
1. Quadrics

The space you are considering is P3. This is what we call a manifold. A manifold
is some space that locally looks like Rn, for some n. Manifolds thus have patches,
on which they have coordinates that are the local smooth bijections to Rn. So
the surface of the earth is a 2-dimensional manifold. The patches are the northern
hemisphere, and the southern hemisphere.

Life is similar in P3, it locally looks like R3. A point in P3 is a line through the
origin in R4. Such a line is determined by a vector, excluding (0, 0, 0, 0). In fact
that vector is a little too much information because multiples λv of some vector v
result in the same line. That leads to the following notation for a point in P3:

[x0; x1; x2;x3] xi 6= 0i = 1, · · · 4
The brackets notation with the semicolon is there to indicate that [1; 2;−3; π] and
[2; 4;−6; 2π] are the same thing.

For the surface of the earth we had two charts. There are four natural charts on
P3. Take the lines for which xi 6= 0, they make up the chart Ui. For U0 the smooth
bijection is as follows:

(1) [x0; x1; x2;x3] → (
x1

x0
,
x2

x0
,
x3

x0
)

Now if my ellipsoid before had the equation

a2000 + a1100x1 + a1010x2 + a1001x3 + a0200x
2
1 + a0020x

2
2 + a0002x

2
3+(2)

a0110x1x2 + a0011x2x3 + a0101x1x3(3)

then it is the image under the map of equation (1) of the following points in P3:

a2000x
2
0 + a1100x1x0 + a1010x0x2 + a1001x0x3 + a0200x

2
1 + a0020x

2
2 + a0002x

2
3+(4)

a0110x1x2 + a0011x2x3 + a0101x1x3(5)

If I do a projective transformation on R3 as your program does then that corre-
sponds to doing a transformation on P4. Obviously only linear transformations
make sense here. They are given by 4x4 matrices:

B =




b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33




Looking closer at equation (4) we see that it can be written in matrix form as well:

(6) 〈




a2000
1
2a1100

1
2a1010

1
2a1001

1
2a1100 a0200

1
2a0110

1
2a0101

1
2a1010

1
2a0110 a0020

1
2a0011

1
2a1001

1
2a0101

1
2a0011 a0002







x0

x1

x2

x3


 ,




x0

x1

x2

x3


〉 = 0

Now if
[x′0; x

′
1;x

′
2; x

′
3] = B([x0;x1; x2; x3])

then the image of the lines that satisfy (6) is

〈(B−1
)T




a2000
1
2a1100

1
2a1010

1
2a1001

1
2a1100 a0200

1
2a0110

1
2a0101

1
2a1010

1
2a0110 a0020

1
2a0011

1
2a1001

1
2a0101

1
2a0011 a0002


B−1[x′0; x

′
1;x

′
2; x

′
3], [x

′
0; x

′
1;x

′
2; x

′
3]〉

1



2

What I am saying is that storing those ten coefficients is not such a bad idea. It is
easy to compute how they change under a projective transformation.

You ask how to get the principal axes of the ellipsoid from these coefficients, and
whether a projective transformation can transform an ellipsoid into something that
is not an ellipsoid.

For that we move back to the original presentation of the ellipsoid. We are going
to apply some linear algebra to solve the problem.

Proposition 1. If A is a symmetric matrix if and only if, its eigenvectors, the
solutions to A~v = λ~v, are all orthogonal.

Proof. The proof uses complex number and I’ll spare you that one. ¤

Look at equation (2) again. It can be written in the form:

(7) 〈A



x1 − c1

x2 − c2

x3 − c3


 ,




x1 − c1

x2 − c2

x3 − c3


〉 = 1

The eigenvectors of A are the principal vectors of your ellipsoid. The point (c1, c2, c3)
is the center of the ellipsoid. When all the eigenvalues λi are positive this is indeed
an ellipsoid. The square root of the inverse of the eigenvalues are the principal
radii.

