+       arena_bin_t     *bin;
+
+       /* Index of first element that might have a free region. */
+       unsigned        regs_minelm;
+
+       /* Number of free regions in run. */
+       unsigned        nfree;
+
+       /* Bitmask of in-use regions (0: in use, 1: free). */
+       unsigned        regs_mask[1]; /* Dynamically sized. */
+};
+typedef struct arena_run_tree_s arena_run_tree_t;
+RB_HEAD(arena_run_tree_s, arena_run_s);
+
+struct arena_bin_s {
+       /*
+        * Current run being used to service allocations of this bin's size
+        * class.
+        */
+       arena_run_t     *runcur;
+
+       /*
+        * Tree of non-full runs.  This tree is used when looking for an
+        * existing run when runcur is no longer usable.  We choose the
+        * non-full run that is lowest in memory; this policy tends to keep
+        * objects packed well, and it can also help reduce the number of
+        * almost-empty chunks.
+        */
+       arena_run_tree_t runs;
+
+       /* Size of regions in a run for this bin's size class. */
+       size_t          reg_size;
+
+       /* Total size of a run for this bin's size class. */
+       size_t          run_size;
+
+       /* Total number of regions in a run for this bin's size class. */
+       uint32_t        nregs;
+
+       /* Number of elements in a run's regs_mask for this bin's size class. */
+       uint32_t        regs_mask_nelms;
+
+       /* Offset of first region in a run for this bin's size class. */
+       uint32_t        reg0_offset;
+
+#ifdef MALLOC_STATS
+       /* Bin statistics. */
+       malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+       uint32_t                magic;
+#  define ARENA_MAGIC 0x947d3d24
+#endif
+
+       /* All operations on this arena require that lock be locked. */
+       malloc_spinlock_t       lock;
+
+#ifdef MALLOC_STATS
+       arena_stats_t           stats;
+#endif
+
+       /*
+        * Tree of chunks this arena manages.
+        */
+       arena_chunk_tree_t      chunks;
+
+       /*
+        * In order to avoid rapid chunk allocation/deallocation when an arena
+        * oscillates right on the cusp of needing a new chunk, cache the most
+        * recently freed chunk.  The spare is left in the arena's chunk tree
+        * until it is deleted.
+        *
+        * There is one spare chunk per arena, rather than one spare total, in
+        * order to avoid interactions between multiple threads that could make
+        * a single spare inadequate.
+        */
+       arena_chunk_t           *spare;
+
+       /*
+        * Current count of pages within unused runs that are potentially
+        * dirty, and for which madvise(... MADV_FREE) has not been called.  By
+        * tracking this, we can institute a limit on how much dirty unused
+        * memory is mapped for each arena.
+        */
+       size_t                  ndirty;
+
+       /*
+        * Trees of this arena's available runs.  Two trees are maintained
+        * using one set of nodes, since one is needed for first-best-fit run
+        * allocation, and the other is needed for coalescing.
+        */
+       extent_tree_szad_t      runs_avail_szad;
+       extent_tree_ad_t        runs_avail_ad;
+
+       /* Tree of this arena's allocated (in-use) runs. */
+       extent_tree_ad_t        runs_alloced_ad;
+
+#ifdef MALLOC_BALANCE
+       /*
+        * The arena load balancing machinery needs to keep track of how much
+        * lock contention there is.  This value is exponentially averaged.
+        */
+       uint32_t                contention;
+#endif
+
+#ifdef MALLOC_LAZY_FREE
+       /*
+        * Deallocation of small objects can be lazy, in which case free_cache
+        * stores pointers to those objects that have not yet been deallocated.
+        * In order to avoid lock contention, slots are chosen randomly.  Empty
+        * slots contain NULL.
+        */
+       void                    **free_cache;
+#endif
+
+       /*
+        * bins is used to store rings of free regions of the following sizes,
+        * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+        *
+        *   bins[i] | size |
+        *   --------+------+
+        *        0  |    2 |
+        *        1  |    4 |
+        *        2  |    8 |
+        *   --------+------+
+        *        3  |   16 |
+        *        4  |   32 |
+        *        5  |   48 |
+        *        6  |   64 |
+        *           :      :
+        *           :      :
+        *       33  |  496 |
+        *       34  |  512 |
+        *   --------+------+
+        *       35  | 1024 |
+        *       36  | 2048 |
+        *   --------+------+
+        */
+       arena_bin_t             bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned                ncpus;
+
+/* VM page size. */
+static size_t          pagesize;
+static size_t          pagesize_mask;
+static size_t          pagesize_2pow;
+
+/* Various bin-related settings. */
+static size_t          bin_maxclass; /* Max size class for bins. */
+static unsigned                ntbins; /* Number of (2^n)-spaced tiny bins. */
+static unsigned                nqbins; /* Number of quantum-spaced bins. */
+static unsigned                nsbins; /* Number of (2^n)-spaced sub-page 
bins. */
+static size_t          small_min;
+static size_t          small_max;
+
+/* Various quantum-related settings. */
+static size_t          quantum;
+static size_t          quantum_mask; /* (quantum - 1). */
+
+/* Various chunk-related settings. */
+static size_t          chunksize;
+static size_t          chunksize_mask; /* (chunksize - 1). */
+static size_t          chunk_npages;
+static size_t          arena_chunk_header_npages;
+static size_t          arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t  huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_ad_t        huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls.  This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t  dss_mtx;
+/* Base address of the DSS. */
+static void            *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void            *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void            *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering).  These are used when allocating chunks, in an attempt to re-use
+ * address space.  Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_szad_t dss_chunks_szad;
+static extent_tree_ad_t        dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t                huge_nmalloc;
+static uint64_t                huge_ndalloc;
+static size_t          huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations.  These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void            *base_pages;
+static void            *base_next_addr;
+static void            *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t   *base_nodes;
+static malloc_mutex_t  base_mtx;
+#ifdef MALLOC_STATS
+static size_t          base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests.  Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t         **arenas;
+static unsigned                narenas;
+#ifndef NO_TLS
+#  ifdef MALLOC_BALANCE
+static unsigned                narenas_2pow;
+#  else
+static unsigned                next_arena;
+#  endif
+#endif
+static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+#ifdef HAVE_LOCAL_THREAD_STORAGE
+static __thread arena_t        *arenas_map;
+#endif
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t   stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char     *_malloc_options
+#ifdef WIN32
+= "A10n2F"
+#elif (defined(DARWIN))
+= "AP10n"
+#elif (defined(LINUX))
+= "A10n2F"
+#endif
+;
+
+#ifndef MALLOC_PRODUCTION
+static bool    opt_abort = true;
+#ifdef MALLOC_FILL
+static bool    opt_junk = true;
+#endif
+#else
+static bool    opt_abort = false;
+#ifdef MALLOC_FILL
+static bool    opt_junk = false;
+#endif
+#endif
+#ifdef MALLOC_DSS
+static bool    opt_dss = true;
+static bool    opt_mmap = true;
+#endif
+static size_t  opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_LAZY_FREE
+static int     opt_lazy_free_2pow = LAZY_FREE_2POW_DEFAULT;
+#endif
+#ifdef MALLOC_BALANCE
+static uint64_t        opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+/*
+ * this toggles the printing of statistics when the program exists.
+ */
+static bool    opt_print_stats = true;
+static size_t  opt_quantum_2pow = QUANTUM_2POW_MIN;
+static size_t  opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
+static size_t  opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+#ifdef MALLOC_UTRACE
+static bool    opt_utrace = false;
+#endif
+#ifdef MALLOC_SYSV
+static bool    opt_sysv = false;
+#endif
+#ifdef MALLOC_XMALLOC
+static bool    opt_xmalloc = false;
+#endif
+#ifdef MALLOC_FILL
+static bool    opt_zero = false;
+#endif
+static int     opt_narenas_lshift = 0;
+
+#ifdef MALLOC_UTRACE
+typedef struct {
+       void    *p;
+       size_t  s;
+       void    *r;
+} malloc_utrace_t;
+
+#define        UTRACE(a, b, c)                                                 
\
+       if (opt_utrace) {                                               \
+               malloc_utrace_t ut;                                     \
+               ut.p = (a);                                             \
+               ut.s = (b);                                             \
+               ut.r = (c);                                             \
+               utrace(&ut, sizeof(ut));                                \
+       }
+#else
+#define        UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static bool    malloc_mutex_init(malloc_mutex_t *mutex);
+static bool    malloc_spin_init(malloc_spinlock_t *lock);
+static void    wrtmessage(const char *p1, const char *p2, const char *p3,
+               const char *p4);
+#ifdef MALLOC_STATS
+#ifdef DARWIN
+/* Avoid namespace collision with OS X's malloc APIs. */
+#define malloc_printf xmalloc_printf
+#endif
+static void    malloc_printf(const char *format, ...);
+#endif
+static char    *umax2s(uintmax_t x, char *s);
+#ifdef MALLOC_DSS
+static bool    base_pages_alloc_dss(size_t minsize);
+#endif
+static bool    base_pages_alloc_mmap(size_t minsize);
+static bool    base_pages_alloc(size_t minsize);
+static void    *base_alloc(size_t size);
+static void    *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void    base_node_dealloc(extent_node_t *node);
+#ifdef MALLOC_STATS
+static void    stats_print(arena_t *arena);
+#endif
+static void    *pages_map(void *addr, size_t size);
+static void    pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void    *chunk_alloc_dss(size_t size);
+static void    *chunk_recycle_dss(size_t size, bool zero);
+#endif
+static void    *chunk_alloc_mmap(size_t size);
+static void    *chunk_alloc(size_t size, bool zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool    chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void    chunk_dealloc_mmap(void *chunk, size_t size);
+static void    chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static extent_node_t *arena_chunk_node_alloc(arena_chunk_t *chunk);
+static void    arena_chunk_node_dealloc(arena_chunk_t *chunk,
+    extent_node_t *node);
+static void    arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+    bool small, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void    arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool small,
+    bool zero);
+static void    arena_purge(arena_t *arena);
+static void    arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void    arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+    extent_node_t *nodeB, arena_run_t *run, size_t oldsize, size_t newsize);
+static void    arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+    extent_node_t *nodeA, arena_run_t *run, size_t oldsize, size_t newsize,
+    bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t 
*bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void    arena_lock_balance_hard(arena_t *arena);
+#endif
+static void    *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void    *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+    size_t alloc_size);
+static size_t  arena_salloc(const void *ptr);
+#ifdef MALLOC_LAZY_FREE
+static void    arena_dalloc_lazy_hard(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t pageind, arena_chunk_map_t *mapelm);
+#endif
+static void    arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr);
+static void    arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+    void *ptr, size_t size, size_t oldsize);
+static bool    arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void    *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool    arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+static void    *huge_malloc(size_t size, bool zero);
+static void    *huge_palloc(size_t alignment, size_t size);
+static void    *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void    huge_dalloc(void *ptr);
+static void    malloc_print_stats(void);
+#ifndef WIN32
+static
+#endif
+bool           malloc_init_hard(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+/*
+ * Begin mutex.  We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+#if defined(WIN32)
+       if (g_isthreaded)
+               if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
+                       return (true);
+#elif defined(DARWIN)
+       mutex->lock = OS_SPINLOCK_INIT;
+#elif defined(LINUX)
+       pthread_mutexattr_t attr;
+       if (pthread_mutexattr_init(&attr) != 0)
+               return (true);
+       pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+       if (pthread_mutex_init(mutex, &attr) != 0) {
+               pthread_mutexattr_destroy(&attr);
+               return (true);
+       }
+       pthread_mutexattr_destroy(&attr);
+#elif defined(USE_JEMALLOC)
+       if (pthread_mutex_init(mutex, NULL) != 0)
+               return (true);
+#else
+       static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+       mutex->lock = lock;
+#endif
+       return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+#if defined(WIN32)
+       EnterCriticalSection(mutex);
+#elif defined(DARWIN)
+       OSSpinLockLock(&mutex->lock);
+#elif defined(USE_JEMALLOC)
+       pthread_mutex_lock(mutex);
+#else
+       if (g_isthreaded)
+               _SPINLOCK(&mutex->lock);
+#endif
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+#if defined(WIN32)
+       LeaveCriticalSection(mutex);
+#elif defined(DARWIN)
+       OSSpinLockUnlock(&mutex->lock);
+#elif defined(USE_JEMALLOC)
+       pthread_mutex_unlock(mutex);
+#else
+       if (g_isthreaded)
+               _SPINUNLOCK(&mutex->lock);
+#endif
+}
+
+static bool
+malloc_spin_init(malloc_spinlock_t *lock)
+{
+#if defined(WIN32)
+       if (g_isthreaded)
+               if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
+                       return (true);
+#elif defined(DARWIN)
+       lock->lock = OS_SPINLOCK_INIT;
+#elif defined(LINUX)
+       pthread_mutexattr_t attr;
+       if (pthread_mutexattr_init(&attr) != 0)
+               return (true);
+       pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+       if (pthread_mutex_init(lock, &attr) != 0) {
+               pthread_mutexattr_destroy(&attr);
+               return (true);
+       }
+       pthread_mutexattr_destroy(&attr);
+#elif defined(USE_JEMALLOC)
+       if (pthread_mutex_init(lock, NULL) != 0)
+               return (true);
+#else
+       lock->lock = _SPINLOCK_INITIALIZER;
+#endif
+       return (false);
+}
+
+static inline void
+malloc_spin_lock(malloc_spinlock_t *lock)
+{
+
+#if defined(WIN32)
+       EnterCriticalSection(lock);
+#elif defined(DARWIN)
+       OSSpinLockLock(&lock->lock);
+#elif defined(USE_JEMALLOC)
+       pthread_mutex_lock(lock);
+#else
+       if (g_isthreaded)
+               _SPINLOCK(&lock->lock);
+#endif
+}
+
+static inline void
+malloc_spin_unlock(malloc_spinlock_t *lock)
+{
+#if defined(WIN32)
+       LeaveCriticalSection(lock);
+#elif defined(DARWIN)
+       OSSpinLockUnlock(&lock->lock);
+#elif defined(USE_JEMALLOC)
+       pthread_mutex_unlock(lock);
+#else
+       if (g_isthreaded)
+               _SPINUNLOCK(&lock->lock);
+#endif
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+#ifndef DARWIN
+#  define      malloc_spin_init        malloc_mutex_init
+#  define      malloc_spin_lock        malloc_mutex_lock
+#  define      malloc_spin_unlock      malloc_mutex_unlock
+#endif
+
+/*
+ * End spin lock.
+ */
+
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define        CHUNK_ADDR2BASE(a)                                              
\
+       ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define        CHUNK_ADDR2OFFSET(a)                                            
\
+       ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define        CHUNK_CEILING(s)                                                
\
+       (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define        CACHELINE_CEILING(s)                                            
\
+       (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
+
+/* Return the smallest quantum multiple that is >= a. */
+#define        QUANTUM_CEILING(a)                                              
\
+       (((a) + quantum_mask) & ~quantum_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define        PAGE_CEILING(s)                                                 
\
+       (((s) + pagesize_mask) & ~pagesize_mask)
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+       x--;
+       x |= x >> 1;
+       x |= x >> 2;
+       x |= x >> 4;
+       x |= x >> 8;
+       x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+       x |= x >> 32;
+#endif
+       x++;
+       return (x);
+}
+
+#if (defined(MALLOC_LAZY_FREE) || defined(MALLOC_BALANCE))
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ *   prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ *   a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ *   c == Odd number (relatively prime to 2^n).
+ *   m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position.  For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc.  For this reason, we prefer to use the upper
+ * bits.
+ */
+#  define PRN_DEFINE(suffix, var, a, c)                                        
\
+static inline void                                                     \
+sprn_##suffix(uint32_t seed)                                           \
+{                                                                      \
+       var = seed;                                                     \
+}                                                                      \
+                                                                       \
+static inline uint32_t                                                 \
+prn_##suffix(uint32_t lg_range)                                                
\
+{                                                                      \
+       uint32_t ret, x;                                                \
+                                                                       \
+       assert(lg_range > 0);                                           \
+       assert(lg_range <= 32);                                         \
+                                                                       \
+       x = (var * (a)) + (c);                                          \
+       var = x;                                                        \
+       ret = x >> (32 - lg_range);                                     \
+                                                                       \
+       return (ret);                                                   \
+}
+#  define SPRN(suffix, seed)   sprn_##suffix(seed)
+#  define PRN(suffix, lg_range)        prn_##suffix(lg_range)
+#endif
+
+/*
+ * Define PRNGs, one for each purpose, in order to avoid auto-correlation
+ * problems.
+ */
+
+#ifdef MALLOC_LAZY_FREE
+/* Define the per-thread PRNG used for lazy deallocation. */
+static __thread uint32_t lazy_free_x;
+PRN_DEFINE(lazy_free, lazy_free_x, 12345, 12347)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+#ifdef MALLOC_UTRACE
+static int
+utrace(const void *addr, size_t len)
+{
+       malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+
+       assert(len == sizeof(malloc_utrace_t));
+
+       if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
+               malloc_printf("%d x USER malloc_init()\n", getpid());
+       else if (ut->p == NULL && ut->r != NULL) {
+               malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
+                   ut->s);
+       } else if (ut->p != NULL && ut->r != NULL) {
+               malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
+                   ut->r, ut->p, ut->s);
+       } else
+               malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
+
+       return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+       return ("<jemalloc>");
+}
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+#ifndef WIN32
+#define        _write  write
+#endif
+       _write(STDERR_FILENO, p1, (unsigned int) strlen(p1));
+       _write(STDERR_FILENO, p2, (unsigned int) strlen(p2));
+       _write(STDERR_FILENO, p3, (unsigned int) strlen(p3));
+       _write(STDERR_FILENO, p4, (unsigned int) strlen(p4));
+}
+
+#define _malloc_message malloc_message
+
+void   (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+           const char *p4) = wrtmessage;
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+       char buf[4096];
+       va_list ap;
+
+       va_start(ap, format);
+       vsnprintf(buf, sizeof(buf), format, ap);
+       va_end(ap);
+       _malloc_message(buf, "", "", "");
+}
+#endif
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries.  umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited 
to
+ * MALLOC_STATS code.
+ */
+#define        UMAX2S_BUFSIZE  21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+       unsigned i;
+
+       /* Make sure UMAX2S_BUFSIZE is large enough. */
+       assert(sizeof(uintmax_t) <= 8);
+
+       i = UMAX2S_BUFSIZE - 1;
+       s[i] = '\0';
+       do {
+               i--;
+               s[i] = "0123456789"[x % 10];
+               x /= 10;
+       } while (x > 0);
+
+       return (&s[i]);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+       /*
+        * Do special DSS allocation here, since base allocations don't need to
+        * be chunk-aligned.
+        */
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+               size_t csize = CHUNK_CEILING(minsize);
+
+               do {
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.  Don't worry about
+                        * dss_max not being chunk-aligned though.
