
Parallelizing Econometric Computations: MPITB for

GNU Octave

Michael Creel

18th November 2004

1 Introduction

The use of parallel computation within economics and econometrics in particular has a relatively

long history1, but it is clear that a relatively small part of the computational work done in eco-

nomics makes use of parallel computing. Within research that uses computational methods, the

set of problems that researchers are willing to investigate at a point in time is determined in part

by the amount of computational time that is needed to solve the problems. Parallel computing

offers the possibility of solving more computationally challenging problems in a reasonable time

frame, relative to ordinary serial computing. However, the adoption of a tool depends not only

upon its efficacy, but also upon the effort and time needed to master its use. It seems that parallel

computing tools have historically had too steep a learning curve to allow for their adoption by

a significant proportion of the general body of researchers. This has the effect of limiting the

computational complexity of the set of problems that are on the mainstream research agenda.

This paper hopes to make four main points:

1. parallel computing implemented as distributed computing on a cluster of commodity com-

puters can offer important reductions in the time to complete computations

2. some econometric problems of central interest are ”embarassingly parallelizable”

3. high-level, interpreted matrix programming languages2 can be extended to make use of

parallel computing
1See Nagurney (1996); Doornik, et. al. (2002 and forthcoming); and Stern (2002) for citations of applied work that uses

parallel computing.
2Examples are MATLAB (TM, the Mathworks, Inc.), Ox (TM OxMetrics Technologies, Ltd.) and GNU Octave (�������������	�
���������).

1

1 INTRODUCTION 2

4. parallelization can in some cases be hidden from end users

None of these points is new to this paper, but this paper explores their intersection with a focus

somewhat different from that of previous work.

Points 2 and 3 will be addressed below, but the other two points deserve comment here. With

regard to the first point, Moore’s Law is an empirical regularity that predicts that the performance

of CPU’s grows at an annual rate of roughly 50%. In order to achieve a 10-fold improvement in

computational performance of a certain class of computer, one would need to wait nearly 5 years

and then purchase a new computer of a comparable class. This paper shows with examples that

a 10 fold improvement in performance can be achieved immediately, using distributed parallel

computing and a high-level interpreted matrix programming language. This allows the research

agenda on computationally complex problems to accelerate beyond what would be possible us-

ing serial computing.

With regard to the fourth point, hiding parallelization is probably essential to making use of

parallel computing attractive to ordinary users of high level matrix programming languages. The

examples of how this may be done are probably the most important contribution of this paper.

Of course, someone must do the underlying parallel programming, though. Swann (2002) notes

that the decision about whether or not a program should be written to use parallel computing

depends both upon the speedup that can be obtained as well as upon the added programming

time needed to implement parallelization. An additional point is how often the final program is

to be used. If it is possible to parallelize algorithms and methods of general interest that may be

used many times by many people, and if the implementation is such that end users do not have to

deal with the underlying parallelization, then the programming effort of a small body of people

who know how to write parallel programs can be benefitted from by a much larger group of end

users. There are economies of scope in such cases. The paper shows that estimation by maximum

likelihood (ML) or generalized method of moments (GMM) and Monte Carlo simulations can all

be transparently parallelized. Such tasks clearly have a wide scope.

While most readers will probably be interested in observing the speed gains that are possible,

and in knowing how to use the programs, some readers will be interested in how the paralleliza-

tion is done, so that they may write their own code. The ML example is discussed in detail for

these last readers.

2 SOFTWARE ENVIRONMENT 3

2 Software environment

This paper focuses on examples from econometrics, but the methods could certainly be applied to

other areas in economics and other disciplines. Econometric computations in research work are

commonly done using high-level interpreted matrix programming languages such as MATLAB,

GAUSS (TM Aptech Systems, Inc.), Ox, Octave, and others. These languages offer an intuitive

programming syntax, and quite good performance of code that is vectorized. There is also a

smaller but nevertheless considerable body of work that uses compiled languages such as FOR-

TRAN and C. Compiled languages usually offer better performance than interpreted languages,

depending upon the extent to which code can be vectorized. However, interpreted languages

usually provide means to dynamically link to C or FORTAN code, so that bottlenecks3 in inter-

preted code can be removed. Thus, interpreted languages are popular even with researchers who

need the speed that C and FORTRAN can provide.

The Message Passing Interface (Message Passing Interface Forum, 1997) is a specification of a

mechanism for passing instructions and data between the nodes of a cluster of computers. This

specification has been implemented in a number of packages, including LAM/MPI (LAM team,

2004) and MPICH (Gropp, et. al., 1996). These packages provide libraries of C and FORTRAN

functions, along with support programs to use the functions. To make direct use of the libraries,

one must program in C, C++, or FORTAN.

MPI capabilities can be brought to interpreted matrix programming languages through the

dynamic linking capabilities of these languages. The library functions of the MPI packages can

be incorporated in dynamic extensions, in the ordinary way the languages link to C, C++ or FOR-

TRAN code. This has been done using the LAM/MPI implementation of MPI to create the MPI

Toolbox (MPITB) by Fernández Baldomero et. al. (2002 and 2004) for the MATLAB and GNU

Octave languages, respectively. These packages provide bindings for almost all of the MPI-1.2

specification, and for some of the MPI-2 specification (in particular, MPI_Comm_spawn is sup-

ported). Doornik et. al. (2002 and undated) have developed bindings to a subset of the MPICH

implementation of the MPI-1.2 specification for the Ox language. It appears that MPITB is at the

moment the most complete and functional set of MPI bindings for a high-level interpreted matrix

programming language.

This paper uses MPITB for GNU Octave for its examples. This choice is motivated primarily

by its completeness and functionality, and by the fact that both MPITB and GNU Octave are

3Loops are the most common cause of performance bottleneck in interpreted languages.

2 SOFTWARE ENVIRONMENT 4

“free” software, even for commercial users. This means that their source code is available and

modifiable, subject to some restrictions which require that new software that incorporates parts of

MPITB or Octave must also be made freely available. This licensing guarantees that development

of the software can always be continued by anyone who is interested in doing so. The availability

of the source code for MPITB is also interesting in that it serves as an example of how bindings

could be written for new implentations of the MPI standard.4 The rest of this section briefly

describes the rest of the software environment that is used to obtain the results presented in the

subsequent sections.

2.1 GNU Octave

GNU Octave is a freely available high-level interpreted matrix programming language that has a

syntax that is mostly compatible with MATLAB’s. Programs written in MATLAB will usually run

directly in Octave, though they sometimes need minor editing. It may be also be the case that

a program may depend on third-party software for MATLAB that is not available for Octave.

