A More Rational Approach to Policies and Permissions

Currently there are two tables that define who can view, download and edit contributions:

	Policies

id

contributor_id

contributor_type

name

download_public

edit_public

view_public

download_protected

edit_protected

view_protected

created_at

updated_at

share_mode

update_mode
	Permissions

id

contributor_id

contributor_type

policy_id

download

edit

view

created_at

updated_at

· A Policy may have many Permissions through policies.id = permissions.policy_id

· policy.share_mode and policy.update_mode are the radio group options numbers chosen on the sharing tab.

· policy.contributor_id and policy.contributor_type are the contributor of the contribution (e.g. who uploaded the workflow), whereas permissions.contributor_id permissions.contributor_type are the user who is being given permission to the contribution.

Current Issues

1. [download|edit|view]_protected mean different things dependent on the contributable and using the term protected isn't very intuitive to what it represents.

2. Having [download|edit|view]_protected and [download|edit|view]_public means that the table are not properly normalised. There are potentially lots of different types of permitted users. A requested example is logged_in

3. share_mode and update_mode, although make the rendering of the web page less query intensive, could potentially become inconsistent with the actually permissions and policy records and ideally should be removed.

Potential Solution

	Policies

id

contributor_id

contributor_type

name

created_at

updated_at

	Permissions

id

contributor_id

contributor_type

permitted_type

policy_id

download

edit

view

created_at

updated_at

· permitted_type (type is not used as it is reserved) represents the type of permission. It can be one of:

	permitted_type
	description
	permissions. contributor_id
	permissions. contributor_type

	Public
	Everyone (inc. anonymous)
	NULL
	NULL

	Logged_In
	Everyone (exc. anonymous)
	NULL
	NULL

	Friends
	All friends of the contributor
	NULL
	NULL

	User
	A single user
	<user_id>
	User

	Group
	A single group
	<network_id>
	Network

	Groups
	All groups of the contributor
	NULL
	NULL

This resolves issues 1 and 2 cited above. Whether this solves issue 3 is dependent on how the code to support this is written. It should be fairly easy to take the permissions offered on the current sharing tab (with a few additions, e.g. logged in) and produce a policy with associated permissions. Below are a few examples:

Example 1

Everyone can view but you can only download if you are logged in and can only be edited by the contributor:

	permitted_type
	download
	edit
	view

	Public
	0
	0
	1

	Logged_In
	1
	0
	1

* Note that the contributor is assumed to have full permissions.

Example 2

You can only view if you are logged in. You can download if you are a friend or in one of my groups, user 22 and group 5 can edit:

	permitted_type
	contributor_type
	contributor_id
	download
	edit
	view

	Logged_In
	
	
	0
	0
	1

	Friends
	
	
	1
	0
	1

	Groups
	
	
	1
	0
	1

	User
	User
	22
	1
	1
	1

	Group
	Group
	5
	1
	1
	1

Sharing Tab

To retrieve this information from the database should be fairly easy. Get the policy for the contribution and pull down all the permissions. The code to set the correct permissions on the current sharing tab should be something like the following pseudo-code:

Sharing

if Public.exists?

if Public.download? and Public.view?

share_mode=1

elsif Friends.exists?

if Friends.download?

share_mode=2

end

elsif Public.view?

share_mode=9

end

elsif Friends.exists?

if Friends.view? and Friends.download?

share_mode=3

elsif Friends.view?

share_mode=4

end

else

share_mode=7

end

Updating

If Public.exists?

if Public.edit?

update_mode=7

elsif Friends.exists? and Friends.edit?

update_mode=1

end

elsif Friends.exists?

if Friends.edit?

update_mode=7

end

elsif User.exists?

for a_user in Users do

if a_user.edit?

update_mode=5

updating_somefriends[a_user]='checked'

end

end

else

update_mode=6

end

#Group Sharing

If Group.exist?

for a_group in Group do

group_sharing[a_group][:id]='checked'

if a_group.edit?

group_sharing[a_group][:level]=2

elsif

group_sharing[a_group[:level]=1

else

group_sharing[a_group][:level]=0

end

end

end

Obviously if we were to add in Logged_In and other stuff this would become more complicated but not query intensive as only one SQL call is required. Below is a possible new way of laying out the sharing tab, to take advantage of the new database model:

[image: image1.emf]For each permission type a check box is provided. Once this is checked a drop down box of permission options (view, view and download and view, download and edit) is provided.

If USER is checked then a box appears with a blank drop down box and 'none' next to it. Once a user is selected a set of permissions in a drop down box appears. Once a permission type is chosen a new blank drop down box to choose another user appears, so that additional users can be added as necessary.

If GROUP is checked then a box with all the groups that the user belongs to appears. By checking the box for a particular group creates a drop down box of permission types.

This is only a first attempt at a sharing form, I am sure there are issues I have missed, so feel free to comment.

Checking Permissions for a Request

If you needed to use this to determine whether a certain request should be allowed by a user all you have to do is retrieve all the permissions again and check for that permission by looking at each permission record in the following order:

1. Public

2. Logged_In

3. Friends

· SQL call to see if current_user is a friend

4. User

· Iterate through all User permission records that have the required permission

· Compare current_user id to permissions.contributor_id

5. Group

· Iterate through all Group permission records

· Test to see if current_user belongs to any of the groups that have the required permission

6. Groups

· SQL call to get all the groups of the contributor

· Test to see if the current_user is a member of any of these groups.

It is only necessary to keep checking permissions until we know a particular permission type is allowed. The above list only needs to be exhausted to prove that a particular permission for a user on a contribution doesn't exist.