+                        */
+                       incr = (intptr_t)chunksize
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       assert(incr >= 0);
+                       if ((size_t)incr < minsize)
+                               incr += csize;
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               base_pages = dss_prev;
+                               base_next_addr = base_pages;
+                               base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+                               base_mapped += incr;
+#endif
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (false);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+       size_t csize;
+
+       assert(minsize != 0);
+       csize = PAGE_CEILING(minsize);
+       base_pages = pages_map(NULL, csize);
+       if (base_pages == NULL)
+               return (true);
+       base_next_addr = base_pages;
+       base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+       base_mapped += csize;
+#endif
+
+       return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (base_pages_alloc_dss(minsize) == false)
+                       return (false);
+       }
+
+       if (opt_mmap && minsize != 0)
+#endif
+       {
+               if (base_pages_alloc_mmap(minsize) == false)
+                       return (false);
+       }
+
+       return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+       void *ret;
+       size_t csize;
+
+       /* Round size up to nearest multiple of the cacheline size. */
+       csize = CACHELINE_CEILING(size);
+
+       malloc_mutex_lock(&base_mtx);
+       /* Make sure there's enough space for the allocation. */
+       if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+               if (base_pages_alloc(csize))
+                       return (NULL);
+       }
+       /* Allocate. */
+       ret = base_next_addr;
+       base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+       malloc_mutex_unlock(&base_mtx);
+
+       return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+       void *ret;
+
+       ret = base_alloc(number * size);
+       memset(ret, 0, number * size);
+
+       return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+       extent_node_t *ret;
+
+       malloc_mutex_lock(&base_mtx);
+       if (base_nodes != NULL) {
+               ret = base_nodes;
+               base_nodes = *(extent_node_t **)ret;
+               malloc_mutex_unlock(&base_mtx);
+       } else {
+               malloc_mutex_unlock(&base_mtx);
+               ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+       }
+
+       return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+       malloc_mutex_lock(&base_mtx);
+       *(extent_node_t **)node = base_nodes;
+       base_nodes = node;
+       malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+       unsigned i, gap_start;
+
+#ifdef WIN32
+       malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
+           " %I64u madvise%s, %I64u page%s purged\n",
+           arena->ndirty, arena->ndirty == 1 ? "" : "s",
+           arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+           arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+           arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+#  ifdef MALLOC_DECOMMIT
+       malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
+           " %I64u page%s decommitted\n",
+           arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+           arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+           arena->stats.decommitted,
+           (arena->stats.decommitted == 1) ? "" : "s");
+#  endif
+
+       malloc_printf("            allocated      nmalloc      ndalloc\n");
+       malloc_printf("small:   %12Iu %12I64u %12I64u\n",
+           arena->stats.allocated_small, arena->stats.nmalloc_small,
+           arena->stats.ndalloc_small);
+       malloc_printf("large:   %12Iu %12I64u %12I64u\n",
+           arena->stats.allocated_large, arena->stats.nmalloc_large,
+           arena->stats.ndalloc_large);
+       malloc_printf("total:   %12Iu %12I64u %12I64u\n",
+           arena->stats.allocated_small + arena->stats.allocated_large,
+           arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+           arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+       malloc_printf("mapped:  %12Iu\n", arena->stats.mapped);
+#else
+       malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+           " %llu madvise%s, %llu page%s purged\n",
+           arena->ndirty, arena->ndirty == 1 ? "" : "s",
+           arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+           arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+           arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+#  ifdef MALLOC_DECOMMIT
+       malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
+           " %llu page%s decommitted\n",
+           arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+           arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+           arena->stats.decommitted,
+           (arena->stats.decommitted == 1) ? "" : "s");
+#  endif
+
+       malloc_printf("            allocated      nmalloc      ndalloc\n");
+       malloc_printf("small:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small, arena->stats.nmalloc_small,
+           arena->stats.ndalloc_small);
+       malloc_printf("large:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_large, arena->stats.nmalloc_large,
+           arena->stats.ndalloc_large);
+       malloc_printf("total:   %12zu %12llu %12llu\n",
+           arena->stats.allocated_small + arena->stats.allocated_large,
+           arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+           arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+       malloc_printf("mapped:  %12zu\n", arena->stats.mapped);
+#endif
+       malloc_printf("bins:     bin   size regs pgs  requests   newruns"
+           "    reruns maxruns curruns\n");
+       for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
+               if (arena->bins[i].stats.nrequests == 0) {
+                       if (gap_start == UINT_MAX)
+                               gap_start = i;
+               } else {
+                       if (gap_start != UINT_MAX) {
+                               if (i > gap_start + 1) {
+                                       /* Gap of more than one size class. */
+                                       malloc_printf("[%u..%u]\n",
+                                           gap_start, i - 1);
+                               } else {
+                                       /* Gap of one size class. */
+                                       malloc_printf("[%u]\n", gap_start);
+                               }
+                               gap_start = UINT_MAX;
+                       }
+                       malloc_printf(
+#if defined(WIN32)
+                           "%13u %1s %4u %4u %3u %9I64u %9I64u"
+                           " %9I64u %7u %7u\n",
+#else
+                           "%13u %1s %4u %4u %3u %9llu %9llu"
+                           " %9llu %7lu %7lu\n",
+#endif
+                           i,
+                           i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
+                           arena->bins[i].reg_size,
+                           arena->bins[i].nregs,
+                           arena->bins[i].run_size >> pagesize_2pow,
+                           arena->bins[i].stats.nrequests,
+                           arena->bins[i].stats.nruns,
+                           arena->bins[i].stats.reruns,
+                           arena->bins[i].stats.highruns,
+                           arena->bins[i].stats.curruns);
+               }
+       }
+       if (gap_start != UINT_MAX) {
+               if (i > gap_start + 1) {
+                       /* Gap of more than one size class. */
+                       malloc_printf("[%u..%u]\n", gap_start, i - 1);
+               } else {
+                       /* Gap of one size class. */
+                       malloc_printf("[%u]\n", gap_start);
+               }
+       }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+       int ret;
+       size_t a_size = a->size;
+       size_t b_size = b->size;
+
+       ret = (a_size > b_size) - (a_size < b_size);
+       if (ret == 0) {
+               uintptr_t a_addr = (uintptr_t)a->addr;
+               uintptr_t b_addr = (uintptr_t)b->addr;
+
+               ret = (a_addr > b_addr) - (a_addr < b_addr);
+       }
+
+       return (ret);
+}
+
+/* Generate red-black tree code for size/address-ordered extents. */
+RB_GENERATE_STATIC(extent_tree_szad_s, extent_node_s, link_szad,
+    extent_szad_comp)
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+       uintptr_t a_addr = (uintptr_t)a->addr;
+       uintptr_t b_addr = (uintptr_t)b->addr;
+
+       return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Generate red-black tree code for address-ordered extents. */
+RB_GENERATE_STATIC(extent_tree_ad_s, extent_node_s, link_ad, extent_ad_comp)
+
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+#ifdef WIN32
+static void *
+pages_map(void *addr, size_t size)
+{
+       void *ret;
+
+       ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
+           PAGE_READWRITE);
+
+       return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+       if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
+               _malloc_message(_getprogname(),
+                   ": (malloc) Error in VirtualFree()\n", "", "");
+               if (opt_abort)
+                       abort();
+       }
+}
+#elif (defined(DARWIN))
+static void *
+pages_map(void *addr, size_t size)
+{
+       void *ret;
+       kern_return_t err;
+       int flags;
+
+       if (addr != NULL) {
+               ret = addr;
+               flags = 0;
+       } else
+               flags = VM_FLAGS_ANYWHERE;
+
+       err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret,
+           (vm_size_t)size, flags);
+       if (err != KERN_SUCCESS)
+               ret = NULL;
+
+       assert(ret == NULL || (addr == NULL && ret != addr)
+           || (addr != NULL && ret == addr));
+       return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+       kern_return_t err;
+
+       err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr,
+           (vm_size_t)size);
+       if (err != KERN_SUCCESS) {
+               malloc_message(_getprogname(),
+                   ": (malloc) Error in vm_deallocate(): ",
+                   mach_error_string(err), "\n");
+               if (opt_abort)
+                       abort();
+       }
+}
+
+#define        VM_COPY_MIN (pagesize << 5)
+static inline void
+pages_copy(void *dest, const void *src, size_t n)
+{
+
+       assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
+       assert(n >= VM_COPY_MIN);
+       assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
+
+       vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
+           (vm_address_t)dest);
+}
+#else /* DARWIN */
+static void *
+pages_map(void *addr, size_t size)
+{
+       void *ret;
+
+       /*
+        * We don't use MAP_FIXED here, because it can cause the *replacement*
+        * of existing mappings, and we only want to create new mappings.
+        */
+       ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+           -1, 0);
+       assert(ret != NULL);
+
+       if (ret == MAP_FAILED)
+               ret = NULL;
+       else if (addr != NULL && ret != addr) {
+               /*
+                * We succeeded in mapping memory, but not in the right place.
+                */
+               if (munmap(ret, size) == -1) {
+                       char buf[STRERROR_BUF];
+
+                       strerror_r(errno, buf, sizeof(buf));
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in munmap(): ", buf, "\n");
+                       if (opt_abort)
+                               abort();
+               }
+               ret = NULL;
+       }
+
+       assert(ret == NULL || (addr == NULL && ret != addr)
+           || (addr != NULL && ret == addr));
+       return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+       if (munmap(addr, size) == -1) {
+               char buf[STRERROR_BUF];
+
+               strerror_r(errno, buf, sizeof(buf));
+               _malloc_message(_getprogname(),
+                   ": (malloc) Error in munmap(): ", buf, "\n");
+               if (opt_abort)
+                       abort();
+       }
+}
+#endif
+
+#ifdef MALLOC_DECOMMIT
+static inline void
+pages_decommit(void *addr, size_t size)
+{
+
+#ifdef WIN32
+       VirtualFree(addr, size, MEM_DECOMMIT);
+#else
+       if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
+           0) == MAP_FAILED)
+               abort();
+#endif
+}
+
+static inline void
+pages_commit(void *addr, size_t size)
+{
+
+#  ifdef WIN32
+       VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
+#  else
+       if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
+           MAP_ANON, -1, 0) == MAP_FAILED)
+               abort();
+#  endif
+}
+#endif
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size)
+{
+
+       malloc_mutex_lock(&dss_mtx);
+       if (dss_prev != (void *)-1) {
+               intptr_t incr;
+
+               /*
+                * The loop is necessary to recover from races with other
+                * threads that are using the DSS for something other than
+                * malloc.
+                */
+               do {
+                       void *ret;
+
+                       /* Get the current end of the DSS. */
+                       dss_max = sbrk(0);
+
+                       /*
+                        * Calculate how much padding is necessary to
+                        * chunk-align the end of the DSS.
+                        */
+                       incr = (intptr_t)size
+                           - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+                       if (incr == (intptr_t)size)
+                               ret = dss_max;
+                       else {
+                               ret = (void *)((intptr_t)dss_max + incr);
+                               incr += size;
+                       }
+
+                       dss_prev = sbrk(incr);
+                       if (dss_prev == dss_max) {
+                               /* Success. */
+                               dss_max = (void *)((intptr_t)dss_prev + incr);
+                               malloc_mutex_unlock(&dss_mtx);
+                               return (ret);
+                       }
+               } while (dss_prev != (void *)-1);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool zero)
+{
+       extent_node_t *node, key;
+
+       key.addr = NULL;
+       key.size = size;
+       malloc_mutex_lock(&dss_mtx);
+       node = RB_NFIND(extent_tree_szad_s, &dss_chunks_szad, &key);
+       if (node != NULL) {
+               void *ret = node->addr;
+
+               /* Remove node from the tree. */
+               RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node);
+               if (node->size == size) {
+                       RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad, node);
+                       base_node_dealloc(node);
+               } else {
+                       /*
+                        * Insert the remainder of node's address range as a
+                        * smaller chunk.  Its position within dss_chunks_ad
+                        * does not change.
+                        */
+                       assert(node->size > size);
+                       node->addr = (void *)((uintptr_t)node->addr + size);
+                       node->size -= size;
+                       RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node);
+               }
+               malloc_mutex_unlock(&dss_mtx);
+
+               if (zero)
+                       memset(ret, 0, size);
+               return (ret);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (NULL);
+}
+#endif
+
+#ifdef WIN32
+static inline void *
+chunk_alloc_mmap(size_t size)
+{
+       void *ret;
+       size_t offset;
+
+       /*
+        * Windows requires that there be a 1:1 mapping between VM
+        * allocation/deallocation operations.  Therefore, take care here to
+        * acquire the final result via one mapping operation.  This means
+        * unmapping any preliminary result that is not correctly aligned.
+        */
+
+       ret = pages_map(NULL, size);
+       if (ret == NULL)
+               return (NULL);
+
+       offset = CHUNK_ADDR2OFFSET(ret);
+       if (offset != 0) {
+               /* Deallocate, then try to allocate at (ret + size - offset). */
+               pages_unmap(ret, size);
+               ret = pages_map((void *)((uintptr_t)ret + size - offset), size);
+               while (ret == NULL) {
+                       /*
+                        * Over-allocate in order to map a memory region that
+                        * is definitely large enough.
+                        */
+                       ret = pages_map(NULL, size + chunksize);
+                       if (ret == NULL)
+                               return (NULL);
+                       /*
+                        * Deallocate, then allocate the correct size, within
+                        * the over-sized mapping.
+                        */
+                       offset = CHUNK_ADDR2OFFSET(ret);
+                       pages_unmap(ret, size + chunksize);
+                       if (offset == 0)
+                               ret = pages_map(ret, size);
+                       else {
+                               ret = pages_map((void *)((uintptr_t)ret +
+                                   chunksize - offset), size);
+                       }
+                       /*
+                        * Failure here indicates a race with another thread, so
+                        * try again.
+                        */
+               }
+       }
+
+       return (ret);
+}
+#else
+static inline void *
+chunk_alloc_mmap(size_t size)
+{
+       void *ret;
+       size_t offset;
+
+       /*
+        * Ideally, there would be a way to specify alignment to mmap() (like
+        * NetBSD has), but in the absence of such a feature, we have to work
+        * hard to efficiently create aligned mappings.  The reliable, but
+        * expensive method is to create a mapping that is over-sized, then
+        * trim the excess.  However, that always results in at least one call
+        * to pages_unmap().
+        *
+        * A more optimistic approach is to try mapping precisely the right
+        * amount, then try to append another mapping if alignment is off.  In
+        * practice, this works out well as long as the application is not
+        * interleaving mappings via direct mmap() calls.  If we do run into a
+        * situation where there is an interleaved mapping and we are unable to
+        * extend an unaligned mapping, our best option is to momentarily
+        * revert to the reliable-but-expensive method.  This will tend to
+        * leave a gap in the memory map that is too small to cause later
+        * problems for the optimistic method.
+        */
+
+       ret = pages_map(NULL, size);
+       if (ret == NULL)
+               return (NULL);
+
+       offset = CHUNK_ADDR2OFFSET(ret);
+       if (offset != 0) {
+               /* Try to extend chunk boundary. */
+               if (pages_map((void *)((uintptr_t)ret + size),
+                   chunksize - offset) == NULL) {
+                       /*
+                        * Extension failed.  Clean up, then revert to the
+                        * reliable-but-expensive method.
+                        */
+                       pages_unmap(ret, size);
+
+                       /* Beware size_t wrap-around. */
+                       if (size + chunksize <= size)
+                               return NULL;
+
+                       ret = pages_map(NULL, size + chunksize);
+                       if (ret == NULL)
+                               return (NULL);
+
+                       /* Clean up unneeded leading/trailing space. */
+                       offset = CHUNK_ADDR2OFFSET(ret);
+                       if (offset != 0) {
+                               /* Leading space. */
+                               pages_unmap(ret, chunksize - offset);
+
+                               ret = (void *)((uintptr_t)ret +
+                                   (chunksize - offset));
+
+                               /* Trailing space. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   offset);
+                       } else {
+                               /* Trailing space only. */
+                               pages_unmap((void *)((uintptr_t)ret + size),
+                                   chunksize);
+                       }
+               } else {
+                       /* Clean up unneeded leading space. */
+                       pages_unmap(ret, chunksize - offset);
+                       ret = (void *)((uintptr_t)ret + (chunksize - offset));
+               }
+       }
+
+       return (ret);
+}
+#endif
+
+static void *
+chunk_alloc(size_t size, bool zero)
+{
+       void *ret;
+
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               ret = chunk_recycle_dss(size, zero);
+               if (ret != NULL) {
+                       goto RETURN;
+               }
+
+               ret = chunk_alloc_dss(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       if (opt_mmap)
+#endif
+       {
+               ret = chunk_alloc_mmap(size);
+               if (ret != NULL)
+                       goto RETURN;
+       }
+
+       /* All strategies for allocation failed. */
+       ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+       if (ret != NULL) {
+               stats_chunks.nchunks += (size / chunksize);
+               stats_chunks.curchunks += (size / chunksize);
+       }
+       if (stats_chunks.curchunks > stats_chunks.highchunks)
+               stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+       assert(CHUNK_ADDR2BASE(ret) == ret);
+       return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+       extent_node_t *node, *prev, key;
+
+       key.addr = (void *)((uintptr_t)chunk + size);
+       node = RB_NFIND(extent_tree_ad_s, &dss_chunks_ad, &key);
+       /* Try to coalesce forward. */
+       if (node != NULL && node->addr == key.addr) {
+               /*
+                * Coalesce chunk with the following address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert from/into dss_chunks_szad.
+                */
+               RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node);
+               node->addr = chunk;
+               node->size += size;
+               RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node);
+       } else {
+               /*
+                * Coalescing forward failed, so insert a new node.  Drop
+                * dss_mtx during node allocation, since it is possible that a
+                * new base chunk will be allocated.
+                */
+               malloc_mutex_unlock(&dss_mtx);
+               node = base_node_alloc();
+               malloc_mutex_lock(&dss_mtx);
+               if (node == NULL)
+                       return (NULL);
+               node->addr = chunk;
+               node->size = size;
+               RB_INSERT(extent_tree_ad_s, &dss_chunks_ad, node);
+               RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node);
+       }
+
+       /* Try to coalesce backward. */
+       prev = RB_PREV(extent_tree_ad_s, &dss_chunks_ad, node);
+       if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+           chunk) {
+               /*
+                * Coalesce chunk with the previous address range.  This does
+                * not change the position within dss_chunks_ad, so only
+                * remove/insert node from/into dss_chunks_szad.
+                */
+               RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, prev);
+               RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad, prev);
+
+               RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad, node);
+               node->addr = prev->addr;
+               node->size += prev->size;
+               RB_INSERT(extent_tree_szad_s, &dss_chunks_szad, node);
+
+               base_node_dealloc(prev);
+       }
+
+       return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+
+       malloc_mutex_lock(&dss_mtx);
+       if ((uintptr_t)chunk >= (uintptr_t)dss_base
+           && (uintptr_t)chunk < (uintptr_t)dss_max) {
+               extent_node_t *node;
+
+               /* Try to coalesce with other unused chunks. */
+               node = chunk_dealloc_dss_record(chunk, size);
+               if (node != NULL) {
+                       chunk = node->addr;
+                       size = node->size;
+               }
+
+               /* Get the current end of the DSS. */
+               dss_max = sbrk(0);
+
+               /*
+                * Try to shrink the DSS if this chunk is at the end of the
+                * DSS.  The sbrk() call here is subject to a race condition
+                * with threads that use brk(2) or sbrk(2) directly, but the
+                * alternative would be to leak memory for the sake of poorly
+                * designed multi-threaded programs.
+                */
+               if ((void *)((uintptr_t)chunk + size) == dss_max
+                   && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+                       /* Success. */
+                       dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+                       if (node != NULL) {
+                               RB_REMOVE(extent_tree_szad_s, &dss_chunks_szad,
+                                   node);
+                               RB_REMOVE(extent_tree_ad_s, &dss_chunks_ad,
+                                   node);
+                               base_node_dealloc(node);
+                       }
+                       malloc_mutex_unlock(&dss_mtx);
+               } else {
+                       malloc_mutex_unlock(&dss_mtx);
+#ifdef WIN32
+                       VirtualAlloc(chunk, size, MEM_RESET, PAGE_READWRITE);
+#elif (defined(DARWIN))
+                       mmap(chunk, size, PROT_READ | PROT_WRITE, MAP_PRIVATE
+                           | MAP_ANON | MAP_FIXED, -1, 0);
+#else
+                       madvise(chunk, size, MADV_FREE);
+#endif
+               }
+
+               return (false);
+       }
+       malloc_mutex_unlock(&dss_mtx);
+
+       return (true);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+       pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+       assert(chunk != NULL);
+       assert(CHUNK_ADDR2BASE(chunk) == chunk);
+       assert(size != 0);
+       assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+       stats_chunks.curchunks -= (size / chunksize);
+#endif
+
+#ifdef MALLOC_DSS
+       if (opt_dss) {
+               if (chunk_dealloc_dss(chunk, size) == false)
+                       return;
+       }
+
+       if (opt_mmap)
+#endif
+               chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+       arena_t *ret;
+
+       /*
+        * We can only use TLS if this is a PIC library, since for the static
+        * library version, libc's malloc is used by TLS allocation, which
+        * introduces a bootstrapping issue.
+        */
+#ifndef NO_TLS
+       if (g_isthreaded == false) {
+           /* Avoid the overhead of TLS for single-threaded operation. */
+           return (arenas[0]);
+       }
+
+#  ifdef WIN32
+       ret = TlsGetValue(tlsIndex);
+#  else
+       ret = arenas_map;
+#  endif
+
+       if (ret == NULL) {
+               ret = choose_arena_hard();
+               assert(ret != NULL);
+       }
+#else
+       if (g_isthreaded && narenas > 1) {
+               unsigned long ind;
+
+               /*
+                * Hash _pthread_self() to one of the arenas.  There is a prime
+                * number of arenas, so this has a reasonable chance of
+                * working.  Even so, the hashing can be easily thwarted by
+                * inconvenient _pthread_self() values.  Without specific
+                * knowledge of how _pthread_self() calculates values, we can't
+                * easily do much better than this.
+                */
+               ind = (unsigned long) _pthread_self() % narenas;
+
+               /*
+                * Optimistially assume that arenas[ind] has been initialized.
+                * At worst, we find out that some other thread has already
+                * done so, after acquiring the lock in preparation.  Note that
+                * this lazy locking also has the effect of lazily forcing
+                * cache coherency; without the lock acquisition, there's no
+                * guarantee that modification of arenas[ind] by another thread
+                * would be seen on this CPU for an arbitrary amount of time.
+                *
+                * In general, this approach to modifying a synchronized value
+                * isn't a good idea, but in this case we only ever modify the
+                * value once, so things work out well.
+                */
+               ret = arenas[ind];
+               if (ret == NULL) {
+                       /*
+                        * Avoid races with another thread that may have already
+                        * initialized arenas[ind].