Nevertheless, Octave provides a foundation for programming that is essentially equivalent to

that provided by MATLAB, and as such, it should be clear that Octave is a language suitable

for doing econometrics.5 There is no reason that an active body of users could not develop a

well-rounded set of econometric extensions similar to those that exist for MATLAB, GAUSS and

Ox, for example. The ������������������ ��� package available at !�"�"#%$�& &'�������'��)(�*+�+,����������"���-(/.�'��&
provides many extensions and applications, some of which are useful for econometrics. The

code it contains is also freely available (most of it is licensed according to the GNU General

Public License). In particular, the minimization functions and serial versions of the ML and

GMM functions that are used below are contained in the �������'��������'� �� package. Both Octave

and the ���0���'�����0��'� ��� extensions will run under the Windows, Linux and Mac OS X operating

systems.

2.2 ParallelKnoppix

The parallel versions of the example programs for econometrics require a computing environ-

ment that supports MPI-based parallel processing. Two possibilities are to use a single sym-

metric multiprocessor (SMP) computer, or to use a cluster of computers for distributed parallel
4The Open MPI project at 1 ����2�3�4�4�����������25��6�798:2�;��������54 is a very promising new implementation of MPI-2. It would

be desirable to have Octave bindings to this implementation’s functions. MPITB could serve as an example to anyone
who would like to do this.

5Eddelbuettel (2000) discusses the use of Octave for econometric work.

3 THREE EXAMPLE PROBLEMS: DESCRIPTION 5

processing. The SMP solution is simple to use, since software only has to be installed on a sin-

gle computer, but the speedup that can be obtained is limited by the number of processors the

machine has.

The distributed solution has the advantage that many processors may be accessed. Univer-

sities often have large arrays of ordinary desktop computers available for the use of student.

ParallelKnoppix (Creel, 2004) is a bootable CD that allows creation of a Linux cluster for MPI

parallel processing on a network of computers of the IA-32 architecture (e.g., Intel Pentium or

Xeon, or AMD Athlon or Duron computers) in roughly ten minutes. The cluster can be made up

of homogeneous or heterogeneous computers, and they need not have Linux installed. When the

cluster is shut down, the machines are in their original state6, so use of the machines for cluster-

ing does not interfere with their ordinary use. ParallelKnoppix may be modified to add software

packages and data. A version of ParallelKnoppix was created that contains LAM/MPI, Octave,

MPITB and all the program examples discussed below. This CD was used to generate the results

that are reported below, and using it is the most convenient means of replicating the results.7

3 Three example problems: description

This section introduces the three example problems, and shows that they are ”embarrassingly

parallelizable”, which simple means that parallelization is relatively easy to implement.

3.1 Monte Carlo

A Monte Carlo study involves repeating a random experiment many times under identical condi-

tions. In this paper, we assume that the experiment to be repeated can be written as a function of

some input arguments, and that the result is a vector of outputs. Doornik et. al. (2002) argue that

a Monte Carlo experiment done on a cluster should give numerically identical results to those of

the experiment done on a single computer. My opinion is that Monte Carlo experiments should

always be repeated enough times to verify that the set of random draws used in a given trial does

not influence the results in any important way. If this is done, then it is not necessary to control

the values of the random draws in individual experiments. The need to repeat the experiment
6This is true except for the computer the CD is booted on, where a working directory is created. This computer may

be returned to its original state by deleting the working directory. Or the working directory may be left on the computer
so that it is available for use in future sessions.

7An image of this CD is available at 1 ����2�3�4�4�25	������5� �=<5	�>��?�5@�4A8+��������B�4�C5	���	:B�B���B�D�6:��2�2�;FE:4A8:2�;9��>:G�25	�25�����H;�@�� . This im-
age is about 600 MB in size.

3 THREE EXAMPLE PROBLEMS: DESCRIPTION 6

several times does add interest to the possibility of making the experiment execute more rapidly,

though. In this paper, interest centers on how to make the experiment run in parallel, rather than

on the issue of how random numbers are generated. In what follows, we provide an example

where each run gives results that at numerically slightly different.8

Listing 1 shows a function that generates data according to the classical linear regression

model, finds the OLS estimator of the coefficients and the error variance, and returns the result.

This function is illustrative of the format that will be required for Monte Carlo simulation of

a function: it receives a single argument, and it returns a row vector that holds the results of

one random simulation. The single argument in this case is a cell array that hold a fixed set

of regressors in its first position, and a fixed true coefficient vector in the second position. It

generates a random result though a process that is internal to the function, and it report some

output in a row vector. Subsequent calls to this function are independent of one another, and

clearly can be executed on different processors. A set of R calls to this function is obviously

parallelizable.

1 I:J0K'L5M�NPO�K O�J+M:Q0J+MSRTO0U�V�W LYX/I+ZP[P\0]+V�^
2 _T]�`5K�`:\�[PM�`ba�[:M�[b[+L0L:O:\0a�N�K�]cM+OcLPUP[�V0V0N0L:[0UdW O:a�`�U
3 ecRfI+Z:[P\0]�V�g'h�i�j
4 M:k�`PM�[cRlI+ZP[P\P]�V0g0m0iYj
5 `5Q"V0NPUPO�KnR \�[5K�a:K XH\+O5o�VYXHe"^�p�h:^�j
6 qcRfe�r:M5k�`PM�[bsf`5Q"V0N:U0O�Ktj
7 _b`+V5M�N�W"[PM�`fu+qbv5w�x
8 y�uzp{V0N�]�V5|�}cRTO0U�VYXHq~p/e'^�j
9 _T\�`+V�J�U:M�VbO:IcN�K+M�`P\0`+V5M

10 O�J+M:Q0J�MSR�y�uz�0p�V0N5]�V�|�}�j
11 `5K+aPI:J0K"L5M+NPO�K

Listing 1: DGP for OLS Monte Carlo

8The ParallelKnoppix CD mentioned above contains a Monte Carlo function that ensures that a given set of random
draws is used. Results are comparable to those in the paper, but are omitted to save space.

3 THREE EXAMPLE PROBLEMS: DESCRIPTION 7

3.2 ML

For a sample {(yt, xt)}n that represents n observations on a set of dependent and explanatory

variables, the maximum likelihood estimator of the parameter θ0can be defined as

θ̂ = arg max sn(θ)

where

sn(θ) =
1
n

n

∑
t=1

ln f (yt|xt, θ)

Here, yt may be a vector of random variables, and the model may be dynamic since xt may

contain lags of yt. As Swann (2002) points out, this can be broken into sums over blocks of

observations, for example two blocks:

sn(θ) =
1
n

{(

n1

∑
t=1

ln f (yt|xt, θ)

)

+

(

n

∑
t=n1+1

ln f (yt|xt, θ)

)}

Analogously, we can define up to n blocks. Again following Swann, parallelization can be done

by calculating each block on separate computers.

