/* Copyright (C) 1994-2013 John W. Eaton Copyright (C) 2008-2009 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include "dRowVector.h" #include "dbleCHOL.h" #include "f77-fcn.h" #include "lo-error.h" #include "oct-locbuf.h" #include "oct-norm.h" #ifndef HAVE_QRUPDATE #include "dbleQR.h" #endif extern "C" { F77_RET_T F77_FUNC (dpotrf, DPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dpotri, DPOTRI) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dpocon, DPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, const double&, double&, double*, octave_idx_type*, octave_idx_type& F77_CHAR_ARG_LEN_DECL); #ifdef HAVE_QRUPDATE F77_RET_T F77_FUNC (dch1up, DCH1UP) (const octave_idx_type&, double*, const octave_idx_type&, double*, double*); F77_RET_T F77_FUNC (dch1dn, DCH1DN) (const octave_idx_type&, double*, const octave_idx_type&, double*, double*, octave_idx_type&); F77_RET_T F77_FUNC (dchinx, DCHINX) (const octave_idx_type&, double*, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&); F77_RET_T F77_FUNC (dchdex, DCHDEX) (const octave_idx_type&, double*, const octave_idx_type&, const octave_idx_type&, double*); F77_RET_T F77_FUNC (dchshx, DCHSHX) (const octave_idx_type&, double*, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, double*); #endif } octave_idx_type CHOL::init (const Matrix& a, bool upper, bool calc_cond) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (a_nr != a_nc) { (*current_liboctave_error_handler) ("CHOL requires square matrix"); return -1; } octave_idx_type n = a_nc; octave_idx_type info; chol_mat.clear (n, n); is_upper = upper; for (octave_idx_type j = 0; j < n; j++) { if (upper) { for (octave_idx_type i = 0; i <= j; i++) chol_mat.xelem (i, j) = a(i, j); for (octave_idx_type i = j+1; i < n; i++) chol_mat.xelem (i, j) = 0.0; } else { for (octave_idx_type i = 0; i < j; i++) chol_mat.xelem (i, j) = 0.0; for (octave_idx_type i = j; i < n; i++) chol_mat.xelem (i, j) = a(i, j); } } double *h = chol_mat.fortran_vec (); // Calculate the norm of the matrix, for later use. double anorm = 0; if (calc_cond) anorm = xnorm (a, 1); if (upper) F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, info F77_CHAR_ARG_LEN (1))); else F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1), n, h, n, info F77_CHAR_ARG_LEN (1))); xrcond = 0.0; if (info > 0) chol_mat.resize (info - 1, info - 1); else if (calc_cond) { octave_idx_type dpocon_info = 0; // Now calculate the condition number for non-singular matrix. Array z (dim_vector (3*n, 1)); double *pz = z.fortran_vec (); Array iz (dim_vector (n, 1)); octave_idx_type *piz = iz.fortran_vec (); if (upper) F77_XFCN (dpocon, DPOCON, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, anorm, xrcond, pz, piz, dpocon_info F77_CHAR_ARG_LEN (1))); else F77_XFCN (dpocon, DPOCON, (F77_CONST_CHAR_ARG2 ("L", 1), n, h, n, anorm, xrcond, pz, piz, dpocon_info F77_CHAR_ARG_LEN (1))); if (dpocon_info != 0) info = -1; } return info; } static Matrix chol2inv_internal (const Matrix& r, bool upper ) { Matrix retval; octave_idx_type r_nr = r.rows (); octave_idx_type r_nc = r.cols (); if (r_nr == r_nc) { octave_idx_type n = r_nc; octave_idx_type info = 0; Matrix tmp = r; double *v = tmp.fortran_vec (); if (info == 0) { if (upper) F77_XFCN (dpotri, DPOTRI, (F77_CONST_CHAR_ARG2 ("U", 1), n, v, n, info F77_CHAR_ARG_LEN (1))); else F77_XFCN (dpotri, DPOTRI, (F77_CONST_CHAR_ARG2 ("L", 1), n, v, n, info F77_CHAR_ARG_LEN (1))); // If someone thinks of a more graceful way of doing this (or // faster for that matter :-)), please let me know! // Who is me? :) Yes there are faster ways. Are you sure you want to // know about them ?? if (n > 1) { if (upper) { for (octave_idx_type j = 0; j < r_nc; j++) for (octave_idx_type i = j+1; i < r_nr; i++) tmp.xelem (i, j) = tmp.xelem (j, i); } else { for (octave_idx_type j = 0; j < r_nc; j++) for (octave_idx_type i = j+1; i < r_nr; i++) tmp.xelem (j, i) = tmp.xelem (i, j); } } retval = tmp; } } else (*current_liboctave_error_handler) ("chol2inv requires square matrix"); return retval; } // Compute the inverse of a matrix using the Cholesky factorization. Matrix CHOL::inverse (void) const { return chol2inv_internal (chol_mat, is_upper); } void CHOL::set (const Matrix& R) { if (R.is_square ()) chol_mat = R; else (*current_liboctave_error_handler) ("CHOL requires square matrix"); } #ifdef HAVE_QRUPDATE void CHOL::update (const ColumnVector& u) { octave_idx_type n = chol_mat.rows (); if (u.length () == n) { ColumnVector utmp = u; OCTAVE_LOCAL_BUFFER (double, w, n); F77_XFCN (dch1up, DCH1UP, (n, chol_mat.fortran_vec (), chol_mat.rows (), utmp.fortran_vec (), w)); } else (*current_liboctave_error_handler) ("cholupdate: dimension mismatch"); } octave_idx_type CHOL::downdate (const ColumnVector& u) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () == n) { ColumnVector utmp = u; OCTAVE_LOCAL_BUFFER (double, w, n); F77_XFCN (dch1dn, DCH1DN, (n, chol_mat.fortran_vec (), chol_mat.rows (), utmp.fortran_vec (), w, info)); } else (*current_liboctave_error_handler) ("cholupdate: dimension mismatch"); return info; } octave_idx_type CHOL::insert_sym (const ColumnVector& u, octave_idx_type j) { octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () != n + 1) (*current_liboctave_error_handler) ("cholinsert: dimension mismatch"); else if (j < 0 || j > n) (*current_liboctave_error_handler) ("cholinsert: index out of range"); else { ColumnVector utmp = u; OCTAVE_LOCAL_BUFFER (double, w, n); chol_mat.resize (n+1, n+1); F77_XFCN (dchinx, DCHINX, (n, chol_mat.fortran_vec (), chol_mat.rows (), j + 1, utmp.fortran_vec (), w, info)); } return info; } void CHOL::delete_sym (octave_idx_type j) { octave_idx_type n = chol_mat.rows (); if (j < 0 || j > n-1) (*current_liboctave_error_handler) ("choldelete: index out of range"); else { OCTAVE_LOCAL_BUFFER (double, w, n); F77_XFCN (dchdex, DCHDEX, (n, chol_mat.fortran_vec (), chol_mat.rows (), j + 1, w)); chol_mat.resize (n-1, n-1); } } void CHOL::shift_sym (octave_idx_type i, octave_idx_type j) { octave_idx_type n = chol_mat.rows (); if (i < 0 || i > n-1 || j < 0 || j > n-1) (*current_liboctave_error_handler) ("cholshift: index out of range"); else { OCTAVE_LOCAL_BUFFER (double, w, 2*n); F77_XFCN (dchshx, DCHSHX, (n, chol_mat.fortran_vec (), chol_mat.rows (), i + 1, j + 1, w)); } } #else void CHOL::update (const ColumnVector& u) { warn_qrupdate_once (); octave_idx_type n = chol_mat.rows (); if (u.length () == n) { init (chol_mat.transpose () * chol_mat + Matrix (u) * Matrix (u).transpose (), false); } else (*current_liboctave_error_handler) ("cholupdate: dimension mismatch"); } static bool singular (const Matrix& a) { for (octave_idx_type i = 0; i < a.rows (); i++) if (a(i,i) == 0.0) return true; return false; } octave_idx_type CHOL::downdate (const ColumnVector& u) { warn_qrupdate_once (); octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () == n) { if (singular (chol_mat)) info = 2; else { info = init (chol_mat.transpose () * chol_mat - Matrix (u) * Matrix (u).transpose (), false); if (info) info = 1; } } else (*current_liboctave_error_handler) ("cholupdate: dimension mismatch"); return info; } octave_idx_type CHOL::insert_sym (const ColumnVector& u, octave_idx_type j) { warn_qrupdate_once (); octave_idx_type info = -1; octave_idx_type n = chol_mat.rows (); if (u.length () != n + 1) (*current_liboctave_error_handler) ("cholinsert: dimension mismatch"); else if (j < 0 || j > n) (*current_liboctave_error_handler) ("cholinsert: index out of range"); else { if (singular (chol_mat)) info = 2; else { Matrix a = chol_mat.transpose () * chol_mat; Matrix a1 (n+1, n+1); for (octave_idx_type k = 0; k < n+1; k++) for (octave_idx_type l = 0; l < n+1; l++) { if (l == j) a1(k, l) = u(k); else if (k == j) a1(k, l) = u(l); else a1(k, l) = a(k < j ? k : k-1, l < j ? l : l-1); } info = init (a1, false); if (info) info = 1; } } return info; } void CHOL::delete_sym (octave_idx_type j) { warn_qrupdate_once (); octave_idx_type n = chol_mat.rows (); if (j < 0 || j > n-1) (*current_liboctave_error_handler) ("choldelete: index out of range"); else { Matrix a = chol_mat.transpose () * chol_mat; a.delete_elements (1, idx_vector (j)); a.delete_elements (0, idx_vector (j)); init (a, false); } } void CHOL::shift_sym (octave_idx_type i, octave_idx_type j) { warn_qrupdate_once (); octave_idx_type n = chol_mat.rows (); if (i < 0 || i > n-1 || j < 0 || j > n-1) (*current_liboctave_error_handler) ("cholshift: index out of range"); else { Matrix a = chol_mat.transpose () * chol_mat; Array p (dim_vector (n, 1)); for (octave_idx_type k = 0; k < n; k++) p(k) = k; if (i < j) { for (octave_idx_type k = i; k < j; k++) p(k) = k+1; p(j) = i; } else if (j < i) { p(j) = i; for (octave_idx_type k = j+1; k < i+1; k++) p(k) = k-1; } init (a.index (idx_vector (p), idx_vector (p)), false); } } #endif Matrix chol2inv (const Matrix& r) { return chol2inv_internal (r); }