+                        */
+                       malloc_spin_lock(&arenas_lock);
+                       if (arenas[ind] == NULL)
+                               ret = arenas_extend((unsigned)ind);
+                       else
+                               ret = arenas[ind];
+                       malloc_spin_unlock(&arenas_lock);
+               }
+       } else
+               ret = arenas[0];
+#endif
+
+       assert(ret != NULL);
+       return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+       arena_t *ret;
+
+       assert(g_isthreaded);
+
+#ifdef MALLOC_LAZY_FREE
+       /*
+        * Seed the PRNG used for lazy deallocation.  Since seeding only occurs
+        * on the first allocation by a thread, it is possible for a thread to
+        * deallocate before seeding.  This is not a critical issue though,
+        * since it is extremely unusual for an application to to use threads
+        * that deallocate but *never* allocate, and because even if seeding
+        * never occurs for multiple threads, they will tend to drift apart
+        * unless some aspect of the application forces deallocation
+        * synchronization.
+        */
+       SPRN(lazy_free, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+#ifdef MALLOC_BALANCE
+       /*
+        * Seed the PRNG used for arena load balancing.  We can get away with
+        * using the same seed here as for the lazy_free PRNG without
+        * introducing autocorrelation because the PRNG parameters are
+        * distinct.
+        */
+       SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+       if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+               unsigned ind;
+
+               ind = PRN(balance, narenas_2pow);
+               if ((ret = arenas[ind]) == NULL) {
+                       malloc_spin_lock(&arenas_lock);
+                       if ((ret = arenas[ind]) == NULL)
+                               ret = arenas_extend(ind);
+                       malloc_spin_unlock(&arenas_lock);
+               }
+#else
+               malloc_spin_lock(&arenas_lock);
+               if ((ret = arenas[next_arena]) == NULL)
+                       ret = arenas_extend(next_arena);
+               next_arena = (next_arena + 1) % narenas;
+               malloc_spin_unlock(&arenas_lock);
+#endif
+       } else
+               ret = arenas[0];
+
+#ifdef WIN32
+       TlsSetValue(tlsIndex, ret);
+#else
+       arenas_map = ret;
+#endif
+
+       return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+       uintptr_t a_chunk = (uintptr_t)a;
+       uintptr_t b_chunk = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Generate red-black tree code for arena chunks. */
+RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_run_t *a, arena_run_t *b)
+{
+       uintptr_t a_run = (uintptr_t)a;
+       uintptr_t b_run = (uintptr_t)b;
+
+       assert(a != NULL);
+       assert(b != NULL);
+
+       return ((a_run > b_run) - (a_run < b_run));
+}
+
+/* Generate red-black tree code for arena runs. */
+RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp)
+
+static extent_node_t *
+arena_chunk_node_alloc(arena_chunk_t *chunk)
+{
+       extent_node_t *ret;
+
+       ret = RB_MIN(extent_tree_ad_s, &chunk->nodes);
+       if (ret != NULL)
+               RB_REMOVE(extent_tree_ad_s, &chunk->nodes, ret);
+       else {
+               ret = chunk->nodes_past;
+               chunk->nodes_past = (extent_node_t *)
+                   ((uintptr_t)chunk->nodes_past + sizeof(extent_node_t));
+               assert((uintptr_t)ret + sizeof(extent_node_t) <=
+                   (uintptr_t)chunk + (arena_chunk_header_npages <<
+                   pagesize_2pow));
+       }
+
+       return (ret);
+}
+
+static void
+arena_chunk_node_dealloc(arena_chunk_t *chunk, extent_node_t *node)
+{
+
+       node->addr = (void *)node;
+       RB_INSERT(extent_tree_ad_s, &chunk->nodes, node);
+}
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+       void *ret;
+       unsigned i, mask, bit, regind;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->regs_minelm < bin->regs_mask_nelms);
+
+       /*
+        * Move the first check outside the loop, so that run->regs_minelm can
+        * be updated unconditionally, without the possibility of updating it
+        * multiple times.
+        */
+       i = run->regs_minelm;
+       mask = run->regs_mask[i];
+       if (mask != 0) {
+               /* Usable allocation found. */
+               bit = ffs((int)mask) - 1;
+
+               regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+               assert(regind < bin->nregs);
+               ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                   + (bin->reg_size * regind));
+
+               /* Clear bit. */
+               mask ^= (1U << bit);
+               run->regs_mask[i] = mask;
+
+               return (ret);
+       }
+
+       for (i++; i < bin->regs_mask_nelms; i++) {
+               mask = run->regs_mask[i];
+               if (mask != 0) {
+                       /* Usable allocation found. */
+                       bit = ffs((int)mask) - 1;
+
+                       regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+                       assert(regind < bin->nregs);
+                       ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+                           + (bin->reg_size * regind));
+
+                       /* Clear bit. */
+                       mask ^= (1U << bit);
+                       run->regs_mask[i] = mask;
+
+                       /*
+                        * Make a note that nothing before this element
+                        * contains a free region.
+                        */
+                       run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+                       return (ret);
+               }
+       }
+       /* Not reached. */
+       assert(0);
+       return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t 
size)
+{
+       /*
+        * To divide by a number D that is not a power of two we multiply
+        * by (2^21 / D) and then right shift by 21 positions.
+        *
+        *   X / D
+        *
+        * becomes
+        *
+        *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
+        */
+#define        SIZE_INV_SHIFT 21
+#define        SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) 
+ 1)
+       static const unsigned size_invs[] = {
+           SIZE_INV(3),
+           SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+           SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+           SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+           SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+           SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+           SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+           SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+#if (QUANTUM_2POW_MIN < 4)
+           ,
+           SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
+           SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
+           SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
+           SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
+           SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
+           SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
+           SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
+           SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
+#endif
+       };
+       unsigned diff, regind, elm, bit;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
+           >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
+
+       /*
+        * Avoid doing division with a variable divisor if possible.  Using
+        * actual division here can reduce allocator throughput by over 20%!
+        */
+       diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+       if ((size & (size - 1)) == 0) {
+               /*
+                * log2_table allows fast division of a power of two in the
+                * [1..128] range.
+                *
+                * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+                */
+               static const unsigned char log2_table[] = {
+                   0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+               };
+
+               if (size <= 128)
+                       regind = (diff >> log2_table[size - 1]);
+               else if (size <= 32768)
+                       regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+               else {
+                       /*
+                        * The run size is too large for us to use the lookup
+                        * table.  Use real division.
+                        */
+                       regind = diff / size;
+               }
+       } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
+           << QUANTUM_2POW_MIN) + 2) {
+               regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
+               regind >>= SIZE_INV_SHIFT;
+       } else {
+               /*
+                * size_invs isn't large enough to handle this size class, so
+                * calculate regind using actual division.  This only happens
+                * if the user increases small_max via the 'S' runtime
+                * configuration option.
+                */
+               regind = diff / size;
+       };
+       assert(diff == regind * size);
+       assert(regind < bin->nregs);
+
+       elm = regind >> (SIZEOF_INT_2POW + 3);
+       if (elm < run->regs_minelm)
+               run->regs_minelm = elm;
+       bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+       assert((run->regs_mask[elm] & (1U << bit)) == 0);
+       run->regs_mask[elm] |= (1U << bit);
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool small,
+    bool zero)
+{
+       arena_chunk_t *chunk;
+       size_t run_ind, total_pages, need_pages, rem_pages, i;
+       extent_node_t *nodeA, *nodeB, key;
+
+       /* Insert a node into runs_alloced_ad for the first part of the run. */
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       nodeA = arena_chunk_node_alloc(chunk);
+       nodeA->addr = run;
+       nodeA->size = size;
+       RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeA);
+
+       key.addr = run;
+       nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key);
+       assert(nodeB != NULL);
+
+       run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       total_pages = nodeB->size >> pagesize_2pow;
+       need_pages = (size >> pagesize_2pow);
+       assert(need_pages > 0);
+       assert(need_pages <= total_pages);
+       assert(need_pages <= CHUNK_MAP_POS_MASK || small == false);
+       rem_pages = total_pages - need_pages;
+
+       for (i = 0; i < need_pages; i++) {
+#ifdef MALLOC_DECOMMIT
+               /*
+                * Commit decommitted pages if necessary.  If a decommitted
+                * page is encountered, commit all needed adjacent decommitted
+                * pages in one operation, in order to reduce system call
+                * overhead.
+                */
+               if (chunk->map[run_ind + i] & CHUNK_MAP_DECOMMITTED) {
+                       size_t j;
+
+                       /*
+                        * Advance i+j to just past the index of the last page
+                        * to commit.  Clear CHUNK_MAP_DECOMMITTED along the
+                        * way.
+                        */
+                       for (j = 0; i + j < need_pages && (chunk->map[run_ind +
+                           i + j] & CHUNK_MAP_DECOMMITTED); j++) {
+                               chunk->map[run_ind + i + j] ^=
+                                   CHUNK_MAP_DECOMMITTED;
+                       }
+
+                       pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
+                           << pagesize_2pow)), (j << pagesize_2pow));
+#  ifdef MALLOC_STATS
+                       arena->stats.ncommit++;
+#  endif
+               }
+#endif
+
+               /* Zero if necessary. */
+               if (zero) {
+                       if ((chunk->map[run_ind + i] & CHUNK_MAP_UNTOUCHED)
+                           == 0) {
+                               memset((void *)((uintptr_t)chunk + ((run_ind
+                                   + i) << pagesize_2pow)), 0, pagesize);
+                               /* CHUNK_MAP_UNTOUCHED is cleared below. */
+                       }
+               }
+
+               /* Update dirty page accounting. */
+               if (chunk->map[run_ind + i] & CHUNK_MAP_DIRTY) {
+                       chunk->ndirty--;
+                       arena->ndirty--;
+               }
+
+               /* Initialize the chunk map. */
+               if (small)
+                       chunk->map[run_ind + i] = (uint8_t)i;
+               else
+                       chunk->map[run_ind + i] = CHUNK_MAP_LARGE;
+       }
+
+       /* Keep track of trailing unused pages for later use. */
+       RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeB);
+       if (rem_pages > 0) {
+               /*
+                * Update nodeB in runs_avail_*.  Its position within
+                * runs_avail_ad does not change.
+                */
+               nodeB->addr = (void *)((uintptr_t)nodeB->addr + size);
+               nodeB->size -= size;
+               RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB);
+       } else {
+               /* Remove nodeB from runs_avail_*. */
+               RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, nodeB);
+               arena_chunk_node_dealloc(chunk, nodeB);
+       }
+
+       chunk->pages_used += need_pages;
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+       extent_node_t *node;
+
+       if (arena->spare != NULL) {
+               chunk = arena->spare;
+               arena->spare = NULL;
+       } else {
+               chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
+               if (chunk == NULL)
+                       return (NULL);
+#ifdef MALLOC_STATS
+               arena->stats.mapped += chunksize;
+#endif
+
+               chunk->arena = arena;
+
+               RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
+
+               /*
+                * Claim that no pages are in use, since the header is merely
+                * overhead.
+                */
+               chunk->pages_used = 0;
+               chunk->ndirty = 0;
+
+               /*
+                * Initialize the map to contain one maximal free untouched
+                * run.
+                */
+               memset(chunk->map, (CHUNK_MAP_LARGE | CHUNK_MAP_POS_MASK),
+                   arena_chunk_header_npages);
+               memset(&chunk->map[arena_chunk_header_npages],
+                   (CHUNK_MAP_UNTOUCHED
+#ifdef MALLOC_DECOMMIT
+                   | CHUNK_MAP_DECOMMITTED
+#endif
+                   ), (chunk_npages -
+                   arena_chunk_header_npages));
+
+               /* Initialize the tree of unused extent nodes. */
+               RB_INIT(&chunk->nodes);
+               chunk->nodes_past = (extent_node_t *)QUANTUM_CEILING(
+                   (uintptr_t)&chunk->map[chunk_npages]);
+
+#ifdef MALLOC_DECOMMIT
+               /*
+                * Start out decommitted, in order to force a closer
+                * correspondence between dirty pages and committed untouched
+                * pages.
+                */
+               pages_decommit((void *)((uintptr_t)chunk +
+                   (arena_chunk_header_npages << pagesize_2pow)),
+                   ((chunk_npages - arena_chunk_header_npages) <<
+                   pagesize_2pow));
+#  ifdef MALLOC_STATS
+               arena->stats.ndecommit++;
+               arena->stats.decommitted += (chunk_npages -
+                   arena_chunk_header_npages);
+#  endif
+#endif
+       }
+
+       /* Insert the run into the runs_avail_* red-black trees. */
+       node = arena_chunk_node_alloc(chunk);
+       node->addr = (void *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+           pagesize_2pow));
+       node->size = chunksize - (arena_chunk_header_npages << pagesize_2pow);
+       RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, node);
+       RB_INSERT(extent_tree_ad_s, &arena->runs_avail_ad, node);
+
+       return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+       extent_node_t *node, key;
+
+       if (arena->spare != NULL) {
+               RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks,
+                   arena->spare);
+               arena->ndirty -= arena->spare->ndirty;
+               chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+               arena->stats.mapped -= chunksize;
+#endif
+       }
+
+       /*
+        * Remove run from the runs trees, regardless of whether this chunk
+        * will be cached, so that the arena does not use it.  Dirty page
+        * flushing only uses the chunks tree, so leaving this chunk in that
+        * tree is sufficient for that purpose.
+        */
+       key.addr = (void *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+           pagesize_2pow));
+       node = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key);
+       assert(node != NULL);
+       RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, node);
+       RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, node);
+       arena_chunk_node_dealloc(chunk, node);
+
+       arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool small, bool zero)
+{
+       arena_chunk_t *chunk;
+       arena_run_t *run;
+       extent_node_t *node, key;
+
+       assert(size <= (chunksize - (arena_chunk_header_npages <<
+           pagesize_2pow)));
+       assert((size & pagesize_mask) == 0);
+
+       /* Search the arena's chunks for the lowest best fit. */
+       key.addr = NULL;
+       key.size = size;
+       node = RB_NFIND(extent_tree_szad_s, &arena->runs_avail_szad, &key);
+       if (node != NULL) {
+               run = (arena_run_t *)node->addr;
+               arena_run_split(arena, run, size, small, zero);
+               return (run);
+       }
+
+       /*
+        * No usable runs.  Create a new chunk from which to allocate the run.
+        */
+       chunk = arena_chunk_alloc(arena);
+       if (chunk == NULL)
+               return (NULL);
+       run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+           pagesize_2pow));
+       /* Update page map. */
+       arena_run_split(arena, run, size, small, zero);
+       return (run);
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+       arena_chunk_t *chunk;
+#ifdef MALLOC_DEBUG
+       size_t ndirty;
+
+       ndirty = 0;
+       RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
+               ndirty += chunk->ndirty;
+       }
+       assert(ndirty == arena->ndirty);
+#endif
+       assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+       arena->stats.npurge++;
+#endif
+
+       /*
+        * Iterate downward through chunks until enough dirty memory has been
+        * purged.
+        */
+       RB_FOREACH_REVERSE(chunk, arena_chunk_tree_s, &arena->chunks) {
+               if (chunk->ndirty > 0) {
+                       size_t i;
+
+                       for (i = chunk_npages - 1; i >=
+                           arena_chunk_header_npages; i--) {
+                               if (chunk->map[i] & CHUNK_MAP_DIRTY) {
+                                       size_t npages;
+
+                                       chunk->map[i] = (CHUNK_MAP_LARGE |
+#ifdef MALLOC_DECOMMIT
+                                           CHUNK_MAP_DECOMMITTED |
+#endif
+                                           CHUNK_MAP_POS_MASK);
+                                       chunk->ndirty--;
+                                       arena->ndirty--;
+                                       /* Find adjacent dirty run(s). */
+                                       for (npages = 1; i >
+                                           arena_chunk_header_npages &&
+                                           (chunk->map[i - 1] &
+                                           CHUNK_MAP_DIRTY); npages++) {
+                                               i--;
+                                               chunk->map[i] = (CHUNK_MAP_LARGE
+#ifdef MALLOC_DECOMMIT
+                                                   | CHUNK_MAP_DECOMMITTED
+#endif
+                                                   | CHUNK_MAP_POS_MASK);
+                                               chunk->ndirty--;
+                                               arena->ndirty--;
+                                       }
+
+#ifdef MALLOC_DECOMMIT
+                                       pages_decommit((void *)((uintptr_t)
+                                           chunk + (i << pagesize_2pow)),
+                                           (npages << pagesize_2pow));
+#  ifdef MALLOC_STATS
+                                       arena->stats.ndecommit++;
+                                       arena->stats.decommitted += npages;
+#  endif
+#else
+                                       madvise((void *)((uintptr_t)chunk + (i
+                                           << pagesize_2pow)), pagesize *
+                                           npages, MADV_FREE);
+#endif
+#ifdef MALLOC_STATS
+                                       arena->stats.nmadvise++;
+                                       arena->stats.purged += npages;
+#endif
+                               }
+                       }
+               }
+       }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+       arena_chunk_t *chunk;
+       extent_node_t *nodeA, *nodeB, *nodeC, key;
+       size_t size, run_ind, run_pages;
+
+       /* Remove run from runs_alloced_ad. */
+       key.addr = run;
+       nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key);
+       assert(nodeB != NULL);
+       RB_REMOVE(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB);
+       size = nodeB->size;
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+       run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+           >> pagesize_2pow);
+       assert(run_ind >= arena_chunk_header_npages);
+       assert(run_ind < (chunksize >> pagesize_2pow));
+       run_pages = (size >> pagesize_2pow);
+
+       /* Subtract pages from count of pages used in chunk. */
+       chunk->pages_used -= run_pages;
+
+       if (dirty) {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       assert((chunk->map[run_ind + i] & CHUNK_MAP_DIRTY) ==
+                           0);
+                       chunk->map[run_ind + i] |= CHUNK_MAP_DIRTY;
+                       chunk->ndirty++;
+                       arena->ndirty++;
+               }
+       }
+#ifdef MALLOC_DEBUG
+       /* Set map elements to a bogus value in order to aid error detection. */
+       {
+               size_t i;
+
+               for (i = 0; i < run_pages; i++) {
+                       chunk->map[run_ind + i] |= (CHUNK_MAP_LARGE |
+                           CHUNK_MAP_POS_MASK);
+               }
+       }
+#endif
+
+       /* Try to coalesce forward. */
+       key.addr = (void *)((uintptr_t)run + size);
+       nodeC = RB_NFIND(extent_tree_ad_s, &arena->runs_avail_ad, &key);
+       if (nodeC != NULL && nodeC->addr == key.addr) {
+               /*
+                * Coalesce forward.  This does not change the position within
+                * runs_avail_ad, so only remove/insert from/into
+                * runs_avail_szad.
+                */
+               RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeC);
+               nodeC->addr = (void *)run;
+               nodeC->size += size;
+               RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeC);
+               arena_chunk_node_dealloc(chunk, nodeB);
+               nodeB = nodeC;
+       } else {
+               /*
+                * Coalescing forward failed, so insert nodeB into runs_avail_*.
+                */
+               RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB);
+               RB_INSERT(extent_tree_ad_s, &arena->runs_avail_ad, nodeB);
+       }
+
+       /* Try to coalesce backward. */
+       nodeA = RB_PREV(extent_tree_ad_s, &arena->runs_avail_ad, nodeB);
+       if (nodeA != NULL && (void *)((uintptr_t)nodeA->addr + nodeA->size) ==
+           (void *)run) {
+               /*
+                * Coalesce with previous run.  This does not change nodeB's
+                * position within runs_avail_ad, so only remove/insert
+                * from/into runs_avail_szad.
+                */
+               RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeA);
+               RB_REMOVE(extent_tree_ad_s, &arena->runs_avail_ad, nodeA);
+
+               RB_REMOVE(extent_tree_szad_s, &arena->runs_avail_szad, nodeB);
+               nodeB->addr = nodeA->addr;
+               nodeB->size += nodeA->size;
+               RB_INSERT(extent_tree_szad_s, &arena->runs_avail_szad, nodeB);
+
+               arena_chunk_node_dealloc(chunk, nodeA);
+       }
+
+       /* Deallocate chunk if it is now completely unused. */
+       if (chunk->pages_used == 0)
+               arena_chunk_dealloc(arena, chunk);
+
+       /* Enforce opt_dirty_max. */
+       if (arena->ndirty > opt_dirty_max)
+               arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeB,
+    arena_run_t *run, size_t oldsize, size_t newsize)
+{
+       extent_node_t *nodeA;
+
+       assert(nodeB->addr == run);
+       assert(nodeB->size == oldsize);
+       assert(oldsize > newsize);
+
+       /*
+        * Update the run's node in runs_alloced_ad.  Its position does not
+        * change.
+        */
+       nodeB->addr = (void *)((uintptr_t)run + (oldsize - newsize));
+       nodeB->size = newsize;
+
+       /*
+        * Insert a node into runs_alloced_ad so that arena_run_dalloc() can
+        * treat the leading run as separately allocated.
