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We present two new adaptive quadrature routines. Both routines differ from previously published
algorithms in many aspects, most significantly in how they represent the integrand, how they

treat non-numerical values of the integrand, how they deal with improper divergent integrals and

how they estimate the integration error. The main focus of these improvements is to increase the
reliability of the algorithms without significantly impacting their efficiency. Both algorithms are

implemented in Matlab and tested using both the “families” suggested by Lyness and Kaganove

and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more
reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.
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1. INTRODUCTION

Since the publication of the first adaptive quadrature algorithms almost 50 years
ago, much has been done and even more has been written on the subject1: In
1962 Kuncir [Kuncir 1962] kicked-off the field2 with his adaptive Simpson’s rule
integrator, which uses – as the name suggests – Simpson’s rule to approximate
the integral, bisecting recursively until the difference between the approximation in
one interval and that of its two sub-intervals is below the required tolerance. This

1A recent review by the author [Gonnet 2009a] limited to error estimation listed 21 distinct
published algorithms and references to more than 50 publications directly related to adaptive
quadrature.
2Davis and Rabinowitz [Davis and Rabinowitz 1984] reference, as the first adaptive quadrature
routines, the works of Villars [Villars 1956], Henriksson [Henriksson 1961] and Kuncir [Kun-
cir 1962]. Henriksson’s algorithm, which appeared in the first issue of BIT, is an ALGOL-

implementation of the algorithm described by Villars, which is itself an extension of an algorithm
by Morrin [Morrin 1955]. These algorithms, however, are more reminiscent of ODE integrators,

which is why we will not consider them to be “genuine” adaptive quadrature routines.
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2 · Pedro Gonnet

approach, as simple as it may seem, still lives on, with some minor modifications, as
the default integrator quad in MATLAB (added in [The Mathworks 2003]). quad is
itself a modification of Gander and Gautschi’s 2001 adaptsim [Gander and Gautschi
2001] which is itself a modification of Lyness’ 1970 SQUANK [Lyness 1970], which is
itself almost identical to Kuncir’s original algorithm3.

At the time of Kuncir’s publication, McKeeman [McKeeman 1962; McKeeman
and Tesler 1963; McKeeman 1963] and later Forsythe et al. [Forsythe et al. 1977] ex-
tended this approach to use higher-degree Newton-Cotes rules and/or sub-division
into more than two sub-intervals.

In 1971, de Boor [de Boor 1971] introduced the concept of “double adaptivity”,
constructing a Romberg T-table [Bauer et al. 1963] within each sub-interval to
approximate the integrand and deciding, at every step, whether to extend the T-
table by another row (i.e. increase the order of the quadrature) or to subdivide the
interval. This decision was made by using the convergence rates of the columns
of the T-table to guess the integrand’s behavior, i.e. “well behaved”, singular,
discontinuous or noisy, and apply an adequate strategy for that behavior.

The emergence of more powerful computers and better algorithms (e.g. Golub
and Welsch [1969] and Gentleman [1972]) for the construction of more complex
quadrature rules quickly led to the wider use of Clenshaw-Curtis quadrature rules
[Clenshaw and Curtis 1960], as used by O’Hara and Smith [1969] and Oliver [1972],
and later the use of Gauss quadrature rules and their Kronrod extensions [Kronrod
1965], first used by Piessens [1973] and Patterson [1973] independently.

Other interesting and/or noteworthy advances in the field are:

—The introduction of stratified or recursively monotone stable (RMS) quadrature
rules [Sugiura and Sakurai 1989; Favati et al. 1991; Laurie 1992], filling the gap
between low-degree (due to low numerical stability at higher degrees) Newton-
Cotes rules, the nodes of which nodes are re-usable over several recursion levels,
and high-degree (due to better numerical stability) yet non-reusable Clenshaw-
Curtis or Gauss rules, thus providing some extra efficiency,

—The use of non-linear extrapolation when computing the integral or the error esti-
mate [Rowland and Varol 1972; Venter and Laurie 2002; Laurie 1983; de Doncker
1978], as is done in the highly successful QAGS subroutine in the QUADPACK in-
tegration library,

—The use of higher-order coefficients relative to some base to compute the error
estimate [O’Hara and Smith 1968; Oliver 1972; Berntsen and Espelid 1991].

A number of authors have published comparisons of these and many other adap-
tive quadrature routines [Casaletto et al. 1969; Hillstrom 1970; Kahaner 1971; Mal-
colm and Simpson 1975; Robinson 1979; Krommer and Überhuber 1998; Gonnet
2009a] as well as methodologies to compare different routines [Lyness and Kaganove
1977].

As already noted in Rice [1975], despite all their differences, most adaptive
quadrature algorithms follow the general scheme, as in Algorithm 1. First, an

3Lyness himself formulates his algorithm as an extension to McKeeman’s Adaptive Integrator [Mc-
Keeman 1962], yet the resulting algorithm is much more similar to Kuncir’s, which was published

merely a few months before McKeeman’s.
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estimate of the integral in the interval [a, b] is computed (Line 1). An error esti-
mate of the integral is then computed (in this example, an absolute error estimate
is approximated, Line 2). If this estimate is smaller than the required tolerance
(Line 3), then the estimate is returned (Line 4). Otherwise, the interval is bisected
and the algorithm is called on both halves (Line 6) using a modified local tolerance
τ ′.