3.3 GMM

For a sample as above, the GMM estimator of the K-dimensional parameter θ0 can be defined as

θ̂ ≡ arg min
Θ

sn(θ)

where

sn(θ) = mn(θ)′Wnmn(θ)

and

mn(θ) =
1
n

n

∑
t=1

mt(yt|xt, θ)

is a g-vector, g ≥ K, with Eθmn(θ) = 0, and Wn converges almost surely to a finite g× g symmetric

positive definite matrix W∞. Since mn(θ) is an average, it can obviously be computed blockwise,

using for example 2 blocks:

mn(θ) =
1
n

{(

n1

∑
t=1

mt(yt|xt, θ)

)

+

(

n

∑
t=n1+1

mt(yt|xt, θ)

)}

4 HIDDEN PARALLELIZATION 8

Likewise, we may define up to n blocks, each of which could potentially be computed on a

different machine.

Thus we see that the three problems have a structure that can easily be parallelized.

4 Hidden parallelization

This section illustrates that the example problems can be executed in parallel transparently to

the user. Functions that implement the three examples serially and in parallel are called, and the

results are compared.

4.1 Monte Carlo

Listing 2 show an Octave script that executes a Monte Carlo study of the OLS estimator, using

the function listed in Listing 1. The main thing to notice about this script is that lines 10 and 14

call the function ����.��� �����'���'�)(The last argument of this function is the number of slave hosts to

use9. We see that running the Monte Carlo study on one or more processors is transparent to the

user - he or she must only indicate how many processors are to be used.

1 _�KPJ:W+u�`P\�O5I�W O�K+M0`SL:[P\+UPOf\�`5Q'U0N0L:[PM�N:O�K"V
2 \�`5Q'VfR�h��0�P�0��j
3 _cVPN5��`SO:Ifa�[PM�[dW'[PM0\�N5e
4 KSRT�0��j
5 �SRT��j
6 _fMP\:J�`�LPOP`:I0I�N0L0N5`5K+M�VT[5K�abI�N5e�`:aca�[PM�[dW'[PM0\�N5e
7 M:k�`:M�[bRcO�K+`+VYX��zp�h:^�j
8 ebR�yHO�K�`+VYX�Kzp�hP^ \0[5K+a X�K�p�� ��hP^�}~j
9 _f\5J0KnO�KfW'[+V5M�`P\

10 O�J+M5Q0J+MSR�W"O�K+M�`+L5[P\+U0O~X ��O0U0V�WL"� pAg5e�p�M:k�`:M�[+iYp�\�`�Q"VYp��'^j
11 W"`0[�K'Z�VTR W'`0[5K XAO�J�M:Q0J+M ^��0j
12 ��[P\�Z�VfRT��[:\~XFO�J+M:QPJ+M ^��0j
13 _f\5J0KnO�KfW'[+V5M�`P\b[5K+aSO�K+`SVPUP[P�0`
14 O�J+M5Q0J+MSR�W"O�K+M�`+L5[P\+U0O~X ��O0U0V�WL"� pAg5e�p�M:k�`:M�[+iYp�\�`�Q"VYp�hP^j
15 W"`0[�K'Z�QnR W'`0[5K XAO�J�M:Q0J+M ^��0j
16 ��[P\�Z�Q�RT��[:\~XFO�J+M:QPJ+M ^��0j

9The total number of processors used to obtain the results is the number of slaves plus one, the processor that runs the
original instance of Octave.

4 HIDDEN PARALLELIZATION 9

17 Q+\�N�K+M0I�X ����O�K+M�`b�0[:\+U0Of\�`�V�J'U:M�V~��W"`0[5KnO5Ic�Pab\�`�Q'U�N0L:[:M�NPO�K"V��5K�� p�\�`�Q"V�^�j
18 _�Q�\�N�K+Mc\�`�V�J'U:M�V
19 UP[5u+`�U�VTR V�M0\+m�W"[:M X ���+`0[5K�XFV+^�� p ���+`0[5K�X�Q^+� p �9�+[P\z fXAV�^+� p ����[P\� TX�Q^�� ^�j
20 Q+\�`:M0M0q:Q+\+N�K+M+Z�L~X+y=W'`0[5K'Z�V�W'`0[5K'Z�Qc��[P\+Z�Vf�0[P\+Z�Q�}~p�UP[5u�`0U�V'^�j

Listing 2: OLS Monte Carlo

Running this last script gives the output in Listing 3. There is a bit of a difference between

the serial and parallel results, which indicates that 10,000 replications is perhaps not enough for

acceptable precision. Note that the regressor matrix is fixed across replications, which is why the

variances of the coefficients are different.

1 ��O�K�M�`b�0[P\�U0OT\�`+V�J�U:M�V�� W"`P[5K O:Inh��0�0�0�b\0`5Q'U�N0L5[PM�NPO�K'V
2 �+`0[5K XFV+^ �+`P[5K X�Q^¡�+[P\� TXAV+^¡�+[:\z TX�Q^
3 h� H�0�P� �~ £¢0¢0¤ �~ H�"h�¤ �~ H�'h�m
4 �~ H¢0¤P¢ �~ £¢0¢0¤ �~ H�0¢�¥ �~ H�P¤0¤
5 h� H�"h�¦ h� £�0�0§ �~ /¥P¤0¨ �~ /¥:¤"h
6 h� H�0�'h h� £�0�0� �~ H�0¨P¦ �~ H�P¨P¦

Listing 3: OLS Monte Carlo Results

4.2 ML

Listing 4 shows an Octave script that calculates the maximum likelihood estimator of a param-

eter. The data is read, the name of the density function is provided in the variable �Y�"©�� , and

some controls are set. In line 7, the function �~�"��'��*���ª��Y�'��� performs ordinary calculation of

the ML estimator using the computer from which the script is run, while in line 9 the function

�~�"� �"��*���ª����'�����#��'�� �"�"�� does the estimation using one or more computers, where the last argu-

ment of the function is the number of slave computers, in this case 1. A person who runs the

program sees no parallel programming code - the parallelization is transparent to the end user,

beyond having to select the number of slave computers.

1 U0OP[:a a�[PM�[~j _cU0OP[:abM:k�`Ta0[PM�[
2 LPO�K�M0\+O0UbRTg «�K+I p/�Yp�hp�h�i�j _bLPO�K+MP\+O0U�VfI+O5\�WN�K"N�WN5��[PM+NPO�K�[�U:]+O5\�N5M:k:W
3 W O:a0`�UTR ��¬�`P]P'N�K�x5¬0®�� j _lK�[�W"`bO:ITI:JPK"L5M�NPO�K�M:k�[PM�L5[�U�L�J'U:[PM�`+VcU0O:]�U�N���`�U0N�k'O0O:a
4 W O:a0`�UP[P\0]+VTRcg'h�iYj _cO:M:k�`:\c[P\0]:J5W"`5K+M�V
5 M:k�`:M�[bR�y �0`P\+O�V XFL:O0U�J:W+K'V~X£a�[PM�["��h:^�p�hP^�j/�Yj/��j/�P}�j _SV5M�[P\PM�N�K+]c��[0U�J�`+V