+        */
+       nodeA = arena_chunk_node_alloc(chunk);
+       nodeA->addr = (void *)run;
+       nodeA->size = oldsize - newsize;
+       RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeA);
+
+       arena_run_dalloc(arena, (arena_run_t *)run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, extent_node_t *nodeA,
+    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty)
+{
+       extent_node_t *nodeB;
+
+       assert(nodeA->addr == run);
+       assert(nodeA->size == oldsize);
+       assert(oldsize > newsize);
+
+       /*
+        * Update the run's node in runs_alloced_ad.  Its position does not
+        * change.
+        */
+       nodeA->size = newsize;
+
+       /*
+        * Insert a node into runs_alloced_ad so that arena_run_dalloc() can
+        * treat the trailing run as separately allocated.
+        */
+       nodeB = arena_chunk_node_alloc(chunk);
+       nodeB->addr = (void *)((uintptr_t)run + newsize);
+       nodeB->size = oldsize - newsize;
+       RB_INSERT(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB);
+
+       arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+           dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+       arena_run_t *run;
+       unsigned i, remainder;
+
+       /* Look for a usable run. */
+       if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
+               /* run is guaranteed to have available space. */
+               RB_REMOVE(arena_run_tree_s, &bin->runs, run);
+#ifdef MALLOC_STATS
+               bin->stats.reruns++;
+#endif
+               return (run);
+       }
+       /* No existing runs have any space available. */
+
+       /* Allocate a new run. */
+       run = arena_run_alloc(arena, bin->run_size, true, false);
+       if (run == NULL)
+               return (NULL);
+
+       /* Initialize run internals. */
+       run->bin = bin;
+
+       for (i = 0; i < bin->regs_mask_nelms; i++)
+               run->regs_mask[i] = UINT_MAX;
+       remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+       if (remainder != 0) {
+               /* The last element has spare bits that need to be unset. */
+               run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+                   - remainder));
+       }
+
+       run->regs_minelm = 0;
+
+       run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+       run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+       bin->stats.nruns++;
+       bin->stats.curruns++;
+       if (bin->stats.curruns > bin->stats.highruns)
+               bin->stats.highruns = bin->stats.curruns;
+#endif
+       return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+       void *ret;
+
+       assert(run->magic == ARENA_RUN_MAGIC);
+       assert(run->nfree > 0);
+
+       ret = arena_run_reg_alloc(run, bin);
+       assert(ret != NULL);
+       run->nfree--;
+
+       return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+       bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+       if (bin->runcur == NULL)
+               return (NULL);
+       assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+       assert(bin->runcur->nfree > 0);
+
+       return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ *   *) bin->run_size >= min_run_size
+ *   *) bin->run_size <= arena_maxclass
+ *   *) bin->run_size <= RUN_MAX_SMALL
+ *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+       size_t try_run_size, good_run_size;
+       unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+       unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+       assert(min_run_size >= pagesize);
+       assert(min_run_size <= arena_maxclass);
+       assert(min_run_size <= RUN_MAX_SMALL);
+
+       /*
+        * Calculate known-valid settings before entering the run_size
+        * expansion loop, so that the first part of the loop always copies
+        * valid settings.
+        *
+        * The do..while loop iteratively reduces the number of regions until
+        * the run header and the regions no longer overlap.  A closed formula
+        * would be quite messy, since there is an interdependency between the
+        * header's mask length and the number of regions.
+        */
+       try_run_size = min_run_size;
+       try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+           + 1; /* Counter-act try_nregs-- in loop. */
+       do {
+               try_nregs--;
+               try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                   ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+               try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+       } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+           > try_reg0_offset);
+
+       /* run_size expansion loop. */
+       do {
+               /*
+                * Copy valid settings before trying more aggressive settings.
+                */
+               good_run_size = try_run_size;
+               good_nregs = try_nregs;
+               good_mask_nelms = try_mask_nelms;
+               good_reg0_offset = try_reg0_offset;
+
+               /* Try more aggressive settings. */
+               try_run_size += pagesize;
+               try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+                   bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+               do {
+                       try_nregs--;
+                       try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+                           ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+                           1 : 0);
+                       try_reg0_offset = try_run_size - (try_nregs *
+                           bin->reg_size);
+               } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+                   (try_mask_nelms - 1)) > try_reg0_offset);
+       } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+           && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+           && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+       assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+           <= good_reg0_offset);
+       assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+       /* Copy final settings. */
+       bin->run_size = good_run_size;
+       bin->nregs = good_nregs;
+       bin->regs_mask_nelms = good_mask_nelms;
+       bin->reg0_offset = good_reg0_offset;
+
+       return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+       unsigned contention;
+
+       contention = malloc_spin_lock(&arena->lock);
+       if (narenas > 1) {
+               /*
+                * Calculate the exponentially averaged contention for this
+                * arena.  Due to integer math always rounding down, this value
+                * decays somewhat faster then normal.
+                */
+               arena->contention = (((uint64_t)arena->contention
+                   * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+                   + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+               if (arena->contention >= opt_balance_threshold)
+                       arena_lock_balance_hard(arena);
+       }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+       uint32_t ind;
+
+       arena->contention = 0;
+#ifdef MALLOC_STATS
+       arena->stats.nbalance++;
+#endif
+       ind = PRN(balance, narenas_2pow);
+       if (arenas[ind] != NULL) {
+#ifdef WIN32
+               TlsSetValue(tlsIndex, arenas[ind]);
+#else
+               arenas_map = arenas[ind];
+#endif
+       } else {
+               malloc_spin_lock(&arenas_lock);
+               if (arenas[ind] != NULL) {
+#ifdef WIN32
+                       TlsSetValue(tlsIndex, arenas[ind]);
+#else
+                       arenas_map = arenas[ind];
+#endif
+               } else {
+#ifdef WIN32
+                       TlsSetValue(tlsIndex, arenas_extend(ind));
+#else
+                       arenas_map = arenas_extend(ind);
+#endif
+               }
+               malloc_spin_unlock(&arenas_lock);
+       }
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+       arena_bin_t *bin;
+       arena_run_t *run;
+
+       if (size < small_min) {
+               /* Tiny. */
+               size = pow2_ceil(size);
+               bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
+                   1)))];
+#if (!defined(NDEBUG) || defined(MALLOC_STATS))
+               /*
+                * Bin calculation is always correct, but we may need
+                * to fix size for the purposes of assertions and/or
+                * stats accuracy.
+                */
+               if (size < (1U << TINY_MIN_2POW))
+                       size = (1U << TINY_MIN_2POW);
+#endif
+       } else if (size <= small_max) {
+               /* Quantum-spaced. */
+               size = QUANTUM_CEILING(size);
+               bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
+                   - 1];
+       } else {
+               /* Sub-page. */
+               size = pow2_ceil(size);
+               bin = &arena->bins[ntbins + nqbins
+                   + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
+       }
+       assert(size == bin->reg_size);
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       if ((run = bin->runcur) != NULL && run->nfree > 0)
+               ret = arena_bin_malloc_easy(arena, bin, run);
+       else
+               ret = arena_bin_malloc_hard(arena, bin);
+
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+#ifdef MALLOC_STATS
+       bin->stats.nrequests++;
+       arena->stats.nmalloc_small++;
+       arena->stats.allocated_small += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+#ifdef MALLOC_FILL
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+#endif
+       } else
+               memset(ret, 0, size);
+
+       return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+       void *ret;
+
+       /* Large allocation. */
+       size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, size, false, zero);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+       if (zero == false) {
+#ifdef MALLOC_FILL
+               if (opt_junk)
+                       memset(ret, 0xa5, size);
+               else if (opt_zero)
+                       memset(ret, 0, size);
+#endif
+       }
+
+       return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(size != 0);
+       assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+/* #ifdef USE_STATS_MEMORY */
+/*     arena->mi.uordblks += size; */
+/* #endif */
+       if (size <= bin_maxclass) {
+               return (arena_malloc_small(arena, size, zero));
+       } else
+               return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+       assert(size != 0);
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, false));
+       else
+               return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+       if (size <= arena_maxclass)
+               return (arena_malloc(choose_arena(), size, true));
+       else
+               return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+       void *ret;
+       size_t offset;
+       arena_chunk_t *chunk;
+       extent_node_t *node, key;
+
+       assert((size & pagesize_mask) == 0);
+       assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       ret = (void *)arena_run_alloc(arena, alloc_size, false, false);
+       if (ret == NULL) {
+               malloc_spin_unlock(&arena->lock);
+               return (NULL);
+       }
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & pagesize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0) {
+               /*
+                * Update the run's node in runs_alloced_ad.  Its position
+                * does not change.
+                */
+               key.addr = ret;
+               node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key);
+               assert(node != NULL);
+
+               arena_run_trim_tail(arena, chunk, node, ret, alloc_size, size,
+                   false);
+       } else {
+               size_t leadsize, trailsize;
+
+               /*
+                * Update the run's node in runs_alloced_ad.  Its position
+                * does not change.
+                */
+               key.addr = ret;
+               node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key);
+               assert(node != NULL);
+
+               leadsize = alignment - offset;
+               if (leadsize > 0) {
+                       arena_run_trim_head(arena, chunk, node, ret, alloc_size,
+                           alloc_size - leadsize);
+                       ret = (void *)((uintptr_t)ret + leadsize);
+               }
+
+               trailsize = alloc_size - leadsize - size;
+               if (trailsize != 0) {
+                       /* Trim trailing space. */
+                       assert(trailsize < alloc_size);
+                       arena_run_trim_tail(arena, chunk, node, ret, size +
+                           trailsize, size, false);
+               }
+       }
+
+#ifdef MALLOC_STATS
+       arena->stats.nmalloc_large++;
+       arena->stats.allocated_large += size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+
+#ifdef MALLOC_FILL
+       if (opt_junk)
+               memset(ret, 0xa5, size);
+       else if (opt_zero)
+               memset(ret, 0, size);
+#endif
+       return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t ceil_size;
+
+       /*
+        * Round size up to the nearest multiple of alignment.
+        *
+        * This done, we can take advantage of the fact that for each small
+        * size class, every object is aligned at the smallest power of two
+        * that is non-zero in the base two representation of the size.  For
+        * example:
+        *
+        *   Size |   Base 2 | Minimum alignment
+        *   -----+----------+------------------
+        *     96 |  1100000 |  32
+        *    144 | 10100000 |  32
+        *    192 | 11000000 |  64
+        *
+        * Depending on runtime settings, it is possible that arena_malloc()
+        * will further round up to a power of two, but that never causes
+        * correctness issues.
+        */
+       ceil_size = (size + (alignment - 1)) & (-alignment);
+       /*
+        * (ceil_size < size) protects against the combination of maximal
+        * alignment and size greater than maximal alignment.
+        */
+       if (ceil_size < size) {
+               /* size_t overflow. */
+               return (NULL);
+       }
+
+       if (ceil_size <= pagesize || (alignment <= pagesize
+           && ceil_size <= arena_maxclass))
+               ret = arena_malloc(choose_arena(), ceil_size, false);
+       else {
+               size_t run_size;
+
+               /*
+                * We can't achieve sub-page alignment, so round up alignment
+                * permanently; it makes later calculations simpler.
+                */
+               alignment = PAGE_CEILING(alignment);
+               ceil_size = PAGE_CEILING(size);
+               /*
+                * (ceil_size < size) protects against very large sizes within
+                * pagesize of SIZE_T_MAX.
+                *
+                * (ceil_size + alignment < ceil_size) protects against the
+                * combination of maximal alignment and ceil_size large enough
+                * to cause overflow.  This is similar to the first overflow
+                * check above, but it needs to be repeated due to the new
+                * ceil_size value, which may now be *equal* to maximal
+                * alignment, whereas before we only detected overflow if the
+                * original size was *greater* than maximal alignment.
+                */
+               if (ceil_size < size || ceil_size + alignment < ceil_size) {
+                       /* size_t overflow. */
+                       return (NULL);
+               }
+
+               /*
+                * Calculate the size of the over-size run that arena_palloc()
+                * would need to allocate in order to guarantee the alignment.
+                */
+               if (ceil_size >= alignment)
+                       run_size = ceil_size + alignment - pagesize;
+               else {
+                       /*
+                        * It is possible that (alignment << 1) will cause
+                        * overflow, but it doesn't matter because we also
+                        * subtract pagesize, which in the case of overflow
+                        * leaves us with a very large run_size.  That causes
+                        * the first conditional below to fail, which means
+                        * that the bogus run_size value never gets used for
+                        * anything important.
+                        */
+                       run_size = (alignment << 1) - pagesize;
+               }
+
+               if (run_size <= arena_maxclass) {
+                       ret = arena_palloc(choose_arena(), alignment, ceil_size,
+                           run_size);
+               } else if (alignment <= chunksize)
+                       ret = huge_malloc(ceil_size, false);
+               else
+                       ret = huge_palloc(alignment, ceil_size);
+       }
+
+       assert(((uintptr_t)ret & (alignment - 1)) == 0);
+       return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+       arena_chunk_map_t mapelm;
+       size_t pageind;
+
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = chunk->map[pageind];
+       if ((mapelm & CHUNK_MAP_LARGE) == 0) {
+               arena_run_t *run;
+
+               /* Small allocation size is in the run header. */
+               pageind -= (mapelm & CHUNK_MAP_POS_MASK);
+               run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
+                   pagesize_2pow));
+               assert(run->magic == ARENA_RUN_MAGIC);
+               ret = run->bin->reg_size;
+       } else {
+               arena_t *arena = chunk->arena;
+               extent_node_t *node, key;
+
+               /* Large allocation size is in the extent tree. */
+               assert((mapelm & CHUNK_MAP_POS_MASK) == 0);
+               arena = chunk->arena;
+               malloc_spin_lock(&arena->lock);
+               key.addr = (void *)ptr;
+               node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key);
+               assert(node != NULL);
+               ret = node->size;
+               malloc_spin_unlock(&arena->lock);
+       }
+
+       return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+       size_t ret;
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr) {
+               /* Region. */
+               assert(chunk->arena->magic == ARENA_MAGIC);
+
+               ret = arena_salloc(ptr);
+       } else {
+               extent_node_t *node, key;
+
+               /* Chunk (huge allocation). */
+
+               malloc_mutex_lock(&huge_mtx);
+
+               /* Extract from tree of huge allocations. */
+               key.addr = __DECONST(void *, ptr);
+               node = RB_FIND(extent_tree_ad_s, &huge, &key);
+               assert(node != NULL);
+
+               ret = node->size;
+
+               malloc_mutex_unlock(&huge_mtx);
+       }
+
+       return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t pageind, arena_chunk_map_t mapelm)
+{
+       arena_run_t *run;
+       arena_bin_t *bin;
+       size_t size;
+
+       pageind -= (mapelm & CHUNK_MAP_POS_MASK);
+
+       run = (arena_run_t *)((uintptr_t)chunk + (pageind << pagesize_2pow));
+       assert(run->magic == ARENA_RUN_MAGIC);
+       bin = run->bin;
+       size = bin->reg_size;
+
+/* #ifdef USE_STATS_MEMORY */
+/*         arena->mi.fordblks += size; */
+/* #endif */
+#ifdef MALLOC_FILL
+       if (opt_junk)
+               memset(ptr, 0x5a, size);
+#endif
+
+       arena_run_reg_dalloc(run, bin, ptr, size);
+       run->nfree++;
+
+       if (run->nfree == bin->nregs) {
+               /* Deallocate run. */
+               if (run == bin->runcur)
+                       bin->runcur = NULL;
+               else if (bin->nregs != 1) {
+                       /*
+                        * This block's conditional is necessary because if the
+                        * run only contains one region, then it never gets
+                        * inserted into the non-full runs tree.
+                        */
+                       RB_REMOVE(arena_run_tree_s, &bin->runs, run);
+               }
+#ifdef MALLOC_DEBUG
+               run->magic = 0;
+#endif
+               arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+               bin->stats.curruns--;
+#endif
+       } else if (run->nfree == 1 && run != bin->runcur) {
+               /*
+                * Make sure that bin->runcur always refers to the lowest
+                * non-full run, if one exists.
+                */
+               if (bin->runcur == NULL)
+                       bin->runcur = run;
+               else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+                       /* Switch runcur. */
+                       if (bin->runcur->nfree > 0) {
+                               /* Insert runcur. */
+                               RB_INSERT(arena_run_tree_s, &bin->runs,
+                                   bin->runcur);
+                       }
+                       bin->runcur = run;
+               } else
+                       RB_INSERT(arena_run_tree_s, &bin->runs, run);
+       }
+#ifdef MALLOC_STATS
+       arena->stats.allocated_small -= size;
+       arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_LAZY_FREE
+static inline void
+arena_dalloc_lazy(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t pageind, arena_chunk_map_t *mapelm)
+{
+       void **free_cache = arena->free_cache;
+       unsigned i, slot;
+
+       if (g_isthreaded == false || opt_lazy_free_2pow < 0) {
+               malloc_spin_lock(&arena->lock);
+               arena_dalloc_small(arena, chunk, ptr, pageind, *mapelm);
+               malloc_spin_unlock(&arena->lock);
+               return;
+       }
+
+       for (i = 0; i < LAZY_FREE_NPROBES; i++) {
+               slot = PRN(lazy_free, opt_lazy_free_2pow);
+               if (atomic_cmpset_ptr((uintptr_t *)&free_cache[slot],
+                   (uintptr_t)NULL, (uintptr_t)ptr)) {
+                       return;
+               }
+       }
+
+       arena_dalloc_lazy_hard(arena, chunk, ptr, pageind, mapelm);
+}
+
+static void
+arena_dalloc_lazy_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t pageind, arena_chunk_map_t *mapelm)
+{
+       void **free_cache = arena->free_cache;
+       unsigned i, slot;
+
+       malloc_spin_lock(&arena->lock);
+       arena_dalloc_small(arena, chunk, ptr, pageind, *mapelm);
+
+       /*
+        * Check whether another thread already cleared the cache.  It is
+        * possible that another thread cleared the cache *and* this slot was
+        * already refilled, which could result in a mostly fruitless cache
+        * sweep, but such a sequence of events causes no correctness issues.
+        */
+       if ((ptr = (void *)atomic_readandclear_ptr(
+           (uintptr_t *)&free_cache[slot]))
+           != NULL) {
+               unsigned lazy_free_mask;
+               
+               /*
+                * Clear the cache, since we failed to find a slot.  It is
+                * possible that other threads will continue to insert objects
+                * into the cache while this one sweeps, but that is okay,
+                * since on average the cache is still swept with the same
+                * frequency.
+                */
+
+               /* Handle pointer at current slot. */
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+               pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >>
+                   pagesize_2pow);
+               mapelm = &chunk->map[pageind];
+               arena_dalloc_small(arena, chunk, ptr, pageind, *mapelm);
+
+               /* Sweep remainder of slots. */
+               lazy_free_mask = (1U << opt_lazy_free_2pow) - 1;
+               for (i = (slot + 1) & lazy_free_mask;
+                    i != slot;
+                    i = (i + 1) & lazy_free_mask) {
+                       ptr = (void *)atomic_readandclear_ptr(
+                           (uintptr_t *)&free_cache[i]);
+                       if (ptr != NULL) {
+                               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+                               pageind = (((uintptr_t)ptr - (uintptr_t)chunk)
+                                   >> pagesize_2pow);
+                               mapelm = &chunk->map[pageind];
+                               arena_dalloc_small(arena, chunk, ptr, pageind,
+                                   *mapelm);
+                       }
+               }
+       }
+
+       malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       /* Large allocation. */
+       malloc_spin_lock(&arena->lock);
+
+#ifdef MALLOC_FILL
+#ifndef MALLOC_STATS
+       if (opt_junk)
+#endif
+#endif
+       {
+               extent_node_t *node, key;
+               size_t size;
+
+               key.addr = ptr;
+               node = RB_FIND(extent_tree_ad_s,
+                   &arena->runs_alloced_ad, &key);
+               assert(node != NULL);
+               size = node->size;
+#ifdef MALLOC_FILL
+#ifdef MALLOC_STATS
+               if (opt_junk)
+#endif
+                       memset(ptr, 0x5a, size);
+#endif
+/* #ifdef USE_STATS_MEMORY */
+/*         arena->mi.fordblks += size; */
+/* #endif */
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large -= size;
+#endif
+       }
+#ifdef MALLOC_STATS
+       arena->stats.ndalloc_large++;
+#endif
+
+       arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+       malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+       size_t pageind;
+       arena_chunk_map_t *mapelm;
+
+       assert(arena != NULL);
+       assert(arena->magic == ARENA_MAGIC);
+       assert(chunk->arena == arena);
+       assert(ptr != NULL);
+       assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+       pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+       mapelm = &chunk->map[pageind];
+       if ((*mapelm & CHUNK_MAP_LARGE) == 0) {
+               /* Small allocation. */
+#ifdef MALLOC_LAZY_FREE
+               arena_dalloc_lazy(arena, chunk, ptr, pageind, mapelm);
+#else
+               malloc_spin_lock(&arena->lock);
+               arena_dalloc_small(arena, chunk, ptr, pageind, *mapelm);
+               malloc_spin_unlock(&arena->lock);
+#endif
+       } else {
+               assert((*mapelm & CHUNK_MAP_POS_MASK) == 0);
+               arena_dalloc_large(arena, chunk, ptr);
+       }
+}
+
+static inline void
+idalloc(void *ptr)
+{
+       arena_chunk_t *chunk;
+
+       assert(ptr != NULL);
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr)
+               arena_dalloc(chunk->arena, chunk, ptr);
+       else
+               huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+       extent_node_t *node, key;
+
+       assert(size < oldsize);
+
+       /*
+        * Shrink the run, and make trailing pages available for other
+        * allocations.