Algorithm 1 int (f, a, b, τ)

1: Q ≈
∫ b
a
f(x) dx (approximate the integral in [a, b])

2: ε ≈
∣∣∣Q− ∫ ba f(x) dx

∣∣∣ (approximate the integration error)
3: if ε < τ then
4: return Q (return the current estimate)
5: else
6: return int(f, a, (a+ b)/2, τ ′) + int(f, (a+ b)/2, b, τ ′)

(call the integrator recursively on both sub-intervals)
7: end if

Algorithm 2 int (f, a, b, τ)

1: Q0 ≈
∫ b
a
f(x) dx (approximate the integral in [a, b])

2: ε0 ≈
∣∣∣Q− ∫ ba f(x) dx

∣∣∣ (approximate the integration error)
3: H ← {[a, b,Q0, ε0]} (initialize the heap with the first interval)
4: while

∑
εi∈H εi > τ do

5: k ← arg maxk εk
6: H ← H \ {[ak, bk, Qk, εk]} (pop the interval with the largest error)
7: m← (ak + bk)/2
8: Qleft ≈

∫m
ak
f(x) dx (compute the integral on the left)

9: εleft ≈
∣∣∣Qleft −

∫m
ak
f(x) dx

∣∣∣ (compute the error on the left)

10: Qright ≈
∫ bk

m
f(x) dx (compute the integral on the right)

11: εright ≈
∣∣∣Qright −

∫ bk

m
f(x) dx

∣∣∣ (compute the error on the right)
12: H ← H ∪ {[ak,m,Qleft, εleft], [m, bk, Qright, εright]}

(push the new intervals back on the heap)
13: end while
14: return

∑
Qi∈H Qi (return the sum of the integrals in the intervals)

Not all adaptive quadrature algorithms are recursive (locally adaptive): many
algorithms, such as those in QUADPACK, maintain a heap of intervals and bisect
the interval with the largest local error estimate and return the new sub-intervals
to the heap until the sum of the local errors is below the required tolerance (Algo-
rithm 2, globally adaptive). This approach, although more memory-intensive, has
several advantages over the recursive approach, such as better control over the error

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



4 · Pedro Gonnet

estimate and the ability to restart or refine an initial approximation [Malcolm and
Simpson 1975; Rice 1975].

However, despite all these advances in numerical quadrature in general and adap-
tive quadrature specifically, the results of these methods must often be treated with
caution, as failures are common even for relatively simple integrands. In this paper
we will present two new adaptive quadrature algorithms which attempt to address
this lack of reliability. The algorithms follow the general scheme in Algorithm 2,
yet with significant differences to previous methods regarding how the integrand
is represented (Section 2), how the integration error is estimated (Section 3) and
how singularities (Section 4) and divergent integrals (Section 5) are treated. The
algorithm itself is presented in Section 6 and in Section 7 it is validated against
other popular algorithms. These results are then discussed in Section 8.

2. FUNCTION REPRESENTATION

In most quadrature algorithms, the integrand is not represented internally except
through different approximations of its integral. We denote such approximations
as

Q(m)
n [a, b] =

m∑
i=1

Qn[a+ (i− 1)h, a+ ih] ≈
∫ b

a

f(x) dx, h =
b− a
m

where n is the degree4 of the quadrature rule and m its multiplicity.
The quadrature rule Qn itself is computed as the weighted sum of the integrand

evaluated at a pre-determined set of nodes5 xi ∈ [−1, 1], i = 0 . . . n:

Qn[a, b] = (b− a)
n∑
i=0

wif

(
a+ b

2
− a− b

2
xi

)
. (1)

The evaluation of one or more such quadrature rules is usually the only informa-
tion considered regarding the integrand.

Some authors [Gallaher 1967; Ninomiya 1980] use additional nodes to numerically
approximate the higher derivative directly using divided differences, thus supplying
additional information on the integrand f(x). In a similar vein, O’Hara and Smith
[1969], Oliver [1972] and Berntsen and Espelid [1991] compute some of the higher-
order coefficients of the function relative to some orthogonal base, thus further
characterizing the integrand.

In all of these cases, however, the characterization of the integrand is not com-
plete and in most cases only implicit. In the following, we will attempt to better
characterize the integrand.

Before doing so, we note that for every interpolatory quadrature rule, we are in

4In the following, we will use the term “degree” to specify the algebraic degree of precision of a

quadrature rule, which is the highest degree for which all polynomials of that degree will always
be integrated exactly by the rule.
5In the following we assume, for notational simplicity, that the number of nodes is the degree of

the rule plus one. Although most quadrature rules, e.g. interpolatory quadrature rules with an
odd number of symmetric nodes or Gauss quadratures and their Kronrod extensions, need less

than n+ 1 nodes for degree n, this is a general upper bound for interpolatory quadrature rules.
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fact computing a interpolating polynomial gn(x) of degree n such that

gn(xi) = f(xi), i = 0 . . . n

and evaluating the integral thereof

Qn[a, b] =
∫ b

a

gn(x) dx.

This equivalence is easily demonstrated, as is done in many textbooks in numeri-
cal analysis ([Stiefel 1961; Rutishauser 1976; Gautschi 1997; Schwarz 1997; Ralston
and Rabinowitz 1978] to name a few)6.

Since any polynomial interpolation of degree n over n + 1 distinct points is
uniquely determined, it doesn’t matter how we choose to represent gn(x) – its
integral will always be identical to the result of the interpolatory quadrature rule
Qn[a, b] over the same nodes.