4 HIDDEN PARALLELIZATION 10

6 _l¯�V5M�N�W"[:M�NPO�K°��V:`:\�N:[�U
7 M:k�`:M�[�Z�VTR¡W UP`�ZP`�V5M�N�W"[:M�`�X£M:k�`PM�[~p�a�[PM�[�p±W O:a�`�U�p²W O:a�`0UP[P\0]�V�p³L:O�K+M0\+OPU'^�j
8 _l¯�V5M�N�W"[:M�NPO�KSQ�[P\0[�U0UP`�U
9 M:k�`:M�[�Z�QnR¡W UP`�ZP`�V5M�N�W"[:M�`�Z�Q�[:\�[�U0UP`0UtXHM:k�`:M�[~p�a�[PM0[�p´W O:a0`�U�p±W O5a�`�UP[P\P]�V�p³LPO�K+MP\+O0U�p¡hP^j

10 Q+\�N�K+M0I�X ���0wP¯S`+V5M�N�W"[PM�NPO�K�\�`+V�J'U5M�V~�µ¬+`P]:'N�K'x5¬P®tp��0acO�u'V:`P\0��[:M�NPO�K'V���K�� p�\+O5o�VYXHa�[PM�["^P^�j
11 _�Q�\�N�K+Mc\�`�V�J'U:M�V
12 UP[5u+`�U�VTR V�M0\+m�W"[:M X ��V:`P\�N5[�U � p �9Q+[P\�[�U0U:`�U� ^�j
13 Q+\�`:M0M0q:Q+\+N�K+M+Z�L~X+y�M5k�`PM�[�Z0VfM:k�`PM�[0Z�Q'}~p�UP[�u�`�U�V'^�j

Listing 4: Script to perform ML estimation

The result of running this script is in Listing 5. We see that the results are the same.

1 �0w0¯c`+V5M�N�W'[PM�NPO�K�\0`+V�J'U:M+V��´¬+`P]P�N�K'x5¬0®�p�¨P¢0�0�cO�u'V:`P\0��[:M�NPO�K"V
2 V:`P\�N5[�U¶Q�[:\�[�U0UP`0U
3 h� /¥0¥:¢ h� H¥0¥P¢
4 �~ H�0�P¨ �~ £�0�0¨
5 �~ H�0�P¨ �~ £�0�0¨
6 �~ H�"hPh �~ £�"h0h
7 ���~ H�P�0§ ���� H�0�0§
8 �~ �h�¨P� �~ 9h�¨0�
9 �~ �h�¨P§ �~ 9h�¨0§

10 ���~ H�'h�¢ ���� H�"h�¢
11 �~ H�0�P¢ �~ £�0�0¢
12 h� H§"h�m h� £§"h�m
13 ��¦� £¦�¥P� ��¦~ £¦+¥P�
14 h� H�0§P§ h� £�0§0§
15 ���~ H�P�0� ���� H�0�0�

Listing 5: MLE Example - Results

4.3 GMM

Listing 6 shows an Octave script that performs GMM estimation of a parameter. Lines 1-7 read

data and define starting values, the weight matrix, and other details. In line 9, �+� ���"��*���ª����'��� is

called to do the estimation, serially. Line 11 defines the number of slave computers to use, and

line 12 calls a parallelized version of the estimation function. Again, the main point in this section

4 HIDDEN PARALLELIZATION 11

is to note the similarity of the way estimation is done in parallel to the way it is done serially. The

user interface is virtually identical except that the number of slave processors must be provided.

1 U0OP[:a a�[PM�[~j _T\�`0[:aba�[PM�[
2 �SRb¥Yj _�KPJ:W+u�`P\cO:Ib\�`P]P\�`+V0VPO5\�V
3 M:k�`:M�[bR ��`:\+O�V X��zp�hP^�j _SV�M�[P\0Mb�0[�U�J�`+V
4 o+`+N�]:k+MSR `:q�` XFLPO0U�J:W+K"VYX/a�[:M�['^b�ThT���^�j _fo+`+N�]:k+M�W"[:M0\�N5e
5 W O�W'`5K+M�VTR �9Q'O�N0VPVPO�K'Z�N��+Z�W O�W'`5K+M�V�� j _�K+[�W"`SO:IfI:J0K"L5M+NPO�K�M:k�[:M�L:[�U�L�J'UP[PM�`�V�W"O�W"`5K+M+V
6 W O�W'`5K+M�[P\P]�VTRcg��'i�j _T[PaPa�N5M�NPO�K�[�U�N�K+I+O5\�W"[PM�N:O�KcK�`0`Pa0`PacM+OcL:[0U�L�J'UP[:M�`�W O�W"`�K+M�V
7 LPO�K�M0\+O0UbRTg «�K+I p/�Yp�hp�h�i�j _�u+I0]+VcLPO�K+M0\�O0U�V
8 _f]�W0W�`+V5M+N�W"[PM�N:O�K·�{V:`P\�N5[�U
9 M:k�`:M�[�Z�VTRl]�W0W ZP`�V5M�N�W"[:M�`�X£M:k�`PM�[~p�a�[PM�[�p¸o+`+N5]:k�M�p´W O�W"`�K+M�VYp´W O�W"`5K+M�[:\0]�V�p{LPO�K+M0\+O0U"^�j

10 _f]�W0W�`+V5M+N�W"[PM�N:O�K·�µQ�[P\�[0U0UP`�U
11 K"VPU:[P��`+VTR�hj
12 M:k�`:M�[�Z�QnRl]�W0W ZP`�V5M�N�W"[:M�`�Z�Q�[:\�[�U0UP`0UtXHM:k�`:M�[~p�a�[PM0[�p�o+`+N�]:k+M�p´W O�W"`5K+M+VYp´W O�W"`�K+M�[P\0]+V~p�LPO�K+MP\+O0U~p

K"VPUP[:��`+V�p��'^j
13 Q+\�N�K+M0I�X ��¹:�P�S`+V5M�N�W"[PM�NPO�K�\�`+V�J'U5M�V~���Pa�VPN�W+J'UP[:M�`Pa�O�u"V5`P\0��[PM+NPO�K"V��5K�� p�\+O5o'V�X/a�[PM�["^0^j
14 _�Q�\�N�K+Mc\�`�V�J'U:M�V
15 UP[5u+`�U�VTR V�M0\+m�W"[:M X ��V:`P\�N5[�U � p �9Q+[P\�[�U0U:`�U� ^�j
16 Q+\�`:M0M0q:Q+\+N�K+M+Z�L~X+y�M5k�`PM�[�Z0VfM:k�`PM�[0Z�Q'}~p�UP[�u�`�U�V'^�j

Listing 6: Script to perform GMM estimation

Listing 7 shows the output from the script in Listing 6. We see that the serial and parallel

version obtain the same results.