+        */
+       key.addr = (void *)((uintptr_t)ptr);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       node = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad, &key);
+       assert(node != NULL);
+       arena_run_trim_tail(arena, chunk, node, (arena_run_t *)ptr, oldsize,
+           size, true);
+#ifdef MALLOC_STATS
+       arena->stats.allocated_large -= oldsize - size;
+#endif
+       malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+    size_t size, size_t oldsize)
+{
+       extent_node_t *nodeC, key;
+
+       /* Try to extend the run. */
+       assert(size > oldsize);
+       key.addr = (void *)((uintptr_t)ptr + oldsize);
+#ifdef MALLOC_BALANCE
+       arena_lock_balance(arena);
+#else
+       malloc_spin_lock(&arena->lock);
+#endif
+       nodeC = RB_FIND(extent_tree_ad_s, &arena->runs_avail_ad, &key);
+       if (nodeC != NULL && oldsize + nodeC->size >= size) {
+               extent_node_t *nodeA, *nodeB;
+
+               /*
+                * The next run is available and sufficiently large.  Split the
+                * following run, then merge the first part with the existing
+                * allocation.  This results in a bit more tree manipulation
+                * than absolutely necessary, but it substantially simplifies
+                * the code.
+                */
+               arena_run_split(arena, (arena_run_t *)nodeC->addr, size -
+                   oldsize, false, false);
+
+               key.addr = ptr;
+               nodeA = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad,
+                   &key);
+               assert(nodeA != NULL);
+
+               key.addr = (void *)((uintptr_t)ptr + oldsize);
+               nodeB = RB_FIND(extent_tree_ad_s, &arena->runs_alloced_ad,
+                   &key);
+               assert(nodeB != NULL);
+
+               nodeA->size += nodeB->size;
+
+               RB_REMOVE(extent_tree_ad_s, &arena->runs_alloced_ad, nodeB);
+               arena_chunk_node_dealloc(chunk, nodeB);
+
+#ifdef MALLOC_STATS
+               arena->stats.allocated_large += size - oldsize;
+#endif
+               malloc_spin_unlock(&arena->lock);
+               return (false);
+       }
+       malloc_spin_unlock(&arena->lock);
+
+       return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying.  This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+       size_t psize;
+
+       psize = PAGE_CEILING(size);
+       if (psize == oldsize) {
+               /* Same size class. */
+#ifdef MALLOC_FILL
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+                           size);
+               }
+#endif
+               return (false);
+       } else {
+               arena_chunk_t *chunk;
+               arena_t *arena;
+
+               chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+               arena = chunk->arena;
+               assert(arena->magic == ARENA_MAGIC);
+
+               if (psize < oldsize) {
+#ifdef MALLOC_FILL
+                       /* Fill before shrinking in order avoid a race. */
+                       if (opt_junk) {
+                               memset((void *)((uintptr_t)ptr + size), 0x5a,
+                                   oldsize - size);
+                       }
+#endif
+                       arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+                           oldsize);
+                       return (false);
+               } else {
+                       bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+                           psize, oldsize);
+#ifdef MALLOC_FILL
+                       if (ret == false && opt_zero) {
+                               memset((void *)((uintptr_t)ptr + oldsize), 0,
+                                   size - oldsize);
+                       }
+#endif
+                       return (ret);
+               }
+       }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Try to avoid moving the allocation. */
+       if (size < small_min) {
+               if (oldsize < small_min &&
+                   ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
+                   == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
+                       goto IN_PLACE; /* Same size class. */
+       } else if (size <= small_max) {
+               if (oldsize >= small_min && oldsize <= small_max &&
+                   (QUANTUM_CEILING(size) >> opt_quantum_2pow)
+                   == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
+                       goto IN_PLACE; /* Same size class. */
+       } else if (size <= bin_maxclass) {
+               if (oldsize > small_max && oldsize <= bin_maxclass &&
+                   pow2_ceil(size) == pow2_ceil(oldsize))
+                       goto IN_PLACE; /* Same size class. */
+       } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+               assert(size > bin_maxclass);
+               if (arena_ralloc_large(ptr, size, oldsize) == false)
+                       return (ptr);
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to move the object.  In that case, fall back to allocating new
+        * space and copying.
+        */
+       ret = arena_malloc(choose_arena(), size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       /* Junk/zero-filling were already done by arena_malloc(). */
+       copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+       if (copysize >= VM_COPY_MIN)
+               pages_copy(ret, ptr, copysize);
+       else
+#endif
+               memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+IN_PLACE:
+#ifdef MALLOC_FILL
+       if (opt_junk && size < oldsize)
+               memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+       else if (opt_zero && size > oldsize)
+               memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+#endif
+       return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+       size_t oldsize;
+
+       assert(ptr != NULL);
+       assert(size != 0);
+
+       oldsize = isalloc(ptr);
+
+       if (size <= arena_maxclass)
+               return (arena_ralloc(ptr, size, oldsize));
+       else
+               return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+       unsigned i;
+       arena_bin_t *bin;
+       size_t pow2_size, prev_run_size;
+
+       if (malloc_spin_init(&arena->lock))
+               return (true);
+
+#ifdef MALLOC_STATS
+       memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+       /* Initialize chunks. */
+       RB_INIT(&arena->chunks);
+       arena->spare = NULL;
+
+       arena->ndirty = 0;
+
+       RB_INIT(&arena->runs_avail_szad);
+       RB_INIT(&arena->runs_avail_ad);
+       RB_INIT(&arena->runs_alloced_ad);
+
+#ifdef MALLOC_BALANCE
+       arena->contention = 0;
+#endif
+#ifdef MALLOC_LAZY_FREE
+       if (opt_lazy_free_2pow >= 0) {
+               arena->free_cache = (void **) base_calloc(1, sizeof(void *)
+                   * (1U << opt_lazy_free_2pow));
+               if (arena->free_cache == NULL)
+                       return (true);
+       } else
+               arena->free_cache = NULL;
+#endif
+
+       /* Initialize bins. */
+       prev_run_size = pagesize;
+
+       /* (2^n)-spaced tiny bins. */
+       for (i = 0; i < ntbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               RB_INIT(&bin->runs);
+
+               bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* Quantum-spaced bins. */
+       for (; i < ntbins + nqbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               RB_INIT(&bin->runs);
+
+               bin->reg_size = quantum * (i - ntbins + 1);
+
+               pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+       /* (2^n)-spaced sub-page bins. */
+       for (; i < ntbins + nqbins + nsbins; i++) {
+               bin = &arena->bins[i];
+               bin->runcur = NULL;
+               RB_INIT(&bin->runs);
+
+               bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
+
+               prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+               memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+       }
+
+#ifdef MALLOC_DEBUG
+       arena->magic = ARENA_MAGIC;
+#endif
+
+       return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+       arena_t *ret;
+
+       /* Allocate enough space for trailing bins. */
+       ret = (arena_t *)base_alloc(sizeof(arena_t)
+           + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
+       if (ret != NULL && arena_new(ret) == false) {
+               arenas[ind] = ret;
+               return (ret);
+       }
+       /* Only reached if there is an OOM error. */
+
+       /*
+        * OOM here is quite inconvenient to propagate, since dealing with it
+        * would require a check for failure in the fast path.  Instead, punt
+        * by using arenas[0].  In practice, this is an extremely unlikely
+        * failure.
+        */
+       _malloc_message(_getprogname(),
+           ": (malloc) Error initializing arena\n", "", "");
+       if (opt_abort)
+               abort();
+
+       return (arenas[0]);
+}
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+       void *ret;
+       size_t csize;
+       extent_node_t *node;
+
+       /* Allocate one or more contiguous chunks for this request. */
+
+       csize = CHUNK_CEILING(size);
+       if (csize == 0) {
+               /* size is large enough to cause size_t wrap-around. */
+               return (NULL);
+       }
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(csize, zero);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = csize;
+
+       malloc_mutex_lock(&huge_mtx);
+       RB_INSERT(extent_tree_ad_s, &huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += csize;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_FILL
+       if (zero == false) {
+               if (opt_junk)
+                       memset(ret, 0xa5, csize);
+               else if (opt_zero)
+                       memset(ret, 0, csize);
+       }
+#endif
+
+       return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+       void *ret;
+       size_t alloc_size, chunk_size, offset;
+       extent_node_t *node;
+
+       /*
+        * This allocation requires alignment that is even larger than chunk
+        * alignment.  This means that huge_malloc() isn't good enough.
+        *
+        * Allocate almost twice as many chunks as are demanded by the size or
+        * alignment, in order to assure the alignment can be achieved, then
+        * unmap leading and trailing chunks.
+        */
+       assert(alignment >= chunksize);
+
+       chunk_size = CHUNK_CEILING(size);
+
+       if (size >= alignment)
+               alloc_size = chunk_size + alignment - chunksize;
+       else
+               alloc_size = (alignment << 1) - chunksize;
+
+       /* Allocate an extent node with which to track the chunk. */
+       node = base_node_alloc();
+       if (node == NULL)
+               return (NULL);
+
+       ret = chunk_alloc(alloc_size, false);
+       if (ret == NULL) {
+               base_node_dealloc(node);
+               return (NULL);
+       }
+
+       offset = (uintptr_t)ret & (alignment - 1);
+       assert((offset & chunksize_mask) == 0);
+       assert(offset < alloc_size);
+       if (offset == 0) {
+               /* Trim trailing space. */
+               chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+                   - chunk_size);
+       } else {
+               size_t trailsize;
+
+               /* Trim leading space. */
+               chunk_dealloc(ret, alignment - offset);
+
+               ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+               trailsize = alloc_size - (alignment - offset) - chunk_size;
+               if (trailsize != 0) {
+                   /* Trim trailing space. */
+                   assert(trailsize < alloc_size);
+                   chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+                       trailsize);
+               }
+       }
+
+       /* Insert node into huge. */
+       node->addr = ret;
+       node->size = chunk_size;
+
+       malloc_mutex_lock(&huge_mtx);
+       RB_INSERT(extent_tree_ad_s, &huge, node);
+#ifdef MALLOC_STATS
+       huge_nmalloc++;
+       huge_allocated += chunk_size;
+#endif
+       malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_FILL
+       if (opt_junk)
+               memset(ret, 0xa5, chunk_size);
+       else if (opt_zero)
+               memset(ret, 0, chunk_size);
+#endif
+
+       return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+       void *ret;
+       size_t copysize;
+
+       /* Avoid moving the allocation if the size class would not change. */
+       if (oldsize > arena_maxclass &&
+           CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+#ifdef MALLOC_FILL
+               if (opt_junk && size < oldsize) {
+                       memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+                           - size);
+               } else if (opt_zero && size > oldsize) {
+                       memset((void *)((uintptr_t)ptr + oldsize), 0, size
+                           - oldsize);
+               }
+#endif
+               return (ptr);
+       }
+
+       /*
+        * If we get here, then size and oldsize are different enough that we
+        * need to use a different size class.  In that case, fall back to
+        * allocating new space and copying.
+        */
+       ret = huge_malloc(size, false);
+       if (ret == NULL)
+               return (NULL);
+
+       copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+       if (copysize >= VM_COPY_MIN)
+               pages_copy(ret, ptr, copysize);
+       else
+#endif
+               memcpy(ret, ptr, copysize);
+       idalloc(ptr);
+       return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+       extent_node_t *node, key;
+
+       malloc_mutex_lock(&huge_mtx);
+
+       /* Extract from tree of huge allocations. */
+       key.addr = ptr;
+       node = RB_FIND(extent_tree_ad_s, &huge, &key);
+       assert(node != NULL);
+       assert(node->addr == ptr);
+       RB_REMOVE(extent_tree_ad_s, &huge, node);
+
+#ifdef MALLOC_STATS
+       huge_ndalloc++;
+       huge_allocated -= node->size;
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       /* Unmap chunk. */
+#ifdef MALLOC_DSS
+#ifdef MALLOC_FILL
+       if (opt_dss && opt_junk)
+               memset(node->addr, 0x5a, node->size);
+#endif
+#endif
+       chunk_dealloc(node->addr, node->size);
+
+       base_node_dealloc(node);
+}
+
+#ifdef BSD
+static inline unsigned
+malloc_ncpus(void)
+{
+       unsigned ret;
+       int mib[2];
+       size_t len;
+
+       mib[0] = CTL_HW;
+       mib[1] = HW_NCPU;
+       len = sizeof(ret);
+       if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
+               /* Error. */
+               return (1);
+       }
+
+       return (ret);
+}
+#elif (defined(LINUX))
+#include <fcntl.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+       unsigned ret;
+       int fd, nread, column;
+       char buf[1];
+       static const char matchstr[] = "processor\t:";
+
+       /*
+        * sysconf(3) would be the preferred method for determining the number
+        * of CPUs, but it uses malloc internally, which causes untennable
+        * recursion during malloc initialization.
+        */
+       fd = open("/proc/cpuinfo", O_RDONLY);
+       if (fd == -1)
+               return (1); /* Error. */
+       /*
+        * Count the number of occurrences of matchstr at the beginnings of
+        * lines.  This treats hyperthreaded CPUs as multiple processors.
+        */
+       column = 0;
+       ret = 0;
+       while (true) {
+               nread = read(fd, &buf, sizeof(buf));
+               if (nread <= 0)
+                       break; /* EOF or error. */
+
+               if (buf[0] == '\n')
+                       column = 0;
+               else if (column != -1) {
+                       if (buf[0] == matchstr[column]) {
+                               column++;
+                               if (column == sizeof(matchstr) - 1) {
+                                       column = -1;
+                                       ret++;
+                               }
+                       } else
+                               column = -1;
+               }
+       }
+       if (ret == 0)
+               ret = 1; /* Something went wrong in the parser. */
+       close(fd);
+
+       return (ret);
+}
+#elif (defined(DARWIN))
+#include <mach/mach_init.h>
+#include <mach/mach_host.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+       kern_return_t error;
+       natural_t n;
+       processor_info_array_t pinfo;
+       mach_msg_type_number_t pinfocnt;
+
+       error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
+                                   &n, &pinfo, &pinfocnt);
+       if (error != KERN_SUCCESS)
+               return (1); /* Error. */
+       else
+               return (n);
+}
+#elif (defined(HAVE_KSTAT))
+#include <kstat.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+       unsigned ret;
+       kstat_ctl_t *ctl;
+       kstat_t *kstat;
+       kstat_named_t *named;
+       unsigned i;
+
+       if ((ctl = kstat_open()) == NULL)
+               return (1); /* Error. */
+
+       if ((kstat = kstat_lookup(ctl, "unix", -1, "system_misc")) == NULL)
+               return (1); /* Error. */
+
+       if (kstat_read(ctl, kstat, NULL) == -1)
+               return (1); /* Error. */
+
+       named = KSTAT_NAMED_PTR(kstat);
+
+       for (i = 0; i < kstat->ks_ndata; i++) {
+               if (strcmp(named[i].name, "ncpus") == 0) {
+                       /* Figure out which one of these to actually use. */
+                       switch(named[i].data_type) {
+                       case KSTAT_DATA_INT32:
+                               ret = named[i].value.i32;
+                               break;
+                       case KSTAT_DATA_UINT32:
+                               ret = named[i].value.ui32;
+                               break;
+                       case KSTAT_DATA_INT64:
+                               ret = named[i].value.i64;
+                               break;
+                       case KSTAT_DATA_UINT64:
+                               ret = named[i].value.ui64;
+                               break;
+                       default:
+                               return (1); /* Error. */
+                       }
+               }
+       }
+
+       kstat_close(ctl); /* Don't bother checking for an error. */
+
+       return (ret);
+}
+#else
+static inline unsigned
+malloc_ncpus(void)
+{
+
+       /*
+        * We lack a way to determine the number of CPUs on this platform, so
+        * assume 1 CPU.
+        */
+       return (1);
+}
+#endif
+
+static void
+malloc_print_stats(void)
+{
+
+       if (opt_print_stats) {
+               char s[UMAX2S_BUFSIZE];
+               _malloc_message("___ Begin malloc statistics ___\n", "", "",
+                   "");
+               _malloc_message("Assertions ",
+#ifdef NDEBUG
+                   "disabled",
+#else
+                   "enabled",
+#endif
+                   "\n", "");
+               _malloc_message("Boolean MALLOC_OPTIONS: ",
+                   opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+               _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+#ifdef MALLOC_FILL
+               _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#endif
+#ifdef MALLOC_DSS
+               _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+               _malloc_message("P", "", "", "");
+#ifdef MALLOC_UTRACE
+               _malloc_message(opt_utrace ? "U" : "u", "", "", "");
+#endif
+#ifdef MALLOC_SYSV
+               _malloc_message(opt_sysv ? "V" : "v", "", "", "");
+#endif
+#ifdef MALLOC_XMALLOC
+               _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
+#endif
+#ifdef MALLOC_FILL
+               _malloc_message(opt_zero ? "Z" : "z", "", "", "");
+#endif
+               _malloc_message("\n", "", "", "");
+
+               _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+               _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_LAZY_FREE
+               if (opt_lazy_free_2pow >= 0) {
+                       _malloc_message("Lazy free slots: ",
+                           umax2s(1U << opt_lazy_free_2pow, s), "\n", "");
+               } else
+                       _malloc_message("Lazy free slots: 0\n", "", "", "");
+#endif
+#ifdef MALLOC_BALANCE
+               _malloc_message("Arena balance threshold: ",
+                   umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+               _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+                   "\n", "");
+               _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
+               _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
+                   "");
+               _malloc_message("Max dirty pages per arena: ",
+                   umax2s(opt_dirty_max, s), "\n", "");
+
+               _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+               _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+               {
+                       size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+                       uint64_t nbalance = 0;
+#endif
+                       unsigned i;
+                       arena_t *arena;
+
+                       /* Calculate and print allocated/mapped stats. */
+
+                       /* arenas. */
+                       for (i = 0, allocated = 0; i < narenas; i++) {
+                               if (arenas[i] != NULL) {
+                                       malloc_spin_lock(&arenas[i]->lock);
+                                       allocated +=
+                                           arenas[i]->stats.allocated_small;
+                                       allocated +=
+                                           arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+                                       nbalance += arenas[i]->stats.nbalance;
+#endif
+                                       malloc_spin_unlock(&arenas[i]->lock);
+                               }
+                       }
+
+                       /* huge/base. */
+                       malloc_mutex_lock(&huge_mtx);
+                       allocated += huge_allocated;
+                       mapped = stats_chunks.curchunks * chunksize;
+                       malloc_mutex_unlock(&huge_mtx);
+
+                       malloc_mutex_lock(&base_mtx);
+                       mapped += base_mapped;
+                       malloc_mutex_unlock(&base_mtx);
+
+#ifdef WIN32
+                       malloc_printf("Allocated: %lu, mapped: %lu\n",
+                           allocated, mapped);
+#else
+                       malloc_printf("Allocated: %zu, mapped: %zu\n",
+                           allocated, mapped);
+#endif
+
+#ifdef MALLOC_BALANCE
+                       malloc_printf("Arena balance reassignments: %llu\n",
+                           nbalance);
+#endif
+
+                       /* Print chunk stats. */
+                       {
+                               chunk_stats_t chunks_stats;
+
+                               malloc_mutex_lock(&huge_mtx);
+                               chunks_stats = stats_chunks;
+                               malloc_mutex_unlock(&huge_mtx);
+
+                               malloc_printf("chunks: nchunks   "
+                                   "highchunks    curchunks\n");
+                               malloc_printf("  %13llu%13lu%13lu\n",
+                                   chunks_stats.nchunks,
+                                   chunks_stats.highchunks,
+                                   chunks_stats.curchunks);
+                       }
+
+                       /* Print chunk stats. */
+                       malloc_printf(
+                           "huge: nmalloc      ndalloc    allocated\n");
+#ifdef WIN32
+                       malloc_printf(" %12llu %12llu %12lu\n",
+                           huge_nmalloc, huge_ndalloc, huge_allocated);
+#else
+                       malloc_printf(" %12llu %12llu %12zu\n",
+                           huge_nmalloc, huge_ndalloc, huge_allocated);
+#endif
+                       /* Print stats for each arena. */
+                       for (i = 0; i < narenas; i++) {
+                               arena = arenas[i];
+                               if (arena != NULL) {
+                                       malloc_printf(
+                                           "\narenas[%u]:\n", i);
+                                       malloc_spin_lock(&arena->lock);
+                                       stats_print(arena);
+                                       malloc_spin_unlock(&arena->lock);
+                               }
+                       }
+               }
+#endif /* #ifdef MALLOC_STATS */
+               _malloc_message("--- End malloc statistics ---\n", "", "", "");
+       }
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+#if (defined(WIN32) || defined(DARWIN))
+#define        malloc_init() false
+#else
+static inline bool
+malloc_init(void)
+{
+       if (malloc_initialized == false)
+               return (malloc_init_hard());
+
+       return (false);
+}
+#endif
+
+#ifndef WIN32
+static
+#endif
+bool
+malloc_init_hard(void)
+{
+       unsigned i;
+       char buf[PATH_MAX + 1];
+       const char *opts;
+       long result;
+#ifndef WIN32
+       int linklen;
+#endif
+
+#ifndef WIN32
+       malloc_mutex_lock(&init_lock);
+#endif
+
+       if (malloc_initialized) {
+               /*
+                * Another thread initialized the allocator before this one
+                * acquired init_lock.