In the following, we will represent gn(x) as a linear combination of orthogonal
polynomials:

gn(x) =
n∑
i=0

cipi(x) (2)

where the pi(x), i = 0 . . . n are polynomials of degree i which are orthonormal with
respect to some inner product

(pj , pk) =
{

0 j 6= k,
1 j = k.

We will use the coefficients c = (c0, c1, . . . , cn)T from Equation (2) as our represen-
tation of gn(x).

For notational simplicity, we will assume that the integrand has been transformed
from the interval [a, b] to the interval [−1, 1]. The polynomial gn(x) interpolates
the integrand f(x) at the nodes xi ∈ [−1, 1]:

gn(xi) = f(xi), i = 0 . . . n.

Given the function values f = (f(x0), f(x1), . . . , f(xn))T at the nodes xi, i =
0 . . . n, we can compute the coefficients by solving the linear system of equations

Pc = f (3)

where the matrix P with Pij = pj(xi) on the left-hand side is a Vandermonde-
like matrix. The naive solution using Gaussian elimination is somewhat costly and
may be unstable [Gautschi 1975]. However, several algorithms exist to solve this
problem stably in O(n2) operations for orthogonal polynomials satisfying a three-
term recurrence relation [Björck and Pereyra 1970; Higham 1988; 1990; Gonnet
2009b].

6If we consider the Lagrange interpolation gn(x) of the integrand and integrate it, we obtainZ b

a
gn(x) dx =

Z b

a

nX
i=0

`i(x)f(xi) dx =

nX
i=0

f(xi)

Z b

a
`i(x) dx =

nX
i=0

f(xi)wi

where the `i(x) are the Lagrange polynomials and the wi are the weights of the resulting quadra-

ture rule.
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In the following, we will use the orthonormal Legendre polynomials, which are
orthogonal with respect to the inner product

(pj , pk) =
∫ 1

−1

pj(x)pk(x) dx. (4)

We will evaluate and interpolate the integrand at the Chebyshev nodes

xi = cos
(
πi

n

)
, i = 0 . . . n.

These nodes are chosen over the Gauss quadrature nodes or equidistant nodes due
to their stability [Trefethen 2008], because the nodes can be re-used when increasing
the degree of the rule [Oliver 1972] and because they include the interval boundaries.

The resulting Vandermonde-like matrix has a condition number κ∞(P) ∈ O(n3/2)
which remains < 1 000 for n ≤ 100 and is thus tractable even for moderate n
[Gonnet 2009a].

The resulting representation of gn(x) (Equation (2)) has some interesting prop-
erties. First of all, it is simple to evaluate the integral of gn(x) using∫ 1

−1

gn(x) dx =
∫ 1

−1

n∑
i=0

cipi(x) dx =
n∑
i=0

ci

∫ 1

−1

pi(x) dx︸ ︷︷ ︸
=ωi

= ωTc (5)

where the weights ωT can be pre-computed and applied much in the same way as the
weights of a quadrature rule. Note that for the normalized Legendre polynomials
used herein, ωT = (1/

√
2, 0, . . . , 0).

We can also evaluate the L2-norm of gn(x) quite efficiently using Parseval’s the-
orem [∫ 1

−1

g2
n(x) dx

]1/2
=

[
n∑
i=0

c2i

]1/2

= ‖c‖2.

In the following, we will use ‖ · ‖ to denote the 2-norm for vectors.
A final useful feature is that, given the coefficients of gn(x) on [−1, 1], we can

construct upper-triangular matrices

T
(`)
i,j =

∫ 1

−1

pi(x)pj

(
x− 1

2

)
dx, T

(r)
i,j =

∫ 1

−1

pi(x)pj

(
x+ 1

2

)
dx, i = 0 . . . n, j ≥ i

such that

c(`) = T(`)c and c(r) = T(r)c (6)

are the coefficients of gn(x) on the left and right sub-intervals [−1, 0] and [0, 1] re-
spectively. These matrices depend only on the polynomials pi(x) and can therefore
be pre-computed for any set of nodes such that7

g(`)
n (x) = gn

(
x− 1

2

)
, x ∈ [−1, 1]. (7)

7This can be shown by representing the polynomials pi((x − 1)/2) of degree i as a linear combi-

nation of the polynomials pj(x), j = 0 . . . i where the coefficients are computed using the inner

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Adaptive Quadrature Using Explicit Interpolants · 7

The coefficients c(`) and c(r) can be useful if, after bisecting an interval, we want to
re-use, inside one of the sub-intervals, the interpolation computed over the entire
original interval.

3. ERROR ESTIMATION

This section contains a summary of the more important results of [Gonnet 2009a].
For a more complete discussion and testing of the error estimators presented herein,
we refer to that publication.

Although they differ in their specific implementations, what all these error esti-
mates have in common is that they try to approximate the quantity

ε =

∣∣∣∣∣Q(m)
n [a, b]−

∫ b

a

f(x) dx

∣∣∣∣∣ (8)

using only two or more approximations of the integral or of its coefficients relative
to some base. In these estimates, problems may occur when the difference between
two estimates Q(m1)

n [a, b] and Q
(m2)
n [a, b] or Qn1 [a, b] and Qn2 [a, b], or the magni-

tude of the computed coefficients is accidentally small 8, i.e. the approximations
used to compute the error estimate are too imprecise, resulting in a false small er-
ror estimate. This is often the case near singularities and discontinuities where the
assumptions on which the error estimate is based, e.g. continuity and/or smooth-
ness, do not hold. If we re-construct the underlying interpolatory polynomials for
the pair of quadrature rules used, we see that the interpolations differ significantly
(e.g. see Figure 1). This difference is a good indicator for whether the integrand is
correctly represented or not.