2. The Platonic solids

Plato subscribed to the theory that we humans are locked in a cave. The sunlight
is behind us and all we can see are the shades of the real things, the ideas. These
ideas are thus the perfect forms, from which the errant shades are derived. The
platonic solids are such perfect forms. They show up in a lot of places, if you
look a little closer. See the book “Regular Polytopes”, by H.S.M. Coxeter for more
information.

The platonic solids are the cube, the tetrahedron, the octahedron, the dodeca-
hedron and the icosahedron. The platonic solids are all polytopes: convex subsets
defined by linear inequalities. They are made up of vertices, edges and faces. Some
mathematicians like to speak about these as 0-facets, 1-facets and 2-facets: a vertex
is 0-dimensional, an edge is 1-dimensional and a face is 2-dimensional.

The perfectness of the platonic solids lies among many other things in the fol-
lowing properties:

• The faces are all the same regular polygons.
• All edges have the same length.
• All dihedral angles between faces are the same. ( The dihedral angle that

two planes in R3 make is the minimal angle that two normals make. )
Each of these three statements is equivalent, and each of them singles out the
platonic solids as the unique polytopes having that property.

Coordinates for the cube are obviously

(±1,±1,±1)

The tetrahedron has four faces. Its coordinates are:

(0, 1, 0), (0, 0,
√

2), (
1
2

√
3,−1

2
), (−1

2

√
3,−frac12, 0)
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The octahedron has eight faces, and six vertices. One face is

{(0, 0, 1), (0, 1, 0), (0, 0, 1)}
The other faces can be obtained by mirroring through the three coordinate planes
xi = 0, i = 1, 2, 3.

For the last two it becomes handy to introduce the Euler-Poincare formula.
According to this formula the number of vertices, minus the number of edges, plus
the number of faces equals 2.

The dodecahedron is slightly more complicated. It has 12 faces. Those faces
each have 5 edges. So five times the number of faces equals two times the number
of edges. There are thus 30 edges, and by the Euler-Poincaré formula there are 20
vertices.

The faces of the dodecahedron must be regular polygons. They have 5 edges so
they are regular pentagons. A regular pentagon in the plane, whose vertices lie on
a circle with radius 1 centered at the origin, has vertices,

(
cos

2kπ

5
, sin

2kπ

5

)
k = 0, · · · , 4

We leave it to the connoisseurs to take a pentagon and check the following formula:

(8) cos
(π

5

)
=

1
4
(
√

5 + 1)

Note that we use radians here. A right angle no longer is 90o degrees, now it’s π
2 .

We use the trigonometric formulas

cos2 α + sin2 α = 1 cos(2α) = cos2 α− sin2 α sin(2α) = 2 sin α cosα

to find that

(9) sin
(π

5

)
=

1
4

√
10− 2

√
5 sin

(
2π

5

)
=

1
4

√
10− 2

√
5 cos

(
2π

5

)
=

1
4
(1 +

√
5)

Thus we have constructed the points of a regular pentagon. We place the pentagon
at height c. In that way we have ten vertices of the dodecahedron

(
cos

2kπ

5
, sin

2kπ

5
,±c

)
k = 0, · · · , 4

Now we need to find the right height c.
The last platonic solid we want to study is the one with 20 faces: the icosahedron.

Each of those faces has three edges. So three times the number of faces is two times
the number of edges. So there are thirty edges. And according to Euler-Poincaré
there are 12 vertices. The easiest way to get these is to take the vertices:

(0,±c,±1) (±1, 0,±c) (±c,±1, 0)

Here c is again the golden ratio 1
2

(
1 +

√
5
)
.

3. Intersections of ellipses

Suppose we have an ellipse e and an ellipse f in the plane R2. We want to know
where they intersect and how. Basically there are six possibilities, pictured in 1,
all of which we will have to deal with.
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To simplify the problem we put the ellipse E in standard form, it will just be
the standard ellipse with radii ae and be.