+                */
+#ifndef WIN32
+               malloc_mutex_unlock(&init_lock);
+#endif
+               return (false);
+       }
+
+#ifdef WIN32
+       /* get a thread local storage index */
+       tlsIndex = TlsAlloc();
+#endif
+
+       /* Get page size and number of CPUs */
+#ifdef WIN32
+       {
+               SYSTEM_INFO info;
+
+               GetSystemInfo(&info);
+               result = info.dwPageSize;
+
+               pagesize = (unsigned) result;
+
+               ncpus = info.dwNumberOfProcessors;
+       }
+#else
+       ncpus = malloc_ncpus();
+
+       result = sysconf(_SC_PAGESIZE);
+       assert(result != -1);
+
+       pagesize = (unsigned) result;
+#endif
+
+       /*
+        * We assume that pagesize is a power of 2 when calculating
+        * pagesize_mask and pagesize_2pow.
+        */
+       assert(((result - 1) & result) == 0);
+       pagesize_mask = result - 1;
+       pagesize_2pow = ffs((int)result) - 1;
+
+#ifdef MALLOC_LAZY_FREE
+               if (ncpus == 1)
+                       opt_lazy_free_2pow = -1;
+#endif
+
+       for (i = 0; i < 3; i++) {
+               unsigned j;
+
+               /* Get runtime configuration. */
+               switch (i) {
+               case 0:
+#ifndef WIN32
+                       if ((linklen = readlink("/etc/malloc.conf", buf,
+                                               sizeof(buf) - 1)) != -1) {
+                               /*
+                                * Use the contents of the "/etc/malloc.conf"
+                                * symbolic link's name.
+                                */
+                               buf[linklen] = '\0';
+                               opts = buf;
+                       } else
+#endif
+                       {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               case 1:
+/*                     if (issetugid() == 0 && (opts = */
+/*                         getenv("MALLOC_OPTIONS")) != NULL) { */
+/*                             /\* */
+/*                              * Do nothing; opts is already initialized to */
+/*                              * the value of the MALLOC_OPTIONS environment 
*/
+/*                              * variable. */
+/*                              *\/ */
+/*                     } else { */
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+/*                     } */
+                       break;
+               case 2:
+                       if (_malloc_options != NULL) {
+                               /*
+                                * Use options that were compiled into the
+                                * program.
+                                */
+                               opts = _malloc_options;
+                       } else {
+                               /* No configuration specified. */
+                               buf[0] = '\0';
+                               opts = buf;
+                       }
+                       break;
+               default:
+                       /* NOTREACHED */
+                       buf[0] = '\0';
+                       opts = buf;
+                       assert(false);
+               }
+
+               for (j = 0; opts[j] != '\0'; j++) {
+                       unsigned k, nreps;
+                       bool nseen;
+
+                       /* Parse repetition count, if any. */
+                       for (nreps = 0, nseen = false;; j++, nseen = true) {
+                               switch (opts[j]) {
+                                       case '0': case '1': case '2': case '3':
+                                       case '4': case '5': case '6': case '7':
+                                       case '8': case '9':
+                                               nreps *= 10;
+                                               nreps += opts[j] - '0';
+                                               break;
+                                       default:
+                                               goto MALLOC_OUT;
+                               }
+                       }
+MALLOC_OUT:
+                       if (nseen == false)
+                               nreps = 1;
+
+                       for (k = 0; k < nreps; k++) {
+                               switch (opts[j]) {
+                               case 'a':
+                                       opt_abort = false;
+                                       break;
+                               case 'A':
+                                       opt_abort = true;
+                                       break;
+                               case 'b':
+#ifdef MALLOC_BALANCE
+                                       opt_balance_threshold >>= 1;
+#endif
+                                       break;
+                               case 'B':
+#ifdef MALLOC_BALANCE
+                                       if (opt_balance_threshold == 0)
+                                               opt_balance_threshold = 1;
+                                       else if ((opt_balance_threshold << 1)
+                                           > opt_balance_threshold)
+                                               opt_balance_threshold <<= 1;
+#endif
+                                       break;
+                               case 'd':
+#ifdef MALLOC_DSS
+                                       opt_dss = false;
+#endif
+                                       break;
+                               case 'D':
+#ifdef MALLOC_DSS
+                                       opt_dss = true;
+#endif
+                                       break;
+                               case 'f':
+                                       opt_dirty_max >>= 1;
+                                       break;
+                               case 'F':
+                                       if (opt_dirty_max == 0)
+                                               opt_dirty_max = 1;
+                                       else if ((opt_dirty_max << 1) != 0)
+                                               opt_dirty_max <<= 1;
+                                       break;
+#ifdef MALLOC_FILL
+                               case 'j':
+                                       opt_junk = false;
+                                       break;
+                               case 'J':
+                                       opt_junk = true;
+                                       break;
+#endif
+                               case 'k':
+                                       /*
+                                        * Chunks always require at least one
+                                        * header page, so chunks can never be
+                                        * smaller than two pages.
+                                        */
+                                       if (opt_chunk_2pow > pagesize_2pow + 1)
+                                               opt_chunk_2pow--;
+                                       break;
+                               case 'K':
+                                       if (opt_chunk_2pow + 1 <
+                                           (sizeof(size_t) << 3))
+                                               opt_chunk_2pow++;
+                                       break;
+                               case 'l':
+#ifdef MALLOC_LAZY_FREE
+                                       if (opt_lazy_free_2pow >= 0)
+                                               opt_lazy_free_2pow--;
+#endif
+                                       break;
+                               case 'L':
+#ifdef MALLOC_LAZY_FREE
+                                       if (ncpus > 1)
+                                               opt_lazy_free_2pow++;
+#endif
+                                       break;
+                               case 'm':
+#ifdef MALLOC_DSS
+                                       opt_mmap = false;
+#endif
+                                       break;
+                               case 'M':
+#ifdef MALLOC_DSS
+                                       opt_mmap = true;
+#endif
+                                       break;
+                               case 'n':
+                                       opt_narenas_lshift--;
+                                       break;
+                               case 'N':
+                                       opt_narenas_lshift++;
+                                       break;
+                               case 'p':
+                                       opt_print_stats = false;
+                                       break;
+                               case 'P':
+                                       opt_print_stats = true;
+                                       break;
+                               case 'q':
+                                       if (opt_quantum_2pow > QUANTUM_2POW_MIN)
+                                               opt_quantum_2pow--;
+                                       break;
+                               case 'Q':
+                                       if (opt_quantum_2pow < pagesize_2pow -
+                                           1)
+                                               opt_quantum_2pow++;
+                                       break;
+                               case 's':
+                                       if (opt_small_max_2pow >
+                                           QUANTUM_2POW_MIN)
+                                               opt_small_max_2pow--;
+                                       break;
+                               case 'S':
+                                       if (opt_small_max_2pow < pagesize_2pow
+                                           - 1)
+                                               opt_small_max_2pow++;
+                                       break;
+#ifdef MALLOC_UTRACE
+                               case 'u':
+                                       opt_utrace = false;
+                                       break;
+                               case 'U':
+                                       opt_utrace = true;
+                                       break;
+#endif
+#ifdef MALLOC_SYSV
+                               case 'v':
+                                       opt_sysv = false;
+                                       break;
+                               case 'V':
+                                       opt_sysv = true;
+                                       break;
+#endif
+#ifdef MALLOC_XMALLOC
+                               case 'x':
+                                       opt_xmalloc = false;
+                                       break;
+                               case 'X':
+                                       opt_xmalloc = true;
+                                       break;
+#endif
+#ifdef MALLOC_FILL
+                               case 'z':
+                                       opt_zero = false;
+                                       break;
+                               case 'Z':
+                                       opt_zero = true;
+                                       break;
+#endif
+                               default: {
+                                       char cbuf[2];
+
+                                       cbuf[0] = opts[j];
+                                       cbuf[1] = '\0';
+                                       _malloc_message(_getprogname(),
+                                           ": (malloc) Unsupported character "
+                                           "in malloc options: '", cbuf,
+                                           "'\n");
+                               }
+                               }
+                       }
+               }
+       }
+
+#ifdef MALLOC_DSS
+       /* Make sure that there is some method for acquiring memory. */
+       if (opt_dss == false && opt_mmap == false)
+               opt_mmap = true;
+#endif
+
+       /* Take care to call atexit() only once. */
+       if (opt_print_stats) {
+#ifndef WIN32
+               /* Print statistics at exit. */
+               atexit(malloc_print_stats);
+#endif
+       }
+
+       /* Set variables according to the value of opt_small_max_2pow. */
+       if (opt_small_max_2pow < opt_quantum_2pow)
+               opt_small_max_2pow = opt_quantum_2pow;
+       small_max = (1U << opt_small_max_2pow);
+
+       /* Set bin-related variables. */
+       bin_maxclass = (pagesize >> 1);
+       assert(opt_quantum_2pow >= TINY_MIN_2POW);
+       ntbins = opt_quantum_2pow - TINY_MIN_2POW;
+       assert(ntbins <= opt_quantum_2pow);
+       nqbins = (small_max >> opt_quantum_2pow);
+       nsbins = pagesize_2pow - opt_small_max_2pow - 1;
+
+       /* Set variables according to the value of opt_quantum_2pow. */
+       quantum = (1U << opt_quantum_2pow);
+       quantum_mask = quantum - 1;
+       if (ntbins > 0)
+               small_min = (quantum >> 1) + 1;
+       else
+               small_min = 1;
+       assert(small_min <= quantum);
+
+       /* Set variables according to the value of opt_chunk_2pow. */
+       chunksize = (1LU << opt_chunk_2pow);
+       chunksize_mask = chunksize - 1;
+       chunk_npages = (chunksize >> pagesize_2pow);
+       {
+               size_t header_size;
+
+               /*
+                * Compute the header size such that it is large
+                * enough to contain the page map and enough nodes for the
+                * worst case: one node per non-header page plus one extra for
+                * situations where we briefly have one more node allocated
+                * than we will need.
+                */
+               header_size = sizeof(arena_chunk_t) +
+                   (sizeof(arena_chunk_map_t) * (chunk_npages - 1)) +
+                   (sizeof(extent_node_t) * chunk_npages);
+               arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+                   ((header_size & pagesize_mask) != 0);
+       }
+       arena_maxclass = chunksize - (arena_chunk_header_npages <<
+           pagesize_2pow);
+#ifdef MALLOC_LAZY_FREE
+       /*
+        * Make sure that allocating the free_cache does not exceed the limits
+        * of what base_alloc() can handle.
+        */
+       while ((sizeof(void *) << opt_lazy_free_2pow) > chunksize)
+               opt_lazy_free_2pow--;
+#endif
+
+       UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+       memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+       /* Various sanity checks that regard configuration. */
+       assert(quantum >= sizeof(void *));
+       assert(quantum <= pagesize);
+       assert(chunksize >= pagesize);
+       assert(quantum * 4 <= chunksize);
+
+       /* Initialize chunks data. */
+       malloc_mutex_init(&huge_mtx);
+       RB_INIT(&huge);
+#ifdef MALLOC_DSS
+       malloc_mutex_init(&dss_mtx);
+       dss_base = sbrk(0);
+       dss_prev = dss_base;
+       dss_max = dss_base;
+       RB_INIT(&dss_chunks_szad);
+       RB_INIT(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+       huge_nmalloc = 0;
+       huge_ndalloc = 0;
+       huge_allocated = 0;
+#endif
+
+       /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+       base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+       /*
+        * Allocate a base chunk here, since it doesn't actually have to be
+        * chunk-aligned.  Doing this before allocating any other chunks allows
+        * the use of space that would otherwise be wasted.
+        */
+       if (opt_dss)
+               base_pages_alloc(0);
+#endif
+       base_nodes = NULL;
+       malloc_mutex_init(&base_mtx);
+
+       if (ncpus > 1) {
+               /*
+                * For SMP systems, create four times as many arenas as there
+                * are CPUs by default.
+                */
+               opt_narenas_lshift += 2;
+       }
+
+       /* Determine how many arenas to use. */
+       narenas = ncpus;
+       if (opt_narenas_lshift > 0) {
+               if ((narenas << opt_narenas_lshift) > narenas)
+                       narenas <<= opt_narenas_lshift;
+               /*
+                * Make sure not to exceed the limits of what base_alloc() can
+                * handle.
+                */
+               if (narenas * sizeof(arena_t *) > chunksize)
+                       narenas = chunksize / sizeof(arena_t *);
+       } else if (opt_narenas_lshift < 0) {
+               if ((narenas >> -opt_narenas_lshift) < narenas)
+                       narenas >>= -opt_narenas_lshift;
+               /* Make sure there is at least one arena. */
+               if (narenas == 0)
+                       narenas = 1;
+       }
+#ifdef MALLOC_BALANCE
+       assert(narenas != 0);
+       for (narenas_2pow = 0;
+            (narenas >> (narenas_2pow + 1)) != 0;
+            narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+       if (narenas > 1) {
+               static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+                   23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+                   89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+                   151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+                   223, 227, 229, 233, 239, 241, 251, 257, 263};
+               unsigned nprimes, parenas;
+
+               /*
+                * Pick a prime number of hash arenas that is more than narenas
+                * so that direct hashing of pthread_self() pointers tends to
+                * spread allocations evenly among the arenas.
+                */
+               assert((narenas & 1) == 0); /* narenas must be even. */
+               nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+               parenas = primes[nprimes - 1]; /* In case not enough primes. */
+               for (i = 1; i < nprimes; i++) {
+                       if (primes[i] > narenas) {
+                               parenas = primes[i];
+                               break;
+                       }
+               }
+               narenas = parenas;
+       }
+#endif
+
+#ifndef NO_TLS
+#  ifndef MALLOC_BALANCE
+       next_arena = 0;
+#  endif
+#endif
+
+       /* Allocate and initialize arenas. */
+       arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+       if (arenas == NULL) {
+#ifndef WIN32
+               malloc_mutex_unlock(&init_lock);
+#endif
+               return (true);
+       }
+       /*
+        * Zero the array.  In practice, this should always be pre-zeroed,
+        * since it was just mmap()ed, but let's be sure.
+        */
+       memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+       /*
+        * Initialize one arena here.  The rest are lazily created in
+        * choose_arena_hard().
+        */
+       arenas_extend(0);
+       if (arenas[0] == NULL) {
+#ifndef WIN32
+               malloc_mutex_unlock(&init_lock);
+#endif
+               return (true);
+       }
+#ifndef NO_TLS
+       /*
+        * Assign the initial arena to the initial thread, in order to avoid
+        * spurious creation of an extra arena if the application switches to
+        * threaded mode.
+        */
+#ifdef WIN32
+       TlsSetValue(tlsIndex, arenas[0]);
+#else
+       arenas_map = arenas[0];
+#endif
+#endif
+
+       /*
+        * Seed here for the initial thread, since choose_arena_hard() is only
+        * called for other threads.  The seed values don't really matter.
+        */
+#ifdef MALLOC_LAZY_FREE
+       SPRN(lazy_free, 42);
+#endif
+#ifdef MALLOC_BALANCE
+       SPRN(balance, 42);
+#endif
+
+       malloc_spin_init(&arenas_lock);
+
+       malloc_initialized = true;
+#ifndef WIN32
+       malloc_mutex_unlock(&init_lock);
+#endif
+       return (false);
+}
+
+/* XXX Why not just expose malloc_print_stats()? */
+#ifdef WIN32
+void
+malloc_shutdown()
+{
+
+       malloc_print_stats();
+}
+#endif
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+DSOEXPORT
+#ifdef DARWIN
+inline void *
+moz_malloc(size_t size)
+#else
+void *
+malloc(size_t size)
+#endif
+{
+       void *ret;
+
+       if (malloc_init()) {
+               ret = NULL;
+               goto RETURN;
+       }
+
+       if (size == 0) {
+#ifdef MALLOC_SYSV
+               if (opt_sysv == false)
+#endif
+                       size = 1;
+#ifdef MALLOC_SYSV
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+#endif
+       }
+
+       ret = imalloc(size);
+
+RETURN:
+       if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in malloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+#endif
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, size, ret);
+       return (ret);
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline int
+moz_posix_memalign(void **memptr, size_t alignment, size_t size)
+#else
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+#endif
+{
+       int ret;
+       void *result;
+
+       if (malloc_init())
+               result = NULL;
+       else {
+               /* Make sure that alignment is a large enough power of 2. */
+               if (((alignment - 1) & alignment) != 0
+                   || alignment < sizeof(void *)) {
+#ifdef MALLOC_XMALLOC
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in posix_memalign(): "
+                                   "invalid alignment\n", "", "");
+                               abort();
+                       }
+#endif
+                       result = NULL;
+                       ret = EINVAL;
+                       goto RETURN;
+               }
+
+               result = ipalloc(alignment, size);
+       }
+
+       if (result == NULL) {
+#ifdef MALLOC_XMALLOC
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                       ": (malloc) Error in posix_memalign(): out of memory\n",
+                       "", "");
+                       abort();
+               }
+#endif
+               ret = ENOMEM;
+               goto RETURN;
+       }
+
+       *memptr = result;
+       ret = 0;
+
+RETURN:
+       UTRACE(0, size, result);
+       return (ret);
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline void *
+moz_memalign(size_t alignment, size_t size)
+#else
+void *
+memalign(size_t alignment, size_t size)
+#endif
+{
+       void *ret;
+
+#ifdef DARWIN
+       if (moz_posix_memalign(&ret, alignment, size) != 0)
+#else
+       if (posix_memalign(&ret, alignment, size) != 0)
+#endif
+               return (NULL);
+
+       return ret;
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline void *
+moz_valloc(size_t size)
+#else
+void *
+valloc(size_t size)
+#endif
+{
+#ifdef DARWIN
+       return (moz_memalign(pagesize, size));
+#else
+       return (memalign(pagesize, size));
+#endif
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline void *
+moz_calloc(size_t num, size_t size)
+#else
+void *
+calloc(size_t num, size_t size)
+#endif
+{
+       void *ret;
+       size_t num_size;
+
+       if (malloc_init()) {
+               num_size = 0;
+               ret = NULL;
+               goto RETURN;
+       }
+
+       num_size = num * size;
+       if (num_size == 0) {
+#ifdef MALLOC_SYSV
+               if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+                       num_size = 1;
+#ifdef MALLOC_SYSV
+               else {
+                       ret = NULL;
+                       goto RETURN;
+               }
+#endif
+       /*
+        * Try to avoid division here.  We know that it isn't possible to
+        * overflow during multiplication if neither operand uses any of the
+        * most significant half of the bits in a size_t.