It is for this reason that instead of trying to compute the error as in Equation (8),
we will use the L2 norm9 of the difference between the integrand f(x) and the

product in Equation (4):

pi

„
x− 1

2

«
=

iX
j=0

pj(x)

»Z 1

−1
pj(x)pi

„
x− 1

2

«
dx

–
=

iX
j=0

pj(x)T
(`)
j,i .

We can then re-insert this expression into Equation (7)

g
(`)
n (x) = gn

„
x− 1

2

«
=⇒

nX
i=0

c
(`)
i pi(x) =

nX
i=0

cipi

„
x− 1

2

«
=

nX
i=0

ci

iX
j=0

pj(x)T
(`)
j,i

which, swapping the indices i and j and re-arranging the sums on the right-hand side can be

re-written as
nX
i=0

c
(`)
i pi(x) =

nX
i=0

pi(x)

nX
j=i

cjT
(`)
i,j

using which the vector of coefficients c(`) can be computed as in Equation (6).
8This term was first used by O’Hara and Smith [1968] to describe this problem.
9Note that if instead of using the orthonormal Legendre polynomials we were to use polynomials
orthogonal with respect to any specific measure w(x), we would compute the L2-norm with respect
to that measure:

ε =

»Z 1

−1
w(x)(gn(x)− f(x))2 dx

–1/2
.

Fortunately enough, for any measure w(x), the following derivations apply without modification.
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Fig. 1. A discontinuous function (solid) and the integrand interpolation using the Gauss-Lobatto
rule Q5[−1, 1] (dashed) and the Gauss-Kronrod rule Q9[−1, 1] (dotted) from Matlab’s quadl in-

tegrator. Note that although both quadratures return the same result, the interpolated functions

differ significantly.

interpolant gn(x) [∫ 1

−1

(gn(x)− f(x))2 dx
]1/2

. (9)

This is an approximation of the integration error Equation (8). The error estimate
will only be zero if the interpolated integrand matches the integrand on the entire
interval

gn(x) = f(x), x ∈ [−1, 1].

In such a case, the integral will also be computed exactly. The error Equation (9)
is therefore, assuming we can evaluate it reliably, not susceptible to “accidentally
small” values.

Since we do not know f(x) explicitly, i.e. we can only sample f(x) in a point-wise
fashion, we cannot evaluate the right-hand side of Equation (9) exactly. In a first,
naive approach, we could compute two interpolations g(1)

n1 (x) and g(2)
n2 (x) of different

degree where n1 < n2. If we assume, as is done for error estimators using quadrature
rules of differing degree, that g(2)

n2 (x) is a sufficiently precise approximation of the
integrand

g(2)
n2

(x) ≈ f(x), x ∈ [−1, 1]

then we can approximate the error of the interpolation g
(1)
n1 (x) as[∫ 1

−1

(
f(x)− g(1)

n1
(x)
)2

dx
]1/2

≈
[∫ 1

−1

(
g(2)
n2

(x)− g(1)
n1

(x)
)2

dx
]1/2

= ‖c(2) − c(1)‖
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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where c(1) and c(2) are the vectors of the coefficients of g(1)
n1 (x) and g

(2)
n2 (x) respec-

tively and c
(1)
i = 0 where i > n1. Our first, naive error estimate is hence

εnaive := ‖c(1) − c(2)‖. (10)

This error estimate, however, only applies to the lower-degree estimate g(1)
n1 (x).

Yet if we are going to compute the higher-degree estimate g
(2)
n2 (x), it would be

preferable to have an error estimate for that approximation.
We can, taking a different approach, use the interpolation error

|gn(x)− f(x)| =
∣∣∣∣f (n+1)(ξx)

(n+ 1)!
πn(x)

∣∣∣∣ , x ∈ [−1, 1] (11)

where ξx ∈ [−1, 1] depends on the value of x and where πn(x) =
∏n
i=0(x − xi) is

the Newton basis polynomial over the nodes of the interpolation gn(x). Taking the
L2-norm on both sides of Equation (11) we obtain

ε =
[∫ 1

−1

(gn(x)− f(x))2 dx
]1/2

=

[∫ 1

−1

(
f (n+1)(ξx)

(n+ 1)!

)2

π2
n(x) dx

]1/2

.

Since π2
n(x) is, by definition, positive for any x, we can apply the mean value

theorem of integration and extract the derivative resulting in

ε =
[∫ 1

−1

(gn(x)− f(x))2 dx
]1/2

=
∣∣∣∣f (n+1)(ξ)

(n+ 1)!

∣∣∣∣ [∫ 1

−1

π2
n(x) dx

]1/2
, ξ ∈ [−1, 1].

(12)
Given two interpolations g(1)

n (x) and g(2)
n (x) over a non-identical set of nodes, we

can compute the interpolation errors∣∣∣g(?)
n (x)− f(x)

∣∣∣ =
∣∣∣∣f (n+1)(ξ?)