(10)
x2

1

a2
e

+
x2

2

b2
e

= 1

For the other ellipse we have two ( orthogonal ) principal axes va and vb, with

Figure 1. The possible intersections of two ellipses

corresponding radii af and bf , and center c. We have seen in the above that
eigenvectors are only determined up to a multiple: if v is an eigenvector of the
matrix A , then 2v is also an eigenvector. It is thus harmless to assume that
‖va‖ = a2

f and similarly ‖vb‖ = b2
f .

Note also that the figure 1 is a bit deceiving. In it the principal axes of e and f
are parallel.

Here’s a bit of terminology. The parabola is a curve in the plane. When we
parameterize it, we write γ(t) = (t, t2). We say that γ is a parameterization of the
parabola. When we write x2−x2

1 = 0 we specify an implicit equation for it. Suppose
we have a parameterization γ = (γ1, γ2) of some curve, and we have another curve
specified by an implicit equation F (x1, x2) = 0, then we can find their intersection
points by solving F (γ1(t), γ2(t)) = 0.

The parameterization of the ellipse f is

t 7→ (c + va cos(t) + vb sin(t))

We now use the implicit equation (10) for the ellipse e to study the intersection.
From the equation for f we have

x1 = c1 + va,1 cos(t) + vb,1 sin(t) x2 = c2 + va,2 cos(t) + vb,2 sin(t)

Hence

x2
1 = c2

1 + v2
a,1 cos2(t) + vb,1 sin2(t)+

2c1va,1 cos(t) + 2c1vb,1 sin(t) + 2va,1vb,1 cos(t) sin(t)
(11)

and

x2
2 = c2

2 + v2
a,2 cos2(t) + vb,2 sin2(t)+

2c2va,2 cos(t) + 2c2vb,2 sin(t) + 2va,2vb,2 cos(t) sin(t)
(12)
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We insert (11) and (12) in (10), to get an expression that involves terms in cos2(t),
sin2(t), cos(t) sin(t), sin(t), cos(t) and some constant. Here is the complete expres-
sion:

cos2(t)

(
v2

a,1

e2
a

+
v2

a,2

e2
b

)
+(13)

sin2(t)

(
v2

b,1

e2
a

+
v2

a,2

e2
b

)
+(14)

cos(t) sin(t)
(

2va,1vb,1

e2
a

+
2va,2vb,2

e2
b

)
+(15)

cos(t))
(

2va,1vb,1

e2
a

+
2va,2vb,2

e2
b

)
+(16)

sin(t)
(

2va,1vb,1

e2
a

+
2va,2vb,2

e2
b

)
+(17)

c2
1

e2
a

+
c2

e2
b

− 1 = 0(18)

The solutions to this equation give some values for t. We can either eliminate cos(t)
from the equation, or sin(t). In both cases we get 4-th degree polynomials in either
cos(t) or sin(t). These can be explicitly solved, alike quadratic polynomials. If you
want the explicit - very lenghty - formulas I can give them to you. In the end you’ll
have extremely accurate,fast code, but it won’t be much fun to program.

Note that the six pictures above correspond exactly to what might happen for
the zeroes of a degree four polynomial.

• There can be no zeroes: x4 + 1.
• There can be one zero: x4

• There can be two zeroes: 1− x4

• There can be two “tangent” zeroes: (x2 − 1)2

• There can be three zeroes: (x− 1)2(x− 2)(x− 3)
• There can be four zeroes: x(x− 1)(x− 2)(x− 3)

Thus that we end up with a degree four polynomial is not very surprising.
It would be advantageous to know in advance what sort of intersections there

are. In particular, if the ellipses e and f become tangent somewhere we would like
to know this in advance. Numerically tangent points are rather ugly beasts. That
is because two curves having a pair of very close intersection points are almost
tangent. In fact, would one take “random” curves, then they would be tangent
with probability 0.

As there can be at most two points where the two ellipses are tangent - where
there more then the ellipses are the same - we have good hopes that these equations
result in much less unwieldly computations.

4. Perspective and transforms