+        */
+       } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+           && (num_size / size != num)) {
+               /* size_t overflow. */
+               ret = NULL;
+               goto RETURN;
+       }
+
+       ret = icalloc(num_size);
+
+RETURN:
+       if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+               if (opt_xmalloc) {
+                       _malloc_message(_getprogname(),
+                           ": (malloc) Error in calloc(): out of memory\n", "",
+                           "");
+                       abort();
+               }
+#endif
+               errno = ENOMEM;
+       }
+
+       UTRACE(0, num_size, ret);
+       return (ret);
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline void *
+moz_realloc(void *ptr, size_t size)
+#else
+void *
+realloc(void *ptr, size_t size)
+#endif
+{
+       void *ret;
+
+       if (size == 0) {
+#ifdef MALLOC_SYSV
+               if (opt_sysv == false)
+#endif
+                       size = 1;
+#ifdef MALLOC_SYSV
+               else {
+                       if (ptr != NULL)
+                               idalloc(ptr);
+                       ret = NULL;
+                       goto RETURN;
+               }
+#endif
+       }
+
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               ret = iralloc(ptr, size);
+
+               if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+#endif
+                       errno = ENOMEM;
+               }
+       } else {
+               if (malloc_init())
+                       ret = NULL;
+               else
+                       ret = imalloc(size);
+
+               if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+                       if (opt_xmalloc) {
+                               _malloc_message(_getprogname(),
+                                   ": (malloc) Error in realloc(): out of "
+                                   "memory\n", "", "");
+                               abort();
+                       }
+#endif
+                       errno = ENOMEM;
+               }
+       }
+
+#ifdef MALLOC_SYSV
+RETURN:
+#endif
+       UTRACE(ptr, size, ret);
+       return (ret);
+}
+
+DSOEXPORT
+#ifdef DARWIN
+inline void
+moz_free(void *ptr)
+#else
+void
+free(void *ptr)
+#endif
+{
+
+       UTRACE(ptr, 0, 0);
+       if (ptr != NULL) {
+               assert(malloc_initialized);
+
+               idalloc(ptr);
+       }
+}
+
+/* /\* */
+/*  * This is a work in progress, which doesn't even get used. */
+/*  *\/ */
+/* #ifdef USE_STATS_MEMORY */
+/* #ifndef DARWIN */
+/* DSOEXPORT */
+/* struct mallinfo */
+/* mallinfo() */
+/* { */
+/*     struct mallinfo mi; */
+/*     size_t allocated = 0; */
+/*     size_t mapped = 0; */
+/*     arena_t *arena; */
+/*     size_t i; */
+
+/*     /\* Calculate and print allocated/mapped stats. *\/ */
+    
+/*     /\* arenas. *\/ */
+/*     for (i = 0; i < narenas; i++) { */
+/*         if (arenas[i] != NULL) { */
+/*             malloc_spin_lock(&arenas[i]->lock); */
+/*              mi.uordblks += */
+/*                 arenas[i]->stats.allocated_small; */
+/*              mi.uordblks += */
+/*                 arenas[i]->stats.allocated_large; */
+/*             malloc_spin_unlock(&arenas[i]->lock); */
+/*         } */
+/*     } */
+
+/* #if 0     */
+/*     avail = chunksize(top(ar_ptr)); */
+/*     navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; */
+    
+/*     // FIXME: add mutex */
+/*     mi->arena = ar_ptr->size; */
+/*     mi->ordblks = navail; */
+/*     mi->smblks = mi->usmblks = mi->fsmblks = 0; /\* clear unused fields *\/ 
*/
+/*     mi->uordblks = ar_ptr->size - avail; */
+/*     mi->fordblks = avail; */
+/*     mi->hblks = n_mmaps; */
+/*     mi->hblkhd = mmapped_mem; */
+/*     mi->keepcost = chunksize(top(ar_ptr)); */
+/* #endif */
+/*     return mi;     */
+/* } */
+/* # endif */
+/* #endif */
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+DSOEXPORT
+#ifdef DARWIN
+inline size_t
+moz_malloc_usable_size(const void *ptr)
+#else
+size_t
+malloc_usable_size(const void *ptr)
+#endif
+{
+
+       assert(ptr != NULL);
+
+       return (isalloc(ptr));
+}
+
+#ifdef WIN32
+void*
+_recalloc(void *ptr, size_t count, size_t size)
+{
+       size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
+       size_t newsize = count * size;
+
+       /*
+        * In order for all trailing bytes to be zeroed, the caller needs to
+        * use calloc(), followed by recalloc().  However, the current calloc()
+        * implementation only zeros the bytes requested, so if recalloc() is
+        * to work 100% correctly, calloc() will need to change to zero
+        * trailing bytes.
+        */
+
+       ptr = realloc(ptr, newsize);
+       if (ptr != NULL && oldsize < newsize) {
+               memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
+                   oldsize);
+       }
+
+       return ptr;
+}
+
+/*
+ * This impl of _expand doesn't ever actually expand or shrink blocks: it
+ * simply replies that you may continue using a shrunk block.
+ */
+void*
+_expand(void *ptr, size_t newsize)
+{
+       if (isalloc(ptr) >= newsize)
+               return ptr;
+
+       return NULL;
+}
+
+size_t
+_msize(const void *ptr)
+{
+
+       return malloc_usable_size(ptr);
+}
+#endif
+
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions, used by threading libraries for protection
+ * of malloc during fork().  These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+       unsigned i;
+
+       /* Acquire all mutexes in a safe order. */
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_lock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+
+       malloc_mutex_lock(&base_mtx);
+
+       malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+       malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+       unsigned i;
+
+       /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+       malloc_mutex_unlock(&dss_mtx);
+#endif
+
+       malloc_mutex_unlock(&huge_mtx);
+
+       malloc_mutex_unlock(&base_mtx);
+
+       malloc_spin_lock(&arenas_lock);
+       for (i = 0; i < narenas; i++) {
+               if (arenas[i] != NULL)
+                       malloc_spin_unlock(&arenas[i]->lock);
+       }
+       malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
+
+
+#ifdef DARWIN
+static malloc_zone_t zone;
+static struct malloc_introspection_t zone_introspect;
+
+static size_t
+zone_size(malloc_zone_t *zone, void *ptr)
+{
+       size_t ret = 0;
+       arena_chunk_t *chunk;
+
+       /*
+        * There appear to be places within Darwin (such as setenv(3)) that
+        * cause calls to this function with pointers that *no* zone owns.  If
+        * we knew that all pointers were owned by *some* zone, we could split
+        * our zone into two parts, and use one as the default allocator and
+        * the other as the default deallocator/reallocator.  Since that will
+        * not work in practice, we must check all pointers to assure that they
+        * reside within a mapped chunk before determining size.
+        */
+
+       chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+       if (chunk != ptr) {
+               arena_t *arena;
+               unsigned i;
+               arena_t *arenas_snapshot[narenas];
+
+               /*
+                * Make a copy of the arenas vector while holding arenas_lock in
+                * order to assure that all elements are up to date in this
+                * processor's cache.  Do this outside the following loop in
+                * order to reduce lock acquisitions.
+                */
+               malloc_spin_lock(&arenas_lock);
+               memcpy(&arenas_snapshot, arenas, sizeof(arena_t *) * narenas);
+               malloc_spin_unlock(&arenas_lock);
+
+               /* Region. */
+               for (i = 0; i < narenas; i++) {
+                       arena = arenas_snapshot[i];
+
+                       if (arena != NULL) {
+                               bool own;
+
+                               /* Make sure ptr is within a chunk. */
+                               malloc_spin_lock(&arena->lock);
+                               if (RB_FIND(arena_chunk_tree_s, &arena->chunks,
+                                   chunk) == chunk)
+                                       own = true;
+                               else
+                                       own = false;
+                               malloc_spin_unlock(&arena->lock);
+
+                               if (own) {
+                                       ret = arena_salloc(ptr);
+                                       goto RETURN;
+                               }
+                       }
+               }
+       } else {
+               extent_node_t *node;
+               extent_node_t key;
+
+               /* Chunk. */
+               key.addr = (void *)chunk;
+               malloc_mutex_lock(&huge_mtx);
+               node = RB_FIND(extent_tree_ad_s, &huge, &key);
+               if (node != NULL)
+                       ret = node->size;
+               else
+                       ret = 0;
+               malloc_mutex_unlock(&huge_mtx);
+       }
+
+RETURN:
+       return (ret);
+}
+
+static void *
+zone_malloc(malloc_zone_t *zone, size_t size)
+{
+
+       return (moz_malloc(size));
+}
+
+static void *
+zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
+{
+
+       return (moz_calloc(num, size));
+}
+
+static void *
+zone_valloc(malloc_zone_t *zone, size_t size)
+{
+       void *ret = NULL; /* Assignment avoids useless compiler warning. */
+
+       moz_posix_memalign(&ret, pagesize, size);
+
+       return (ret);
+}
+
+static void
+zone_free(malloc_zone_t *zone, void *ptr)
+{
+
+       moz_free(ptr);
+}
+
+static void *
+zone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
+{
+
+       return (moz_realloc(ptr, size));
+}
+
+static void *
+zone_destroy(malloc_zone_t *zone)
+{
+
+       /* This function should never be called. */
+       assert(false);
+       return (NULL);
+}
+
+static size_t
+zone_good_size(malloc_zone_t *zone, size_t size)
+{
+       size_t ret;
+       void *p;
+
+       /*
+        * Actually create an object of the appropriate size, then find out
+        * how large it could have been without moving up to the next size
+        * class.
+        */
+       p = moz_malloc(size);
+       if (p != NULL) {
+               ret = isalloc(p);
+               moz_free(p);
+       } else
+               ret = size;
+
+       return (ret);
+}
+
+static void
+zone_force_lock(malloc_zone_t *zone)
+{
+
+       _malloc_prefork();
+}
+
+static void
+zone_force_unlock(malloc_zone_t *zone)
+{
+
+       _malloc_postfork();
+}
+
+static malloc_zone_t *
+create_zone(void)
+{
+
+       assert(malloc_initialized);
+
+       zone.size = (void *)zone_size;
+       zone.malloc = (void *)zone_malloc;
+       zone.calloc = (void *)zone_calloc;
+       zone.valloc = (void *)zone_valloc;
+       zone.free = (void *)zone_free;
+       zone.realloc = (void *)zone_realloc;
+       zone.destroy = (void *)zone_destroy;
+       zone.zone_name = "jemalloc_zone";
+       zone.batch_malloc = NULL;
+       zone.batch_free = NULL;
+       zone.introspect = &zone_introspect;
+
+       zone_introspect.enumerator = NULL;
+       zone_introspect.good_size = (void *)zone_good_size;
+       zone_introspect.check = NULL;
+       zone_introspect.print = NULL;
+       zone_introspect.log = NULL;
+       zone_introspect.force_lock = (void *)zone_force_lock;
+       zone_introspect.force_unlock = (void *)zone_force_unlock;
+       zone_introspect.statistics = NULL;
+
+       return (&zone);
+}
+
+__attribute__((constructor))
+void
+jemalloc_darwin_init(void)
+{
+       extern unsigned malloc_num_zones;
+       extern malloc_zone_t **malloc_zones;
+
+       if (malloc_init_hard())
+               abort();
+
+       /*
+        * The following code is *not* thread-safe, so it's critical that
+        * initialization be manually triggered.
+        */
+
+       /* Register the custom zones. */
+       malloc_zone_register(create_zone());
+       assert(malloc_zones[malloc_num_zones - 1] == &zone);
+
+       /*
+        * Shift malloc_zones around so that zone is first, which makes it the
+        * default zone.
+        */
+       assert(malloc_num_zones > 1);
+       memmove(&malloc_zones[1], &malloc_zones[0],
+               sizeof(malloc_zone_t *) * (malloc_num_zones - 1));
+       malloc_zones[0] = &zone;
+}
+#endif

Index: libbase/jemtree.h
===================================================================
RCS file: libbase/jemtree.h
diff -N libbase/jemtree.h
--- /dev/null   1 Jan 1970 00:00:00 -0000
+++ libbase/jemtree.h   29 Apr 2008 16:50:50 -0000      1.1
@@ -0,0 +1,743 @@
+/*     $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $  */
+/*     $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $    */
+/* $FreeBSD: src/sys/sys/tree.h,v 1.7 2007/12/28 07:03:26 jasone Exp $ */
+
+/*-
+ * Copyright 2002 Niels Provos <address@hidden>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef        _SYS_TREE_H_
+#define        _SYS_TREE_H_
+
+/*
+ * This file defines data structures for different types of trees:
+ * splay trees and red-black trees.
+ *
+ * A splay tree is a self-organizing data structure.  Every operation
+ * on the tree causes a splay to happen.  The splay moves the requested
+ * node to the root of the tree and partly rebalances it.
+ *
+ * This has the benefit that request locality causes faster lookups as
+ * the requested nodes move to the top of the tree.  On the other hand,
+ * every lookup causes memory writes.
+ *
+ * The Balance Theorem bounds the total access time for m operations
+ * and n inserts on an initially empty tree as O((m + n)lg n).  The
+ * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
+ *
+ * A red-black tree is a binary search tree with the node color as an
+ * extra attribute.  It fulfills a set of conditions:
+ *     - every search path from the root to a leaf consists of the
+ *       same number of black nodes,
+ *     - each red node (except for the root) has a black parent,
+ *     - each leaf node is black.
+ *
+ * Every operation on a red-black tree is bounded as O(lg n).
+ * The maximum height of a red-black tree is 2lg (n+1).
+ */
+
+#define SPLAY_HEAD(name, type)                                         \
+struct name {                                                          \
+       struct type *sph_root; /* root of the tree */                   \
+}
+
+#define SPLAY_INITIALIZER(root)                                                
\
+       { NULL }
+
+#define SPLAY_INIT(root) do {                                          \
+       (root)->sph_root = NULL;                                        \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_ENTRY(type)                                              \
+struct {                                                               \
+       struct type *spe_left; /* left element */                       \
+       struct type *spe_right; /* right element */                     \
+}
+
+#define SPLAY_LEFT(elm, field)         (elm)->field.spe_left
+#define SPLAY_RIGHT(elm, field)                (elm)->field.spe_right
+#define SPLAY_ROOT(head)               (head)->sph_root
+#define SPLAY_EMPTY(head)              (SPLAY_ROOT(head) == NULL)
+
+/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
+#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {                      \
+       SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);  \
+       SPLAY_RIGHT(tmp, field) = (head)->sph_root;                     \
+       (head)->sph_root = tmp;                                         \
+} while (/*CONSTCOND*/ 0)
+       
+#define SPLAY_ROTATE_LEFT(head, tmp, field) do {                       \
+       SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);  \
+       SPLAY_LEFT(tmp, field) = (head)->sph_root;                      \
+       (head)->sph_root = tmp;                                         \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_LINKLEFT(head, tmp, field) do {                          \
+       SPLAY_LEFT(tmp, field) = (head)->sph_root;                      \
+       tmp = (head)->sph_root;                                         \
+       (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);         \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_LINKRIGHT(head, tmp, field) do {                         \
+       SPLAY_RIGHT(tmp, field) = (head)->sph_root;                     \
+       tmp = (head)->sph_root;                                         \
+       (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);        \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_ASSEMBLE(head, node, left, right, field) do {            \
+       SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
+       SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
+       SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
+       SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
+} while (/*CONSTCOND*/ 0)
+
+/* Generates prototypes and inline functions */
+
+#define SPLAY_PROTOTYPE(name, type, field, cmp)                                
\
+void name##_SPLAY(struct name *, struct type *);                       \
+void name##_SPLAY_MINMAX(struct name *, int);                          \
+struct type *name##_SPLAY_INSERT(struct name *, struct type *);                
\
+struct type *name##_SPLAY_REMOVE(struct name *, struct type *);                
\
+                                                                       \
+/* Finds the node with the same key as elm */                          \
+static __inline struct type *                                          \
+name##_SPLAY_FIND(struct name *head, struct type *elm)                 \
+{                                                                      \
+       if (SPLAY_EMPTY(head))                                          \
+               return(NULL);                                           \
+       name##_SPLAY(head, elm);                                        \
+       if ((cmp)(elm, (head)->sph_root) == 0)                          \
+               return (head->sph_root);                                \
+       return (NULL);                                                  \
+}                                                                      \
+                                                                       \
+static __inline struct type *                                          \
+name##_SPLAY_NEXT(struct name *head, struct type *elm)                 \
+{                                                                      \
+       name##_SPLAY(head, elm);                                        \
+       if (SPLAY_RIGHT(elm, field) != NULL) {                          \
+               elm = SPLAY_RIGHT(elm, field);                          \
+               while (SPLAY_LEFT(elm, field) != NULL) {                \
+                       elm = SPLAY_LEFT(elm, field);                   \
+               }                                                       \
+       } else                                                          \
+               elm = NULL;                                             \
+       return (elm);                                                   \
+}                                                                      \
+                                                                       \
+static __inline struct type *                                          \
+name##_SPLAY_MIN_MAX(struct name *head, int val)                       \
+{                                                                      \
+       name##_SPLAY_MINMAX(head, val);                                 \
+        return (SPLAY_ROOT(head));                                     \
+}
+
+/* Main splay operation.
+ * Moves node close to the key of elm to top
+ */
+#define SPLAY_GENERATE(name, type, field, cmp)                         \
+struct type *                                                          \
+name##_SPLAY_INSERT(struct name *head, struct type *elm)               \
+{                                                                      \
+    if (SPLAY_EMPTY(head)) {                                           \
+           SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;    \
+    } else {                                                           \
+           int __comp;                                                 \
+           name##_SPLAY(head, elm);                                    \
+           __comp = (cmp)(elm, (head)->sph_root);                      \
+           if(__comp < 0) {                                            \
+                   SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, 
field);\
+                   SPLAY_RIGHT(elm, field) = (head)->sph_root;         \
+                   SPLAY_LEFT((head)->sph_root, field) = NULL;         \
+           } else if (__comp > 0) {                                    \
+                   SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, 
field);\
+                   SPLAY_LEFT(elm, field) = (head)->sph_root;          \
+                   SPLAY_RIGHT((head)->sph_root, field) = NULL;        \
+           } else                                                      \
+                   return ((head)->sph_root);                          \
+    }                                                                  \
+    (head)->sph_root = (elm);                                          \
+    return (NULL);                                                     \
+}                                                                      \
+                                                                       \
+struct type *                                                          \
+name##_SPLAY_REMOVE(struct name *head, struct type *elm)               \
+{                                                                      \
+       struct type *__tmp;                                             \
+       if (SPLAY_EMPTY(head))                                          \
+               return (NULL);                                          \
+       name##_SPLAY(head, elm);                                        \
+       if ((cmp)(elm, (head)->sph_root) == 0) {                        \
+               if (SPLAY_LEFT((head)->sph_root, field) == NULL) {      \
+                       (head)->sph_root = SPLAY_RIGHT((head)->sph_root, 
field);\
+               } else {                                                \
+                       __tmp = SPLAY_RIGHT((head)->sph_root, field);   \
+                       (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
+                       name##_SPLAY(head, elm);                        \
+                       SPLAY_RIGHT((head)->sph_root, field) = __tmp;   \
+               }                                                       \
+               return (elm);                                           \
+       }                                                               \
+       return (NULL);                                                  \
+}                                                                      \
+                                                                       \
+void                                                                   \
+name##_SPLAY(struct name *head, struct type *elm)                      \
+{                                                                      \
+       struct type __node, *__left, *__right, *__tmp;                  \
+       int __comp;                                                     \
+\
+       SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
+       __left = __right = &__node;                                     \
+\
+       while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {          \
+               if (__comp < 0) {                                       \
+                       __tmp = SPLAY_LEFT((head)->sph_root, field);    \
+                       if (__tmp == NULL)                              \
+                               break;                                  \
+                       if ((cmp)(elm, __tmp) < 0){                     \
+                               SPLAY_ROTATE_RIGHT(head, __tmp, field); \
+                               if (SPLAY_LEFT((head)->sph_root, field) == 
NULL)\
+                                       break;                          \
+                       }                                               \
+                       SPLAY_LINKLEFT(head, __right, field);           \
+               } else if (__comp > 0) {                                \
+                       __tmp = SPLAY_RIGHT((head)->sph_root, field);   \
+                       if (__tmp == NULL)                              \
+                               break;                                  \
+                       if ((cmp)(elm, __tmp) > 0){                     \
+                               SPLAY_ROTATE_LEFT(head, __tmp, field);  \
+                               if (SPLAY_RIGHT((head)->sph_root, field) == 
NULL)\
+                                       break;                          \
+                       }                                               \
+                       SPLAY_LINKRIGHT(head, __left, field);           \
+               }                                                       \
+       }                                                               \
+       SPLAY_ASSEMBLE(head, &__node, __left, __right, field);          \
+}                                                                      \
+                                                                       \
+/* Splay with either the minimum or the maximum element                        
\
+ * Used to find minimum or maximum element in tree.                    \
+ */                                                                    \
+void name##_SPLAY_MINMAX(struct name *head, int __comp) \
+{                                                                      \
+       struct type __node, *__left, *__right, *__tmp;                  \
+\
+       SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
+       __left = __right = &__node;                                     \
+\
+       while (1) {                                                     \
+               if (__comp < 0) {                                       \
+                       __tmp = SPLAY_LEFT((head)->sph_root, field);    \
+                       if (__tmp == NULL)                              \
+                               break;                                  \
+                       if (__comp < 0){                                \
+                               SPLAY_ROTATE_RIGHT(head, __tmp, field); \
+                               if (SPLAY_LEFT((head)->sph_root, field) == 
NULL)\
+                                       break;                          \
+                       }                                               \
+                       SPLAY_LINKLEFT(head, __right, field);           \
+               } else if (__comp > 0) {                                \
+                       __tmp = SPLAY_RIGHT((head)->sph_root, field);   \
+                       if (__tmp == NULL)                              \
+                               break;                                  \
+                       if (__comp > 0) {                               \
+                               SPLAY_ROTATE_LEFT(head, __tmp, field);  \
+                               if (SPLAY_RIGHT((head)->sph_root, field) == 
NULL)\
+                                       break;                          \
+                       }                                               \
+                       SPLAY_LINKRIGHT(head, __left, field);           \
+               }                                                       \
+       }                                                               \
+       SPLAY_ASSEMBLE(head, &__node, __left, __right, field);          \
+}
+
+#define SPLAY_NEGINF   -1
+#define SPLAY_INF      1
+
+#define SPLAY_INSERT(name, x, y)       name##_SPLAY_INSERT(x, y)
+#define SPLAY_REMOVE(name, x, y)       name##_SPLAY_REMOVE(x, y)
+#define SPLAY_FIND(name, x, y)         name##_SPLAY_FIND(x, y)
+#define SPLAY_NEXT(name, x, y)         name##_SPLAY_NEXT(x, y)
+#define SPLAY_MIN(name, x)             (SPLAY_EMPTY(x) ? NULL  \
+                                       : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
+#define SPLAY_MAX(name, x)             (SPLAY_EMPTY(x) ? NULL  \
+                                       : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
+
+#define SPLAY_FOREACH(x, name, head)                                   \
+       for ((x) = SPLAY_MIN(name, head);                               \
+            (x) != NULL;                                               \
+            (x) = SPLAY_NEXT(name, head, x))
+
+/* Macros that define a red-black tree */
+#define RB_HEAD(name, type)                                            \
+struct name {                                                          \
+       struct type *rbh_root; /* root of the tree */                   \
+}
+
+#define RB_INITIALIZER(root)                                           \
+       { NULL }
+
+#define RB_INIT(root) do {                                             \
+       (root)->rbh_root = NULL;                                        \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_BLACK       0
+#define RB_RED         1
+#define RB_ENTRY(type)                                                 \
+struct {                                                               \
+       struct type *rbe_left;          /* left element */              \
+       struct type *rbe_right;         /* right element */             \
+       struct type *rbe_parent;        /* parent element */            \
+       int rbe_color;                  /* node color */                \
+}
+
+#define RB_LEFT(elm, field)            (elm)->field.rbe_left
+#define RB_RIGHT(elm, field)           (elm)->field.rbe_right
+#define RB_PARENT(elm, field)          (elm)->field.rbe_parent
+#define RB_COLOR(elm, field)           (elm)->field.rbe_color
+#define RB_ROOT(head)                  (head)->rbh_root
+#define RB_EMPTY(head)                 (RB_ROOT(head) == NULL)
+
+#define RB_SET(elm, parent, field) do {                                        
\
+       RB_PARENT(elm, field) = parent;                                 \
+       RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;              \
+       RB_COLOR(elm, field) = RB_RED;                                  \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_SET_BLACKRED(black, red, field) do {                                
\
+       RB_COLOR(black, field) = RB_BLACK;                              \
+       RB_COLOR(red, field) = RB_RED;                                  \
+} while (/*CONSTCOND*/ 0)
+
+#ifndef RB_AUGMENT
+#define RB_AUGMENT(x)  do {} while (0)
+#endif
+
+#define RB_ROTATE_LEFT(head, elm, tmp, field) do {                     \
+       (tmp) = RB_RIGHT(elm, field);                                   \
+       if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) {     \
+               RB_PARENT(RB_LEFT(tmp, field), field) = (elm);          \
+       }                                                               \
+       RB_AUGMENT(elm);                                                \
+       if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {  \
+               if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))     \
+                       RB_LEFT(RB_PARENT(elm, field), field) = (tmp);  \
+               else                                                    \
+                       RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
+       } else                                                          \
+               (head)->rbh_root = (tmp);                               \
+       RB_LEFT(tmp, field) = (elm);                                    \
+       RB_PARENT(elm, field) = (tmp);                                  \
+       RB_AUGMENT(tmp);                                                \
+       if ((RB_PARENT(tmp, field)))                                    \
+               RB_AUGMENT(RB_PARENT(tmp, field));                      \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_ROTATE_RIGHT(head, elm, tmp, field) do {                    \
+       (tmp) = RB_LEFT(elm, field);                                    \
+       if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) {     \
+               RB_PARENT(RB_RIGHT(tmp, field), field) = (elm);         \
+       }                                                               \
+       RB_AUGMENT(elm);                                                \
+       if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {  \
+               if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))     \
+                       RB_LEFT(RB_PARENT(elm, field), field) = (tmp);  \
+               else                                                    \
+                       RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
+       } else                                                          \
+               (head)->rbh_root = (tmp);                               \
+       RB_RIGHT(tmp, field) = (elm);                                   \
+       RB_PARENT(elm, field) = (tmp);                                  \
+       RB_AUGMENT(tmp);                                                \
+       if ((RB_PARENT(tmp, field)))                                    \
+               RB_AUGMENT(RB_PARENT(tmp, field));                      \
+} while (/*CONSTCOND*/ 0)
+
+/* Generates prototypes and inline functions */
+#define        RB_PROTOTYPE(name, type, field, cmp)                            
\
+       RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
+#define        RB_PROTOTYPE_STATIC(name, type, field, cmp)                     
\
+       RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
+#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)            \
+attr void name##_RB_INSERT_COLOR(struct name *, struct type *);                
\
+attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
+attr struct type *name##_RB_REMOVE(struct name *, struct type *);      \
+attr struct type *name##_RB_INSERT(struct name *, struct type *);      \
+attr struct type *name##_RB_FIND(struct name *, struct type *);                
\
+attr struct type *name##_RB_NFIND(struct name *, struct type *);       \
+attr struct type *name##_RB_NEXT(struct type *);                       \
+attr struct type *name##_RB_PREV(struct type *);                       \
+attr struct type *name##_RB_MINMAX(struct name *, int);                        
\
+                                                                       \
+
+/* Main rb operation.