(n+ 1)!
π(?)
n (x)

∣∣∣∣ , ξ? ∈ [−1, 1], ? ∈ {1, 2} (13)

where π(1)
n (x) and π(2)

n (x) are the Newton basis polynomials over the nodes of g(1)
n (x)

and g
(2)
n (x) respectively. If we assume that f (n+1)(x) is constant for x ∈ [−1, 1] (a

stricter version of the “sufficiently smooth” assumption for the purpose of deriving
this error estimate) and take the L2-norm of the difference between both errors, we
obtain[∫ 1

−1

(
g(1)
n (x)− g(2)

n (x)
)2

dx
]1/2

=
∣∣∣∣f (n+1)(ξ)

(n+ 1)!

∣∣∣∣ [∫ 1

−1

(
π(1)
n (x)− π(2)

n (x)
)2

dx
]1/2

.

(14)
If we represent the interpolations g(1)

n (x) and g(2)
n (x) by their coefficients c(1) and

c(2) respectively, then we can write the left-hand side of Equation (14) as∥∥∥c(1) − c(2)
∥∥∥ =

∣∣∣∣f (n+1)(ξ)
(n+ 1)!

∣∣∣∣ [∫ 1

−1

(
π(1)
n (x)− π(2)

n (x)
)2

dx
]1/2

. (15)

Similarly, if we represent the Newton basis polynomials π(1)
n (x) and π(2)

n (x) by their
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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coefficients b(1) and b(2) respectively

π(1)
n (x) =

n+1∑
i=0

b
(1)
i pi(x), π(2)

n (x) =
n+1∑
i=0

b
(2)
i pi(x), (16)

we can isolate the fraction on the right hand side of Equation (15)∣∣∣∣f (n+1)(ξ)
(n+ 1)!

∣∣∣∣ =

∥∥c(1) − c(2)
∥∥∥∥b(1) − b(2)
∥∥ . (17)

Inserting this expression into the original error estimate (Equation (12)) for the
interpolation g

(1)
n (x) we then obtain[∫ 1

−1

(
g(1)
n (x)− f(x)

)2

dx
]1/2

= ‖b(1)‖
∥∥c(1) − c(2)

∥∥∥∥b(1) − b(2)
∥∥ =: ε(1)

Hence, using two interpolations of the same degree, we obtain the more refined
error estimate

εref :=
‖c(1) − c(2)‖
‖b(1) − b(2)‖

‖b(1)‖ (18)

for the interpolation g
(1)
n (x).

Note that if the nodes of the interpolations g(1)
n (x) and g

(2)
n (x) are fixed, we can

pre-compute the scaling ‖b(1)‖/‖b(1) − b(2)‖.
Instead of explicitly computing two different interpolations over an interval [a, b]

to construct the error estimate, we can re-use the interpolation from the previous
level of recursion after bisection, the coefficients cold of which can be computed
using Equation (6). Likewise, we can compute the coefficients bold of the Newton
basis polynomial over the nodes of the previous level in the same way. However,
since bold and b are not in the same interval, we have to scale the coefficients of bold

by 2n+1 such that Equation (13) holds. In this way, we only need to compute and
store a single matrix P−1 and vector b for a single stencil of interpolation nodes.

As with the previous error estimators, we have also made an assumption of
smoothness regarding the integrand by assuming that f (n+1)(x) is constant for
x ∈ [−1, 1] to construct Equation (18). We can’t verify this directly, but we can
verify if our computed | f

(n+1)(ξ)
(n+1)! | (Equation (17)) actually satisfies Equation (13)

for the nodes of the first interpolation by testing if∣∣∣g(2)
n (xi)− f(xi)

∣∣∣ ≤ ϑ1

∣∣∣∣f (n+1)(ξ)
(n+ 1)!

∣∣∣∣ ∣∣∣π(2)
n (xi)

∣∣∣ (19)

is satisfied for all i = 0 . . . n, where the xi are the nodes of the interpolation g(1)
n (x).

The value ϑ1 ≥ 1 is an arbitrary relaxation parameter (for the tests in Section 7 we
use ϑ1 = 1.1). If this condition is violated for any of the xi, then we use the naive
error estimate in Equation (10).

4. SINGULARITIES AND UNDEFINED VALUES

Since most adaptive quadrature algorithms are designed for general-purpose use,
they will often be confronted with integrands containing singularities or undefined
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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function values. These can cause problems on two levels:

—The quadrature rule has to be evaluated with a non-numerical value such as a
NaN or ±Inf,

—The integrand may not be as smooth and continuous as the algorithm might
assume.

Such problems arise when integrating functions such as∫ h

0

xα dx, α < 0

which have a singularity at x = 0, or when computing seemingly innocuous integrals
such as ∫ h

0

sinx
x

dx

for which the integrand is undefined at x = 0, yet has a well-defined limit

lim
x→0

sinx
x

= 1.

In both cases problems could be avoided by either shifting the integration domain
slightly or by modifying the integrand such as to catch the undefined cases and
return a correct numerical result. This would, however, require some prior reflection
and intervention by the user, which would defeat the purpose of a general-purpose
quadrature algorithm.

Most algorithms deal with singularities by ignoring them, setting the offending
value of the integrand to 0 [Davis and Rabinowitz 1984, Section 2.12.7]. Another
approach, taken by quad and quadl in Matlab, is to shift the edges of the domain
by εmach if a non-numerical value is encountered there and to abort with a warning
if a non-numerical value is encountered elsewhere in the interval. Since singularities
may exist explicitly at the boundaries (e.g. integration of xα, α < 0 in the range
[0, h]), the explicit treatment of the boundaries is needed, whereas for arbitrary
singularities within the interval, the probability of hitting them exactly is somewhat
small.