1 ¹:�0�c`+V5M�N�W'[PM�NPO�K�\0`+V�J'U:M+V��³h��0�0�cV0N�W+J'U:[PM�`PanO�u"V5`P\0��[PM+NPO�K"V
2 V:`P\�N5[�U¶Q�[:\�[�U0UP`0U
3 ���~ H�P§0¤ ���� H�0§0¤
4 �~ H¢�¥5¦ �~ £¢�¥:¦
5 h� �h�¦P¦ h� 9h�¦0¦
6 h� H��m�h h� £��m'h
7 h� H�0¢0m h� £�0¢�m

Listing 7: GMM Example - Results

This section has given examples that show that the three problem under consideration can

be parallelized, and that end users can make use of the parallelized routines in more or less the

5 THE SPEEDUP FROM PARALLELIZATION 12

same way as they use the ordinary serial routines. Next we provide some results that show that

MPITB for Octave can provide interesting speedups for the three problems.

5 The speedup from parallelization

This section provides timing results for the three problems. We use two computing environ-

ments. The first is a single SMP machine with two Pentium IV 3.06GHz Xeon CPUs, each with

512KB level 2 cache, and 2GB of RAM. Hyperthreading is enabled, so the SMP machine has 4

”virtual” CPUs. Testing on the SMP machine is done in an ordinary desktop environment, with

a light load due to other running processes. The results are mean to be indicative of what a user

might experience when using MPITB on a SMP desktop computer. The second test environment

is a Linux cluster created with ParallelKnoppix in a university computer room which is ordi-

narily used by students for their work. The nodes are homogeneous uniprocessor Pentium IV

machines running at 2.8 GHz, each with 1MB of level 2 cache, 512MB of RAM, with hyperthread-

ing enabled. Each machine has a 3COM 3c905 Tornado network card, and they are connected

on a 100MB/s ethernet network using a 3COM OfficeConnect dual speed switch. A working

directory that contains MPITB and all needed programs is shared by NFS among the nodes of the

cluster. For the runs on the cluster, there was no CPU load additional to that of the test programs,

other than the basic overhead of the operating system. Thus, these results are more reliable for

analyzing performance.

5.1 Monte Carlo

For testing the serial and parallel performance of the ����.������'���'� function, we use the same trace

test example as do Doornik, et. al. (2002). This is a Monte Carlo simulation of the sampling

distribution of a test for the existence of cointegration10. Since the hardware used for the test is

different from what they used, timings are not comparable, but it is perhaps interesting to use the

same example to show how the software implementation differs between Ox, using the º »�¼t(/½¾ ¾
extension, and Octave using MPITB. The � �������'����*0� function for Octave appears in Listing 8.

Monte Carlo simulation of this function is done by running the program that appears in Listing 9.

These two listings may be compared with Doornik et. al.’s Listings 2 and 5, which are functionally

similar.
10See Doornik, et. al. (2002) for motivation and references.

5 THE SPEEDUP FROM PARALLELIZATION 13

1 I:J0K'L5M�NPO�K M0`+V5M+Z�V�M�[PMSRTM0\0[+L:`PM�`�V5MzX/[P\0]�V�^
2 McRf[P\0]�V0g'h�iYj
3 K�Rf[P\0]�V0g0mPiYj
4 `bR \�[5K+a:K X£M�p�K^�j
5 Q�R N�K+� X L�k�O0U X/`��FrP`0¿:M"^�^�j
6 `bRf`+r�Qzj
7 VfRTUP[P]�X L�J5WV�J:W XA`'^p�hP^�j
8 VYX�hp0�9^�RcV�X�hp��9^c��V�X�hp0�9^�j _bU:[P]bI�NPUPU�Vlo'N5M:k¶hp�M�`�V5MfK�`0`:a�VT�
9 I�[+LlRb`��Fr0V�j

10 `P�cR `+N5] XHI0[+L�r N�K+� XAV��Fr�V+^:r�I�[+LY�A¿:M ^j
11 M�`+V�M+Z�V5M�[:MSRn��M�r V�J5W X U0O:] X�hT�d`P��¿5M"^0^�j
12 `5K+aPI:J0K"L5M+NPO�K

Listing 8: Trace Test function

1 O�J+MPI�NPUP`cR ��x5�0®�+� j
2 W"[Pe+VPUP[P��`�VTR�hj
3 ÀbRnh��0�0��j
4 a�N�WnRb¥Yj
5 \�`5Q'VfR�h��0�P�0�0��j
6 I+O:\ K"VPUP[P�0`+VTRT�~�=W"[Pe�VPU:[P��`+V�j
7 M�N0L j
8 W O�K+M0`+L:[P\+UPO�X ��M0\�[+L5`PM�`+V5M�� p�g:À~pHa�N�WiYp�\�`5Q'VYpµK"VPU:[P��`+V'^�j
9 MbR M+O�L j

10 \�`+V�J�U:M�VYX�K"V:UP[P��`+V0s"h p��9^�R�yÁK"VPUP[P�0`+VYp�À~p¸a�N�W·p�\�`�Q"V�p�M0}�j
11 `5K+aPI+O:\
12 `P��[0U X V�Q+\+N�K+M0I X ��V5[P��`c� � ��V5M0\�[+L5`PM�`+V5M���0a'���Pa ���Pa�Z:\�`+V�J�U:M�V~ /O�J+M+� ��\�`�V�J'U:M�V � p�O�J+M0I�N:UP`~p�À~p¸a�N�W·pH\�`�Q"V�^0^

j _lQ�\�N�K+MbM+N�WN�K+]c\0`+V�J'U:M+VfM+OlI�N:UP`

Listing 9: Monte Carlo of Trace Test

The timings for the Monte Carlo runs are found in Tables 1 and 2, column 2. We define

the lower limit to the runtime in parallel as the runtime of the serial version, divided by the

number of nodes used for the parallel run. This is a lower limit, since it ignores the fact that

a program may have non-parallelizable portions, and it implicitly assumes that communication

between the parallelized portions is done at no cost. Figure 1 reports the actual runtime and

5 THE SPEEDUP FROM PARALLELIZATION 14

the lower limit for the Monte Carlo study of the � �������'����*0�Â(�� function. We can see that the

parallel version is very efficient, achieving a runtime close to the lower limit. This is due to

the underlying efficiency of LAM/MPI when using TCP communication, and to the fact that

the MPITB implementation of the binding functions is efficient, as well as to the fact that the

����. �������'���"�)(�� function is emminently parallelizable, with very little communication overhead

and virtually no non-parallelizable code. Table 3 reports the speedup (serial runtime divided by

parallel runtime) and efficiency (speedup divided by number of nodes) for this problem as well

as for those discussed immediately below. We see (in column 2) that the speedup is almost equal

to the number of nodes used in the run, and (in column 5) that efficiency is very high.