+ * Moves node close to the key of elm to top
+ */
+#define        RB_GENERATE(name, type, field, cmp)                             
\
+       RB_GENERATE_INTERNAL(name, type, field, cmp,)
+#define        RB_GENERATE_STATIC(name, type, field, cmp)                      
\
+       RB_GENERATE_INTERNAL(name, type, field, cmp, static)
+#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)             \
+attr void                                                              \
+name##_RB_INSERT_COLOR(struct name *head, struct type *elm)            \
+{                                                                      \
+       struct type *parent, *gparent, *tmp;                            \
+       while ((parent = RB_PARENT(elm, field)) != NULL &&              \
+           RB_COLOR(parent, field) == RB_RED) {                        \
+               gparent = RB_PARENT(parent, field);                     \
+               if (parent == RB_LEFT(gparent, field)) {                \
+                       tmp = RB_RIGHT(gparent, field);                 \
+                       if (tmp && RB_COLOR(tmp, field) == RB_RED) {    \
+                               RB_COLOR(tmp, field) = RB_BLACK;        \
+                               RB_SET_BLACKRED(parent, gparent, field);\
+                               elm = gparent;                          \
+                               continue;                               \
+                       }                                               \
+                       if (RB_RIGHT(parent, field) == elm) {           \
+                               RB_ROTATE_LEFT(head, parent, tmp, field);\
+                               tmp = parent;                           \
+                               parent = elm;                           \
+                               elm = tmp;                              \
+                       }                                               \
+                       RB_SET_BLACKRED(parent, gparent, field);        \
+                       RB_ROTATE_RIGHT(head, gparent, tmp, field);     \
+               } else {                                                \
+                       tmp = RB_LEFT(gparent, field);                  \
+                       if (tmp && RB_COLOR(tmp, field) == RB_RED) {    \
+                               RB_COLOR(tmp, field) = RB_BLACK;        \
+                               RB_SET_BLACKRED(parent, gparent, field);\
+                               elm = gparent;                          \
+                               continue;                               \
+                       }                                               \
+                       if (RB_LEFT(parent, field) == elm) {            \
+                               RB_ROTATE_RIGHT(head, parent, tmp, field);\
+                               tmp = parent;                           \
+                               parent = elm;                           \
+                               elm = tmp;                              \
+                       }                                               \
+                       RB_SET_BLACKRED(parent, gparent, field);        \
+                       RB_ROTATE_LEFT(head, gparent, tmp, field);      \
+               }                                                       \
+       }                                                               \
+       RB_COLOR(head->rbh_root, field) = RB_BLACK;                     \
+}                                                                      \
+                                                                       \
+attr void                                                              \
+name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type 
*elm) \
+{                                                                      \
+       struct type *tmp;                                               \
+       while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&     \
+           elm != RB_ROOT(head)) {                                     \
+               if (RB_LEFT(parent, field) == elm) {                    \
+                       tmp = RB_RIGHT(parent, field);                  \
+                       if (RB_COLOR(tmp, field) == RB_RED) {           \
+                               RB_SET_BLACKRED(tmp, parent, field);    \
+                               RB_ROTATE_LEFT(head, parent, tmp, field);\
+                               tmp = RB_RIGHT(parent, field);          \
+                       }                                               \
+                       if ((RB_LEFT(tmp, field) == NULL ||             \
+                           RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) 
&&\
+                           (RB_RIGHT(tmp, field) == NULL ||            \
+                           RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) 
{\
+                               RB_COLOR(tmp, field) = RB_RED;          \
+                               elm = parent;                           \
+                               parent = RB_PARENT(elm, field);         \
+                       } else {                                        \
+                               if (RB_RIGHT(tmp, field) == NULL ||     \
+                                   RB_COLOR(RB_RIGHT(tmp, field), field) == 
RB_BLACK) {\
+                                       struct type *oleft;             \
+                                       if ((oleft = RB_LEFT(tmp, field)) \
+                                           != NULL)                    \
+                                               RB_COLOR(oleft, field) = 
RB_BLACK;\
+                                       RB_COLOR(tmp, field) = RB_RED;  \
+                                       RB_ROTATE_RIGHT(head, tmp, oleft, 
field);\
+                                       tmp = RB_RIGHT(parent, field);  \
+                               }                                       \
+                               RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
+                               RB_COLOR(parent, field) = RB_BLACK;     \
+                               if (RB_RIGHT(tmp, field))               \
+                                       RB_COLOR(RB_RIGHT(tmp, field), field) = 
RB_BLACK;\
+                               RB_ROTATE_LEFT(head, parent, tmp, field);\
+                               elm = RB_ROOT(head);                    \
+                               break;                                  \
+                       }                                               \
+               } else {                                                \
+                       tmp = RB_LEFT(parent, field);                   \
+                       if (RB_COLOR(tmp, field) == RB_RED) {           \
+                               RB_SET_BLACKRED(tmp, parent, field);    \
+                               RB_ROTATE_RIGHT(head, parent, tmp, field);\
+                               tmp = RB_LEFT(parent, field);           \
+                       }                                               \
+                       if ((RB_LEFT(tmp, field) == NULL ||             \
+                           RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) 
&&\
+                           (RB_RIGHT(tmp, field) == NULL ||            \
+                           RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) 
{\
+                               RB_COLOR(tmp, field) = RB_RED;          \
+                               elm = parent;                           \
+                               parent = RB_PARENT(elm, field);         \
+                       } else {                                        \
+                               if (RB_LEFT(tmp, field) == NULL ||      \
+                                   RB_COLOR(RB_LEFT(tmp, field), field) == 
RB_BLACK) {\
+                                       struct type *oright;            \
+                                       if ((oright = RB_RIGHT(tmp, field)) \
+                                           != NULL)                    \
+                                               RB_COLOR(oright, field) = 
RB_BLACK;\
+                                       RB_COLOR(tmp, field) = RB_RED;  \
+                                       RB_ROTATE_LEFT(head, tmp, oright, 
field);\
+                                       tmp = RB_LEFT(parent, field);   \
+                               }                                       \
+                               RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
+                               RB_COLOR(parent, field) = RB_BLACK;     \
+                               if (RB_LEFT(tmp, field))                \
+                                       RB_COLOR(RB_LEFT(tmp, field), field) = 
RB_BLACK;\
+                               RB_ROTATE_RIGHT(head, parent, tmp, field);\
+                               elm = RB_ROOT(head);                    \
+                               break;                                  \
+                       }                                               \
+               }                                                       \
+       }                                                               \
+       if (elm)                                                        \
+               RB_COLOR(elm, field) = RB_BLACK;                        \
+}                                                                      \
+                                                                       \
+attr struct type *                                                     \
+name##_RB_REMOVE(struct name *head, struct type *elm)                  \
+{                                                                      \
+       struct type *child, *parent, *old = elm;                        \
+       int color;                                                      \
+       if (RB_LEFT(elm, field) == NULL)                                \
+               child = RB_RIGHT(elm, field);                           \
+       else if (RB_RIGHT(elm, field) == NULL)                          \
+               child = RB_LEFT(elm, field);                            \
+       else {                                                          \
+               struct type *left;                                      \
+               elm = RB_RIGHT(elm, field);                             \
+               while ((left = RB_LEFT(elm, field)) != NULL)            \
+                       elm = left;                                     \
+               child = RB_RIGHT(elm, field);                           \
+               parent = RB_PARENT(elm, field);                         \
+               color = RB_COLOR(elm, field);                           \
+               if (child)                                              \
+                       RB_PARENT(child, field) = parent;               \
+               if (parent) {                                           \
+                       if (RB_LEFT(parent, field) == elm)              \
+                               RB_LEFT(parent, field) = child;         \
+                       else                                            \
+                               RB_RIGHT(parent, field) = child;        \
+                       RB_AUGMENT(parent);                             \
+               } else                                                  \
+                       RB_ROOT(head) = child;                          \
+               if (RB_PARENT(elm, field) == old)                       \
+                       parent = elm;                                   \
+               (elm)->field = (old)->field;                            \
+               if (RB_PARENT(old, field)) {                            \
+                       if (RB_LEFT(RB_PARENT(old, field), field) == old)\
+                               RB_LEFT(RB_PARENT(old, field), field) = elm;\
+                       else                                            \
+                               RB_RIGHT(RB_PARENT(old, field), field) = elm;\
+                       RB_AUGMENT(RB_PARENT(old, field));              \
+               } else                                                  \
+                       RB_ROOT(head) = elm;                            \
+               RB_PARENT(RB_LEFT(old, field), field) = elm;            \
+               if (RB_RIGHT(old, field))                               \
+                       RB_PARENT(RB_RIGHT(old, field), field) = elm;   \
+               if (parent) {                                           \
+                       left = parent;                                  \
+                       do {                                            \
+                               RB_AUGMENT(left);                       \
+                       } while ((left = RB_PARENT(left, field)) != NULL); \
+               }                                                       \
+               goto color;                                             \
+       }                                                               \
+       parent = RB_PARENT(elm, field);                                 \
+       color = RB_COLOR(elm, field);                                   \
+       if (child)                                                      \
+               RB_PARENT(child, field) = parent;                       \
+       if (parent) {                                                   \
+               if (RB_LEFT(parent, field) == elm)                      \
+                       RB_LEFT(parent, field) = child;                 \
+               else                                                    \
+                       RB_RIGHT(parent, field) = child;                \
+               RB_AUGMENT(parent);                                     \
+       } else                                                          \
+               RB_ROOT(head) = child;                                  \
+color:                                                                 \
+       if (color == RB_BLACK)                                          \
+               name##_RB_REMOVE_COLOR(head, parent, child);            \
+       return (old);                                                   \
+}                                                                      \
+                                                                       \
+/* Inserts a node into the RB tree */                                  \
+attr struct type *                                                     \
+name##_RB_INSERT(struct name *head, struct type *elm)                  \
+{                                                                      \
+       struct type *tmp;                                               \
+       struct type *parent = NULL;                                     \
+       int comp = 0;                                                   \
+       tmp = RB_ROOT(head);                                            \
+       while (tmp) {                                                   \
+               parent = tmp;                                           \
+               comp = (cmp)(elm, parent);                              \
+               if (comp < 0)                                           \
+                       tmp = RB_LEFT(tmp, field);                      \
+               else if (comp > 0)                                      \
+                       tmp = RB_RIGHT(tmp, field);                     \
+               else                                                    \
+                       return (tmp);                                   \
+       }                                                               \
+       RB_SET(elm, parent, field);                                     \
+       if (parent != NULL) {                                           \
+               if (comp < 0)                                           \
+                       RB_LEFT(parent, field) = elm;                   \
+               else                                                    \
+                       RB_RIGHT(parent, field) = elm;                  \
+               RB_AUGMENT(parent);                                     \
+       } else                                                          \
+               RB_ROOT(head) = elm;                                    \
+       name##_RB_INSERT_COLOR(head, elm);                              \
+       return (NULL);                                                  \
+}                                                                      \
+                                                                       \
+/* Finds the node with the same key as elm */                          \
+attr struct type *                                                     \
+name##_RB_FIND(struct name *head, struct type *elm)                    \
+{                                                                      \
+       struct type *tmp = RB_ROOT(head);                               \
+       int comp;                                                       \
+       while (tmp) {                                                   \
+               comp = cmp(elm, tmp);                                   \
+               if (comp < 0)                                           \
+                       tmp = RB_LEFT(tmp, field);                      \
+               else if (comp > 0)                                      \
+                       tmp = RB_RIGHT(tmp, field);                     \
+               else                                                    \
+                       return (tmp);                                   \
+       }                                                               \
+       return (NULL);                                                  \
+}                                                                      \
+                                                                       \
+/* Finds the first node greater than or equal to the search key */     \
+attr struct type *                                                     \
+name##_RB_NFIND(struct name *head, struct type *elm)                   \
+{                                                                      \
+       struct type *tmp = RB_ROOT(head);                               \
+       struct type *res = NULL;                                        \
+       int comp;                                                       \
+       while (tmp) {                                                   \
+               comp = cmp(elm, tmp);                                   \
+               if (comp < 0) {                                         \
+                       res = tmp;                                      \
+                       tmp = RB_LEFT(tmp, field);                      \
+               }                                                       \
+               else if (comp > 0)                                      \
+                       tmp = RB_RIGHT(tmp, field);                     \
+               else                                                    \
+                       return (tmp);                                   \
+       }                                                               \
+       return (res);                                                   \
+}                                                                      \
+                                                                       \
+/* ARGSUSED */                                                         \
+attr struct type *                                                     \
+name##_RB_NEXT(struct type *elm)                                       \
+{                                                                      \
+       if (RB_RIGHT(elm, field)) {                                     \
+               elm = RB_RIGHT(elm, field);                             \
+               while (RB_LEFT(elm, field))                             \
+                       elm = RB_LEFT(elm, field);                      \
+       } else {                                                        \
+               if (RB_PARENT(elm, field) &&                            \
+                   (elm == RB_LEFT(RB_PARENT(elm, field), field)))     \
+                       elm = RB_PARENT(elm, field);                    \
+               else {                                                  \
+                       while (RB_PARENT(elm, field) &&                 \
+                           (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
+                               elm = RB_PARENT(elm, field);            \
+                       elm = RB_PARENT(elm, field);                    \
+               }                                                       \
+       }                                                               \
+       return (elm);                                                   \
+}                                                                      \
+                                                                       \
+/* ARGSUSED */                                                         \
+attr struct type *                                                     \
+name##_RB_PREV(struct type *elm)                                       \
+{                                                                      \
+       if (RB_LEFT(elm, field)) {                                      \
+               elm = RB_LEFT(elm, field);                              \
+               while (RB_RIGHT(elm, field))                            \
+                       elm = RB_RIGHT(elm, field);                     \
+       } else {                                                        \
+               if (RB_PARENT(elm, field) &&                            \
+                   (elm == RB_RIGHT(RB_PARENT(elm, field), field)))    \
+                       elm = RB_PARENT(elm, field);                    \
+               else {                                                  \
+                       while (RB_PARENT(elm, field) &&                 \
+                           (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
+                               elm = RB_PARENT(elm, field);            \
+                       elm = RB_PARENT(elm, field);                    \
+               }                                                       \
+       }                                                               \
+       return (elm);                                                   \
+}                                                                      \
+                                                                       \
+attr struct type *                                                     \
+name##_RB_MINMAX(struct name *head, int val)                           \
+{                                                                      \
+       struct type *tmp = RB_ROOT(head);                               \
+       struct type *parent = NULL;                                     \
+       while (tmp) {                                                   \
+               parent = tmp;                                           \
+               if (val < 0)                                            \
+                       tmp = RB_LEFT(tmp, field);                      \
+               else                                                    \
+                       tmp = RB_RIGHT(tmp, field);                     \
+       }                                                               \
+       return (parent);                                                \
+}
+
+#define RB_NEGINF      -1
+#define RB_INF 1
+
+#define RB_INSERT(name, x, y)  name##_RB_INSERT(x, y)
+#define RB_REMOVE(name, x, y)  name##_RB_REMOVE(x, y)
+#define RB_FIND(name, x, y)    name##_RB_FIND(x, y)
+#define RB_NFIND(name, x, y)   name##_RB_NFIND(x, y)
+#define RB_NEXT(name, x, y)    name##_RB_NEXT(y)
+#define RB_PREV(name, x, y)    name##_RB_PREV(y)
+#define RB_MIN(name, x)                name##_RB_MINMAX(x, RB_NEGINF)
+#define RB_MAX(name, x)                name##_RB_MINMAX(x, RB_INF)
+
+#define RB_FOREACH(x, name, head)                                      \
+       for ((x) = RB_MIN(name, head);                                  \
+            (x) != NULL;                                               \
+            (x) = name##_RB_NEXT(x))
+
+#define RB_FOREACH_REVERSE(x, name, head)                              \
+       for ((x) = RB_MAX(name, head);                                  \
+            (x) != NULL;                                               \
+            (x) = name##_RB_PREV(x))
+
+#endif /* _SYS_TREE_H_ */




reply via email to

[Prev in Thread] Current Thread [Next in Thread]