QUADPACK’s QAG and QAGS algorithms take a similar approach: since the nodes
of the Gauss and Gauss-Lobatto quadrature rules used therein do not include the
interval boundaries, non-numerical values at the interval boundaries will be implic-
itly avoided. If the algorithm has the misfortune of encountering such a value inside
the interval, it aborts.

Our approach to treating singularities will be somewhat different: instead of
setting non-numerical values to 0, we will simply remove that node from our in-
terpolation of the integrand. This can be done rather efficiently by computing the
interpolation as shown before using a function value of f(xj) = 0 for the offending
jth node and then down-dating (as opposed to up-dating) the interpolation, i.e. re-
moving the jth node from the interpolation, resulting in an interpolation of degree
n− 1:

gn−1(x) =
n−1∑
i=0

c
(n−1)
i pi(x)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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which still interpolates the integrand at the remaining n nodes.
The coefficients c(n−1)

i of gn−1(x) can be computed, as described in [Gonnet
2009b], using

c
(n−1)
i = ci −

cn

b
(n−1)
n

b
(n−1)
i , i = 0 . . . n

where the ci are the computed coefficients of gn(x) and the b(n−1)
i are the coefficients

of the downdated Newton polynomial computed by solving the upper-triangular
system of equations

α0 −(xj + β1) γ2

. . . . . . . . .
αn−2 −(xj + βn−1) γn

αn−1 −(xj + βn)
αn



b
(n−1)
0

b
(n−1)
1

...
b
(n−1)
n−1

 =


b1
b2
...
bn


using back-substitution, where the bi are the coefficients of the Newton polynomial
over the nodes of the quadrature rule (Equation (16)) and the αi, βi and γi are the
coefficients of the three-term recurrence relation satisfied by the polynomials of the
orthogonal basis:

αkpk+1(x) = (x+ βk)pk(x)− γkpk−1(x).

The modified vectors c(n−1) and b(n−1) are then used in the same way as c and
b respectively for the computation of the integral and of the error estimate.

5. DIVERGENT INTEGRALS

Divergent integrals are integrals which tend to ±∞ and thus cause most algorithms
to either recurse infinitely or return an incorrect finite result. They are usually
caught by limiting the recursion depth or the number of function evaluations ar-
tificially. Both approaches do not per se attempt to detect divergent behavior,
and may therefore cause the algorithm to fail for complicated yet non-divergent
integrals.

Ninham [1966] studied the approximation error when computing∫ h

0

xα dx (20)

using the trapezoidal rule. The integral exists for α > −1 and is divergent otherwise.
Following his analysis, we compute the refined error estimate described in Section 3
(Equation (18)) for the intervals [0, h] and [0, h/2] using an 11-node Clenshaw-Curtis
quadrature rule10 and removing the singular node at x = 0 as described above.

We note that as the algorithm recurses to the leftmost interval, the local error
estimate as well as the computed integral itself remain constant for α = −1 and
increase for α < −1. In Figure 2 we plot the ratio of the error estimate in the left
sub-interval over the error in the entire interval, ε[0, h/2]/ε[0, h], over the parameter

10Remember that we are interpolating over the Chebyshev nodes which is equivalent to using a

Clenshaw-Curtis quadrature rule.
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Fig. 2. Ratio of the error estimates for
R h
0 xα dx for the intervals [0, h/2] over [0, h] for different

α. Note that the error grows (ratio > 1) for α < −1, where the integral is divergent.

α. For α = −1 the ratio is 1 meaning that the error estimate of the leftmost interval
remains constant even after halving the interval. For α < −1, for which the integral
diverges, the error estimate in the left half-interval is larger than the error estimate
over the entire interval.

The rate at which the error decreases (or, in this case, increases) may be a good
indicator for the convergence or divergence of the integral in Equation (20), where
the singularity is at the edge of the domain, yet it does not work as well for the
shifted singularity ∫ h

0

|x− β|α dx, β ∈ [0, h/2]. (21)

Depending on the location of the singularity (x = β), the ratio of the error estimates
over [0, h] and [0, h/2] varies widely for both α > −1 and α ≤ −1 and can not
be used to determine whether the integral diverges or not. In Figure 3 we have
shaded the regions in which the ratio of the error estimates ε[0, h/2]/ε[0, h] > 1
for different values of α and the location of the singularity β. For this ratio to be
a good indicator for the value of α (and hence the convergence/divergence of the
integral), the shaded area should at least partially cover the lower half of the plot
where α < −1, which it does not.

A more reliable approach consist of comparing the computed integral in two
successive intervals [a, b] and [a, (a + b)/2] or [(a + b)/2, b]. For the integrand in
Equation (20), the integral in the left sub-interval [0, h/2] is larger than that over
the interval [0, h] when α < −1. For the integral in Equation (21) the ratio of the
integrals in the intervals [0, h] and [0, h/2] is larger than 1 for most cases where
α ≤ −1 (see Figure 4).