5.2 ML

To test the performance of maximum likelihood estimation in serial and parallel, consider es-

timation of a reshaped negative binomial density for count data. The negative binomial base

density is multiplied by a squared polynomial, then normalized to sum to one. References that

explain the approach are Gallant and Nychka (1987), Cameron and Johannson (1997) and Guo

and Trivedi (2002). Since this specific likelihood function is used only to provide an example of

computational gains, we do not go into details here. The reshaped density is

fY(y|ψ, λ, γ) =

[

hp (y|γ)
]2

ηp(φ, γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(

ψ

ψ + λ

)ψ (λ

ψ + λ

)y
,

where

hp (y|γ) =
p

∑
k=0

γkyk, (1)

and

ηp(ψ, λ, γ) =
p

∑
k=0

p

∑
l=0

γkγlmk+l(ψ, λ) (2)

In this last equation, the mk+l(ψ, λ) are the raw moments of the negative binomial density. Since

this double sum leads to very long analytic expressions when p is at all large, evaluation of the

density is relatively computationally intensive, and it may benefit from parallelization. This is

the problem that is estimated in Listing 4. A modified version of that script was run, that uses

additional slave nodes.

For maximum likelihood estimation, two parallelized functions were written, �~�"��'��*���ª��Y�'����+#��'���'�"��
and �~�"��'��*���ª��Y�'����+#��'���'�"��'�"� ��� . These use two different implementations in the way they pass

5 THE SPEEDUP FROM PARALLELIZATION 15

messages from the slaves to the master node. The �~�"� �"��*���ª����'�����#��'�� � �'�� version passes the

entire vector of log likelihood values for the block of data that is evaluated on each of the slave

nodes back to the master computer. Then the master computer assembles all these values into a

vector, and averages it to obtain the average log likelihood value for the trial value of the param-

eter. In the course of maximization of the log likelihood function, this version follows exactly the

same solution path as does the ordinary serial function �~�"� �"��*��Yª����'��� , from �������'��������'� �� , since

the value of the loglikelihood function is exactly the same at any given point during the BFGS

iterations. The �~�"��'��*���ª��Y�'����+#������"� �"� �"�'���� version passes only the sum of the log likelihoods

of each block back to the master computer. This is more efficient in terms of communication over-

head, since much less data flows from the slave nodes back to the master node. However, the av-

erage log likelihood calculated by summing these partial sums, then dividing by the sample size,

is not numerically exactly equal to the average of all the individual loglikelihood contributions, as

obtained using �~�"��'��*���ª��Y�'��� or �~�'��"��*��Yª����'��� �+#����� � �"�"� , due to fact that floating point values

are stored with a given numerical precision. For this reason, the �~�"� �"��*���ª����'�����#������"� �"�"� �'����
version of the parallel implementation takes a solution path during the course of BFGS iterations

that is not the same as that of the ordinary serial version, and furthermore, the path taken de-

pends upon how many slave computers are used. Since determining the direction of search and

the stepsize at each iteration require a number of evaluations of the loglikelihood function, even

very small differences in the numerical value of the objective function at a given value of the

parameter can cause the solution paths to differ, though they eventually converge to the same

solution. With the alternative version, the number of iterations needed to satisfy the convergence

criteria may differ for different numbers of slave computers. What is of fundamental importance,

though, is not the exact path that is taken, but rather that the algorithms arrive to one of the set

of local maxima, within a well-defined set of convergence tolerances. The time needed to do this

is also important, of course.

The version that passes only the partial sums of the loglikelihood function (�~�"��"��*���ª���������+#�'��� �"�'�� ����+�)

is about 15% faster for the test problem used here, as is expected. Unexpectedly, it often achieves

convergence in fewer iterations than does the serial version or �~�"��"��*���ª���������+#��+��� �"�"� �-(This

seems to be due to error cancelation when summing the partial sums that are returned from the

slave nodes to the master node for summation. Cancellation of errors seems to cause the conver-

gence criteria for the BFGS minimizer to be satisfied in fewer iterations. Both versions converge

5 THE SPEEDUP FROM PARALLELIZATION 16

to the same solution. Here, we only report results for the faster version, which are in Table XX.11

5.3 GMM

To illustrate the speedup in GMM estimation that may be obtained using parallelization, we use

an example of Efficient Methods of Moments (EMM) estimation (Gallant and Tauchen, 1996).

This is a version of the method of simulated moments, where the moment conditions are the

scores of a quasi-maximum likelihood estimator. Here we use a simple example where data is

generated following a probit model, and a logit model is used to provide moment conditions.

This problem is still somewhat computationally demanding, though, since the sample size is

2000 observations, there are 5 parameters, and 20 simulation replications are used. The function

�0� ���P���0���+.�Y* appears in Listing 10. This is a general purpose function that receives the names of

the functions that define the DGP and the auxiliary model (the ”score generator”) as elements of

the third argument.

1 I:J0K'L5M�NPO�K VPLPO:\�`+VlRb`�W0W Z�W O�W"`5K�M�V�X/M:k�`PM�[~p¸a�[PM�[~p²W O�W"`�K+M�[P\0]+V ^
2 ��R¡W O�W"`5K�M�[P\0]�V�g'h�iYj
3 a0]:QSRdW O�W"`�K+M�[P\0]+V+gPm0iYj _lM:k�`Ta�[:M�[T]�`5K+`P\�[PM�N�K+]bQ+\+O�L:`�V0VÃXHÄ+¹:®"^
4 a0]:Q+[P\0]�VTR¡W O�W"`5K�M�[P\0]�V+gP��i�j _cN5M+Vf[P\0]:J5W"`5K+M�VÅXAL:`�U0Ub[P\P\�[Pq ^
5 V5]cR¡W O�W"`�K+M�[P\0]+V�g:¦�iYj _fM5k�`SV0LPO5\�`T]�`5K+`P\�[PM+O5\
6 V5]�[:\0]�VTR�W"O�W"`5K+M0[P\0]�V�g0¥0i�j _bxP¹b[:\0]:J:W"`�K+M�VÅXFL:`0U0UT[P\0\0[Pq ^
7 Q0k"NlRdW O�W"`�K+M�[P\0]+V+g:§�iYj _TÆ5�0wS`+V�M�N�W"[PM0`SO:ISxP¹dQ�[P\�[�W'`PM�`P\
8 qcRla�[PM�[~X��:p�hP^�j
9 ecRla�[PM�[~X��:pAm�����s"h:^�j

10 _T\�[�K+a+O�WnaP\�[:o'V�Q�[�V0V:`Pa�N�KSa�[PM�[fM+OT`5K"V�J+\�`TI�N�e�`PaSO:�0`P\c`+V5M+N�W"[PM+NPO�K
11 \�[5K�a+Z:a0\�[5o'VbRfa�[PM0[~X��Pp£��s�mY�FLPO0U�J:W�K"VYXHa�[PM0["^0^�j
12 K�Rl\+O5o'VYXHq'^�j
13 V0LPO5\�`+VTR �0`P\+O�V X£Kzp£\+O5o'VYX�QPk"N�^0^�j
14 \�`5Q'VfRSLPO0U�J:W+K"VYX/\�[�K+a+Z:a0\0[:o'V'^�j
15 I+O:\ NfRnh���\�`5Q"V
16 `TRl\�[5K+a+Z5a0\�[:o'V~X��PpAN�^�j
17 qbR I�`P��[�U XHaP]:Qzp�M:k+`PM�[~p�e�p�`�p�a0]5Q�[P\0]�V�^j _cV0N�W+J'UP[PM0`PaSa�[PM�[
18 V5]0a�[:M�[bR�y�qfe0}~j _�Q�[+V0VbVPN�W+J'UP[:M�`Paca�[PM0[TM+ObxP¹
19 _f]�`:Mb]0\�[Pa+N:`5K+M�O:IcxP¹
20 V0LPO:\0`+VfRSV0L:O:\�`+Vfs�K0J:W']0\0[Pa�N:`5K�M�XAV5]�p�g�QPk"NYp{V5]Pa�[PM�[�p{V�]�[P\0]�VPi�^�j

11All programs, including the alternate version, are available from the author.

