
Investors’ report
David Kastrup

August & September 2013

My plans for catching up with my delayed reports has not really worked out because of
lots of work needing to get done, so I have now decided to put out two combined reports
after all. If you use the arrival of a report as your reminder for scheduling a payment, try
factoring the double report into your plans. Like with the previous reports, the largest
sum in these reports is actually from a one-time payment distributed across more than
a year.

August
Fixed payments (e)

300
2×200

100
2×50

44
3×25
2×20

3×10 7
1096

Variable plans (e)
25 + 0×50 (target e1200 exceeded in July)

25

Totals e1121

1

mailto:dak@gnu.org

September
Fixed payments (e)

300
2×200
2×150
2×100

75
3×25

24
2×20
4×10
1454

Variable plans (e)
25 + 1×50 (target e1200 missed in August)

75

Totals e1529

So the payments in September have managed to compensate for what has been missing
in August for making ends meet. I have not yet looked at the numbers for October,
though, and I hope that my somewhat sluggish update schedule (and the resulting
double update here) will not cause too much of a hit.
At any rate, at this point of time there is no question that I’ll keep overseeing the

release of 2.18.0 to its completion. It’s not like there isn’t a lot of work after that, but we
are in a good position to see releases of 2.18 appear in the spring updates of GNU/Linux
distributions.

Development results
There has actually been a lot going on these months. Let’s take a look.

August

Calling

git shortlog origin --since 2013/08/01 --until 2013/09/01 -n

in a checkout of the project repository lists 37 commits.
Most of those are general fixes including a tricky garbage-collection related crash,

cleanups and small improvements, but there also a few noteworthy improvements.
I’ll quote a few (related) items from the “Changes” list:

• A number of shorthands like (,), |, [,], ~, \(, \) and others can now freely be
redefined like normal commands. An example would be

"\\{" = (
"\\}" =)

2

"(" = \melisma
")" = \melismaEnd

\new Staff <<
\relative c’ {

c8 \{ d e f \} % slurred
g (a b c) % no slur, but with melisma
c,1 \bar "|."

}
\addlyrics { Li -- ly -- pond. }

>>

pond.
�����

Li

�� � ��
ly

�

• The articulation shorthand for \staccatissimo has been renamed from -| to -!.

• Tempo change ranges are now written as \tempo 4 = 60 - 68 rather than the
previous \tempo 4 = 60 ~ 68 (the difference is the character for indicating the
range).

The first item makes it much easier to experiment with syntax changes or to add
additional functionality or debugging code to existing commands. The last two items
were necessary consequences of implementing the first item but make good sense anyway.
Another usability change can probably best be illustrated by quoting its commit mes-

sage:

commit 95e4b7f9d22b54ae991ac6d1a8026667eadc1e8f
Author: David Kastrup <dak@gnu.org>
Date: Sun Aug 25 19:36:11 2013 +0200

Issue 3517: Parse composite music in context modifications in \notemode

This allows for context mods like

\new Staff \with { \transposition f’ } { c’4 d’ e’ f’ }

It was previously possible (in 2.16 I think) to use simple music expressions like \voiceOne
or \accidentalStyle modern inside of context modifications, but you could not make
use of actual note names.

September

Calling

git shortlog origin --since 2013/09/01 --until 2013/10/01 -n

3

in a checkout of the project repository lists 44 commits: a rather busy month.
The “context modifications in \notemode” change was augmented with

commit 3b617fc949192eacf627413dac0420ebc54aebf6
Author: David Kastrup <dak@gnu.org>
Date: Sun Sep 15 15:53:51 2013 +0200

Issue 3555: Parse context definitions and context modifications in \notemode

Since context modifications and context definitions are somewhat more
concerned with musical content, it makes sense to parse them in a mode
where note names are recognized and can be used in music and scheme
function arguments.

The motivation for this was to be able to write

\new TabStaff \with {
stringTunings = \stringTuning <c’ g’ d’’ a’’>

} ...

which previously required writing

\new TabStaff \with {
stringTunings = \stringTuning \notemode <c’ g’ d’’ a’’>

} ...

The change in August was not helpful for that purpose since \stringTuning is not
actually a music expression but a Scheme function returning a list of pitches.
There were also a surprising number of documentation fixes for arriving at a status

suitable for a stable release, some streamlining of the parser and its behavior, a number of
smaller and more involved bug fixes and changes in behavior, and some work on making
the Scheme function make-music quite more convenient for some common programming
tasks.

Ongoing tasks
LilyPond 2.18 is, of course, still on the agenda. I branched off the release branch from our
main development recently, so it’s not unreasonable to expect seeing an actual release
next month. As you can see from the reactions to this announcement, the long leadup
to the release is grating on everybody’s nerves, but we still had a number of outstanding
issues that needed addressing. We are not actually through with all of them, but it
would appear that we have leads on pretty much everything that’s really important.
The stock “Metapost” program from the TEXlive 2013 release creates quite deficient

fonts for LilyPond (running the tlmgr update manager can fix this for custom instal-
lations of TEXlive). It turns out that exactly this version is what has been released
with Ubuntu 13.10, leading to an included compilation of LilyPond 2.16.2 that comes
with severely defective fonts. We are currently working on damage control. Thanks to
catching the ear of a responsive Ubuntu developer, fixed versions should appear in the

4

http://lists.gnu.org/archive/html/lilypond-devel/2013-10/msg00250.html

distribution updates soon. On the plus side, the long-broken PDF previewer Xpdf has
been released in a working state this time. A backport of its fix to 13.04 has been created
as well, but has not yet made it through the pipelines.

Perspectives
Well, there are a few changes and tasks piling up for the time after releasing 2.18. It is
actually quite embarrassing that we have no version of LilyPond working with GUILE 2.0
(which has been available for several years now) yet: we are still firmly entranched in
working with GUILE 1.8 and are basically the main reason GNU/Linux distributions
still distribute it. There also have been discussions on our mailing lists recently whether
it would make sense to base our issue tracking and review processes on other tools and
platforms. After the release of 2.18, there should be more opportunity for experiments
in that area.
Since we experienced a fair bout of tension with the preparations for 2.18, it might

also be good to rethink out development processes. It is not clear to me, however, that
we can do much better with the limited developer power we have available. At the
current point of time, there is no similarly large project in the queue for 2.19 like the
skyline positioning methods mostly written by Mike Solomon and finally committed to
LilyPond 2.17.1 were.
That makes it somewhat more likely that the next stable release cycle will be able

to shift some focus to further stabilization and projects like the GUILE 2 migration,
possibly also to improvements of tools and workflows.
Two already impressively active projects are the Denemo music notation editor em-

ploying LilyPond as its backend and Frescobaldi, “a LilyPond sheet music text editor”,
both available as Free Software.
If you are interested in their respective area of work and have not looked at them for

a long time, it might be worth revisiting their current offerings.

Thanks
as always for making it possible for me to continue my work. I hope that we’ll soon be
seeing the 2.18 milestone as a result of your dedication.

David Kastrup

5

http://www.denemo.org
http://www.frescobaldi.org