Although this relation (ratio > 1⇒ α < −1), which is independent of the interval
h, is not always correct, it can still be used as a statistical hint for the integrand’s
behavior during subdivision. In the area −2 ≤ α ≤ −1 it is correct approximately
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Fig. 3. Contour of the ratio of the error estimates for
R h
0 |x− β|

α dx over the intervals [0, 1] and

[0, 1/2]. The filled area represent the region in which this ratio is larger than 1.
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Fig. 4. Contour of the ratio of the integral estimates for
R h
0 |x − β|

α dx over the intervals [0, 1]

and [0, 1/2]. The filled area represent the region in which this ratio is larger than 1.

two thirds of the time. We will therefore count the number of times that

Qn[a, (a+ b)/2]
Qn[a, b]

≥ 1 or
Qn[(a+ b)/2, b]

Qn[a, b]
≥ 1 (22)

during subdivision. Note that since the integral goes to either +∞ or −∞, the
integral approximations will be of the same sign and thus the sign of the ratios do
not matter. If this count exceeds some maximum number and is more than half of
the recursion depth – i.e. the ratio of integrals was larger than one over more than
half of the subdivisions – then we declare the integral to be divergent and return
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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an error or warning to the user to this effect.

6. THE ALGORITHM

We present the algorithm in two variants, Algorithm 3 and Algorithm 4, using both
the naive and the refined error estimates presented in Section 3. Both algorithms
follow the globally adaptive general scheme shown in Algorithm 2.

The first algorithm (Algorithm 3) uses the naive error estimate in Equation (10)
in a doubly adaptive strategy using dmax+1 rules of degree ni = 2ni−1, i = 1 . . . dmax,
using the nodes x(i) and the Vandermonde-like matrices P(i), i = 0 . . . dmax. For
the tests in Section 7, n0 = 4, hint = 0.1 and dmax = 3 were used.

In Lines 1 to 4, the coefficients of the two highest-degree rules are computed and
used to approximate the initial integral and error estimate. In Line 5 the heap
H is initialized with this interval data. The algorithm then loops until the sum
of the errors over all the intervals is below the required tolerance (Line 7). At
the top of the loop, the interval with the largest error is selected (Line 8). If the
error in this interval is below the numerical accuracy available for the rule used or
the interval is too small (i.e. the space between the first two or last two nodes is
zero, Line 11), the interval is dropped and its error and integral are accumulated
in the excess variables εxs and qxs (Line 12). If the selected interval has not already
used the highest-degree rule (Line 14), the coefficients of the next-higher degree
rule are computed and the integral and error estimate are updated (Lines 15 to
19). The interval is bisected if either the highest-degree rule has already been
applied or if when increasing the degree of the rule the coefficients change too
much (Line 20), analogously to the decision process suggested by Venter and Laurie
[2002]. For the two new sub-intervals, the coefficients for the lowest-degree rule are
computed (Line 30) and used to approximate the integral (Line 31). The number
of times the integral increases over the sub-interval is counted in the variables nrdiv

(Line 32) and if they exceed nrdivmax and half of the recursion depth nrrec of that
interval, the algorithm aborts (Line 33) as per Section 4. Note that since the test in
Equation (19) requires that both estimates be of the same degree, we will use, for
the estimate q(0)k from the parent interval, the estimate which was computed for the
first rule. The error estimate for the new interval is computed by transforming the
interpolation coefficients from the parent interval using Equation (6) and using its
difference to the interpolation in the new interval (Line 34). When the sum of the
errors falls below the required tolerance, the algorithm returns its approximations
to the integral and the integration error (Line 40).

The second algorithm (Algorithm 4) uses the refined error estimate in Equa-
tion (18), which re-uses the coefficients from a previous level of recursion. For the
results in Section 7, n = 10 and ϑ1 = 1.1 were used.

In Lines 1 to 5 an initial estimate is computed and used to initialize the heap
H. The error estimate is set to ∞ since it can not be estimated (Line 4). While
the sum of error estimates is above the required tolerance, the algorithm selects
the interval with the largest error estimate (Line 8) and removes it from the heap
(Line 9). As with the previous algorithm, if the error estimate is smaller than
the numerical precision of the integral or the interval is too small, the interval is
dropped (Line 10) and its error and integral estimates are stored in the excess
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Algorithm 3 int naive (f, a, b, τ)

1: for i = 0 . . . ndmax do fi ← f
(

(a+ b)/2− (a− b)x(m)
i /2

)
end for

(evaluate the integrand at the nodes x(m)
i )

2: c(dmax−1) ← (P(dmax−1))−1f [1 : 2 : nm + 1], c(dmax) ← (P(dmax))−1f
(compute the interpolation coefficients)

3: q0 ← (b− a)ωTc(dmax)/2 (approximate the integral as per Equation (5))
4: ε0 ← (b− a)‖c(dmax) − c(dmax−1)‖/2 (approximate the error)
5: H ← {[a, b, c(dmax), q0, ε0, dmax, 0, 0]} (init the heap with the first interval)
6: εxs ← 0, qxs ← 0 (init the excess error and integral)
7: while

∑
εi∈H εi > τ do

8: k ← arg maxk εk (get the index of the interval with the largest error)
9: m← (ak + bk)/2, h← (bk − ak)/2

10: split← false (init split)
11: if εk < |qk|εmachcond(P(dk)) ∨ interval too small then
12: εxs ← εxs + εk, qxs ← qxs + qk (collect the excess error and integral)
13: H ← H \ {[ak, bk, cold, qk, εk, dk, nrdiv, nrrec]} (remove the kth interval)
14: else if dk < dmax then
15: dk ← dk + 1 (increase the degree in this interval)
16: for i = 0 . . . ndk

do fi ← f
(
m− hx(dk)

i /2
)

end for

17: c(dk) = (P(dk))−1f (compute the new interpolation coefficients)
18: qk ← hωTc(dk) (approximate the new integral)
19: εk ← h‖c(dk) − cold‖ (approximate the new error)
20: split← ‖c(dk)−cold‖