5 THE SPEEDUP FROM PARALLELIZATION 17

21 V0LPO:\0`+VfRSV0L:O:\�`+VT¿l\�`5Q"V�j _T[P��`:\�[P]�`SO:�0`P\fK0J:W�u�`P\�O:IcV0N�W+J'U:[PM�NPO�K"V
22 `5K+aPI+O:\
23 `5K+aPI:J0K"L5M+NPO�K

Listing 10: EMM Moment Conditions

This is used to perform EMM estimation using generated data. The script in Listing 11 does

the estimation. Note that in lines 31 and 34, ��� �~�"��*0��ª����'���+#��'� ��"�'�� accepts ���� as its last ar-

gument. This is a 0/1 switch that determines how message passing is done. When � ��� = 0, the

entire matrix of moment contributions for each block of data is passed from the slaves back to

the master, which assembles them into a matrix, then averages them to obtain the vector mn(θ).

When ���� = 1, the slave pass back only the vector sum of the moment contributions, and the mas-

ter then sums them up and divides by the sample size n, to obtain mn(θ). This is more efficient in

terms of communication overhead, but as in the case of ML estimation, the small differences in

numeric values of the elements of mn(θ) lead to a different solution path being taken during the

course of the BFGS iterations.

1 O�J+MPI�NPUP`cR ��x5�0®�+� j
2 W"[Pe+VPUP[P��`�VTR�hj
3 KSRbmP�0�0��jµ��Rb¥Yj�\�`5Q"VfRTmP��j _bO�u"V�p¸Q+[P\�[�WVYp¸\�`5Q'U0N0L:[PM�N:O�K"V
4 V5]cR ��U0O:]+N5M�� j _lM:k�`SV0L:O:\�`b]�`5K+`P\�[PM+O5\
5 a0]:QSR ��Q+\+O�u"N5M0a0]5Q�� j _TM:k+`lÄ+¹:®
6 a0]:Q+[P\0]�VTR�hj _cV�W O0O:M:k'N�K+]ca:J+\+N�K+]nV0N�W�J'UP[PM�N:O�K"V�p�M+O�W"[5��`SO�u�ÇP`+L5M�N���`bI:Kca+N5I0I�`P\0`5K+M�N:[�u'UP`
7 V5]�[:\0]�VTRbg�h�iYj _TÇ�J"V5MS[dQ'UP[+L:`�k'O0U:a�`:\nN�KSM:k"NPVf`Pe�[�W�Q'UP`
8 LPO�K�M0\+O0UbRTg «�K+I p/�Yp�hp�h�i�j _l�È�¹0xSLPO�K+M0\�O0U�V
9 M:k�`:M�[bR�yF���zj{O�K�`�VYX����hp�hP^�}~j _lM0\:J�`lQ+[P\�[�W"`:M�`P\S��[�U�J+`

10 _f]0`5K�`P\�[:M�`T®�\+O�u'N5Mca�[PM�[
11 ebR�yHO�K�`+VYX�Kzp�hP^ \0[5K+a:K X£Kzp����hP^�}~j
12 `TR \�[5K+a:K X�Kzp�hP^�j
13 qbR I�`P��[�U X£a0]:Q�p�M5k�`PM�[~p�e�p�`~p���^�j
14 a�[PM0[bR�y�qfe0}~j
15 _bÆ��0wS`+V5M+N�W"[PM�N:O�KÉO:ISV0L:O:\�`b]�`5K+`P\�[PM+O5\
16 Q0k"NlR ��`P\�O�V X9LPO0U�J5W+K"VYXHe ^�p�hP^�j
17 Q0k"NlR�u+I0]+V�WN�KtX �AW"UP`�Z0O�u�Ç�� pAg�Q0k"NYp�a�[PM�[�p ��U0O:]�N�M�� p���iYp{LPO�K+M0\�O0U'^�j
18 W O�W'`5K+M�VTR ��`�W0W Z�W O�W"`5K�M�V�� j _Ta�`:I�N�K�`dW"O�W"`5K+M+VfI:J0K"L5M+NPO�K�I+O:\b¹:�0�
19 _T[:\0]:J:W"`�K+M�VTI+O:\T`�W0W Z�W"O�W"`5K+M+V

6 WRITING PARALLEL CODE: THE ML EXAMPLE 18

20 W O�W'`5K+M�[P\P]�VTRcg��zp�a0]:Qzp�aP]:Q�[P\0]+VYp³V5]~p³V�]�[P\0]�VYp´Q0k"N0iYj
21 _T[:\0]:J:W"`�K+M�VTI+O:\T`�W0W ZP`�V5M�N�W"[:M�`
22 M:k�`:M�[bRTM:k+`PM�[n�¡M:k�`PM�[�j _cV5M�[:\0Mc��[�U�J+`+V
23 o+`+N�]:k+MSR `:q�` XH\+O5o�VYX�Q0k"N�^0^j _fo+`�N5]:k+M�W'[PM0\�N5e
24 \�[5K�a+Z:a0\�[5o'VTR \�[5K�a:K X�Kzp/\�`�Q"V+^�j _fI�N5e�`PacO:��`P\�N�M�`P\�[PM+NPO�K"VfM+Of[P�+O�N�a¶�5L�k�[PMPM�`P\�N�K�]��
25 a�[PM0[bR�y�a�[:M�[T\�[5K�a+Z:a0\�[5o'VP}~j
26 \�`+V�J'U:M�VTR ��`P\+O�V XÁW"[Pe�VPU:[P��`+V0s"hp/¥�^�j _cL:O�K+M�[+N�K�`P\SI+O:\f\�`+V�J'U5M�V
27 I+O:\ K"VPUP[P�0`+VTRT�~�=W"[Pe�VPU:[P��`+V�j
28 \cR�K"V:UP[P��`+V�j
29 I+O:\ [�U5McRb�~��h
30 M�N0L X�^�j
31 y�M:k+`PM�[�Z�k+[PMzp�O�u'ÇPZ:��[�U�J+`zp{LPO�K+��`:\0]�`5K"L5`zp{N5M�`P\�V5�0}bRT]�WPW ZP`+V5M+N�W"[PM0`�Z�Q�[P\0[�U0UP`�UzX/M:k�`PM0[~p

a�[PM�[~pµo+`+N5]5k+M�p´W O�W'`5K+M�VYp´W"O�W"`5K+M0[P\0]�V�p{L:O�K+M0\+OPU�p´K"VPUP[:��`+V�p�[�U5M ^�j
32 WnR I�`P��[�U XÁW O�W"`5K�M�VYp�M:k�`:M�["h�p�a�[:M�[~p±W O�W"`5K+M�[:\0]�V'^�j
33 `PI0I�Z5o+`+N5]5k+MSRSN�K+�0`P\�V:`~X L:O:� X?W�^�^�j _T]�`PMb`PI0I�N0LPN:`5K+Mbo+`�N5]:k+M�W'[PM0\�N�e
34 y�M:k+`PM�[�Z�k+[PMzp�O�u'ÇPZ:��[�U�J+`zp{LPO�K+��`:\0]�`5K"L5`zp{N5M�`P\�V+h�}bRT]�WPW ZP`+V5M+N�W"[PM0`�Z�Q�[P\0[�U0UP`�UzX/M:k�`PM0[~p

a�[PM�[~p�`PI0I+Z�o+`+N5]:k�M�p±W O�W"`5K�M�VYp´W O�W'`5K+M�[P\P]�V�p{LPO�K�M0\+O0U~pµK'VPUP[P��`�V~p�[�U:M ^�j
35 MbR M+O�L X�^�j
36 N5M�`:\�VfRcN�M�`P\�V:�csbN5M�`P\+V�h�j
37 \bR�y�\TM�N�M�`P\�V:}~j
38 `5K+a0I+O5\
39 \�`+V�J'U5M�V�X�K"VPUP[:��`+V0s"hp��F^�Rf\�j
40 `5K+aPI+O:\
41 `P��[0U X V�Q+\+N�K+M0I X ��V5[P��`c� � ��V�w�O:]�N�MP®�\+O�u'N5MP¯0�0�����0a"���Pa ���Pa"��\�`+V�J'U5M�V~ /O�J+M�� �¡\�`+V�J�U:M�V"� p{O�J+M0I�NPU:`~p¸Kzpµ��p

\�`5Q"V�^P^�j

Listing 11: EMM Estimation

6 Writing parallel code: the ML example

MPITB provides the MPI bindings for Octave. It follows the LAM/MPI syntax, so function

names, arguments and returns are all the same as if one were directly using the LAM/MPI C

or FORTRAN libraries. Thus, any documentation for LAM/MPI will be useful. Swann (2002)

provides a very useful discussion of using MPI for ML estimation using FORTAN, and discusses

the relevant MPI functions in some detail. Here, we discuss the way ML estimation was done in

7 CONCLUSION 19

parallel using Octave and MPITB, but do not go into great detail since it is essentially the same

as what Swann covers.

We have seen that ML estimation is done by calling �~�'��"��*��Yª����'��� �+#������"�"�"� . Thi

7 Conclusion

place holder

7 CONCLUSION 20

Table 1: Timings, SMP

Monte Carlo MLE GMM
Soft Time Time Time (alt) Iters (alt) Time Time (alt)

1 363.6 191.5 185.8 29 559.4 559.4
2 209.0 112.4 121.0 31 448.2 391.1
3 209.3 92.3 87.2 28 425.7 400.9
4 213.2 79.6 79.4 29 447.2 423.2

Table 2: Timings, Cluster

Monte Carlo MLE GMM
Nodes Time Time Time (alt) Iters (alt) Time Time (alt)

1 291.0 177.8 179.2 34 760.4 760.4
2 147.9 102.0 80.9 28 443.6 382.4
3 101.4 74.6 76.4 37 334.9 265.2
4 76.3 60.9 51.9 31 284.6 207.9
5 61.4 52.4 44.7 31 256.0 173.7
6 51.5 47.1 39.4 30 237.1 152.0
7 43.1 43.9 33.3 27 223.7 137.6
8 38.9 42.2 34.0 29 213.7 126.3
9 34.8 40.4 33.8 30 207.1 117.7

10 31.4 40.3 32.8 30 202.0 111.4
11 28.7 39.4 33.6 31 197.9 106.9
12 26.5 39.2 30.1 28 195.1 103.2
13 24.4 39.6 32.0 30 186.9 96.3
14 22.9 39.4 30.2 28 na na
15 21.4 40.2 32.8 30 na na
16 20.1 40.1 33.1 30 na na

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1.967183 1.809361 1.988513 0.983592 0.904680 0.994257

2.869034 2.533776 2.867153 0.956345 0.844592 0.955718

3.813271 3.125430 3.657031 0.953318 0.781358 0.914258

4.740840 3.624255 4.377911 0.948168 0.724851 0.875582

5.650051 3.985103 5.001937 0.941675 0.664184 0.833656

6.750879 4.236141 5.525056 0.964411 0.605163 0.789294

7.484439 4.463590 6.021446 0.935555 0.557949 0.752681

8.370752 4.645765 6.459166 0.930084 0.516196 0.717685

9.273175 4.785748 6.825442 0.927317 0.478575 0.682544

10.133127 4.831375 7.113459 0.921193 0.439216 0.646678

10.984220 4.869661 7.368107 0.915352 0.405805 0.614009

11.918903 4.897752 7.899982 0.916839 0.376750 0.607691

7 CONCLUSION 21

Table 3: Speedup and Efficiency, Cluster

Speedup Efficiency
Nodes Monte Carlo MLE GMM Monte Carlo MLE GMM

1 1 1 1 1 1 1
2 1.97 1.81 1.99 0.98 0.90 0.99
3 2.87 2.53 2.87 0.96 0.84 0.96
4 3.81 3.13 3.66 0.95 0.78 0.91
5 4.74 3.62 4.38 0.95 0.72 0.88
6 5.65 3.98 5.00 0.94 0.66 0.83
7 6.75 4.24 5.53 0.96 0.61 0.79
8 7.48 4.46 6.02 0.94 0.56 0.75
9 8.37 4.65 6.46 0.93 0.52 0.72

10 9.27 4.79 6.82 0.93 0.48 0.68
11 10.13 4.83 7.11 0.92 0.44 0.65
12 10.98 4.87 7.37 0.92 0.41 0.61
13 11.91 4.90 7.90 0.92 0.38 0.61

Figure 1: Timings, Monte Carlo, Cluster

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12

tim
e

number of nodes

Actual
Lower limit

7 CONCLUSION 22

Figure 2: Timings, MLE, Cluster

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16

tim
e

number of nodes

Actual time
Actual time (alt)

Lower limit

Figure 3: Timings, GMM, Cluster

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12

tim
e

number of nodes

Actual time
Actual time (alt)

Lower limit