‖c(dk)‖ > hint (check change in the coefficients)
21: else
22: split← true (split the interval if we are already at highest-degree rule)
23: end if
24: if split then
25: H ← H \ {[ak, bk, cold, qk, εk, dk, nrold

div, nrrec]} (remove the kth interval)
26: for i = 0 . . . n0 do
27: f left

i ← f
(

(ak +m)/2 + hx
(0)
i /2

)
, f right

i ← f
(

(m+ bk)/2 + hx
(0)
i /2

)
28: end for
29: for half ∈ {left, right} do
30: chalf = (P(0))−1fhalf (compute the new interpolation coefficients)
31: qhalf ← hchalf

0 /
√

2 (approximate the new integral)
32: if qhalf ≥ q(0)k then nrhalf

div ← nrold
div + 1 else nrhalf

div ← nrold
div end if

33: if nrhalf
div > nrdivmax ∧ 2nrhalf

div > nrrec then return error end if
(abort on divergence)

34: εhalf ← h‖chalf −Thalfcold‖ (approximate the new error)
35: end for
36: H ← H ∪ {[ak,m, cleft, qleft, εleft, 0, nrleftdiv , nrrec + 1],
37: [m, bk, cright, qright, εright, 0, nrright

div , nrrec + 1]}
(push the new intervals back on the heap)

38: end if
39: end while
40: return

[
qxs +

∑
qi∈H qi

]
,
[
εxs +

∑
εi∈H εi

]
(return the integral and the error)
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Algorithm 4 int refined (f, a, b, τ)
1: for i = 0 . . . n do fi ← f ((a+ b)/2− (a− b)xi/2) end for

(evaluate the integrand at the nodes xi)
2: c← P−1f ,

(compute the interpolation coefficients)
3: q0 ← (b− a)ωTc(dmax)/2 (approximate the integral)
4: ε0 ←∞ (start with a somewhat pessimistic appreciation of the error)
5: H ← {[a, b, c,b, q0, ε0, 0, 0]} (init the heap with the first interval)
6: εxs ← 0, qxs ← 0 (init the excess error and integral)
7: while

∑
εi∈H εi > τ do

8: k ← arg maxk εk (get the index of the interval with the largest error)
9: H ← H \ {[ak, bk, cold,bold, qk, εk, nrold

div, nrrec]} (remove the kth interval)
10: if εk < |qk|εmachcond(P) ∨ interval too small then
11: εxs ← εxs + εk, qxs ← qxs + qk (collect the excess error and integral)
12: else
13: m← (ak + bk)/2, h← (bk − ak)/2
14: for i = 0 . . . n do
15: f left

i ← f ((ak +m)/2 + hxi/2), f right
i ← f ((m+ bk)/2 + hxi/2)

(evaluate the integrand at the nodes xi in the sub-intervals)
16: end for
17: for half ∈ {left, right} do
18: chalf = (P)−1fhalf (compute the new interpolation coefficients)
19: qhalf ← hωTchalf (approximate the new integral)
20: if qhalf ≥ qk then nrhalf

div ← nrold
div + 1 else nrhalf

div ← nrold
div end if

21: if nrhalf
div > nrdivmax ∧ 2nrhalf

div > nrrec then return error end if
(abort on divergence)

22: f
(n+1)
half ← ‖chalf−T(half)cold‖

‖bhalf−2n+1T(half)bold‖ (approximate the higher derivative)

23: if max
{∣∣Pcold − fhalf

∣∣− ϑ1f
(n+1)
half

∣∣Pbold
∣∣} > 0 then

24: εhalf ← h‖chalf − cold‖ (compute the un-scaled error)
25: else
26: εhalf ← hf

(n+1)
half ‖bhalf‖ (compute the extrapolated error)

27: end if
28: end for
29: H ← H ∪ {[ak,m, cleft,bleft, qleft, εleft, nrleftdiv , nrrec + 1], . . .

[m, bk, cright,bright, qright, εright, nrleftdiv , nrrec + 1]}
(push the new intervals back on the heap)

30: end if
31: end while
32: return

[
qxs +

∑
qi∈H qi

]
,
[
εxs +

∑
εi∈H εi

]
(return the integral and the error)
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variables εxs and qxs (Line 11). The algorithm then computes the new coefficients
for each sub-interval (Line 18), as well as their integral approximation (Line 19).
If the integral over the sub-interval is larger than over the previous interval, the
variable nrdiv is increased (Line 20) and if it exceeds nrdivmax and half of the recursion
depth nrrec, the algorithm aborts with an error (Line 21). In Line 23 the algorithm
tests whether the conditions laid out in Equation (19) for the approximation of the
n + 1st derivative hold. If they do not, the un-scaled error estimate is returned
(Line 24), otherwise, the scaled estimate is returned (Line 26). Finally, both sub-
intervals are returned to the heap (Line 29). Once the required tolerance is met,
the algorithm returns its approximations to the integral and the integration error
(Line 32).

Although the algorithm descriptions in Algorithms 3 and 4 are quite complete,
some details have been omitted for simplicity. First of all, when the function values
are computed (Lines 1, 15 and 27 of Algorithm 3 and Lines 1 and 15 of Algorithm 4),
it is understood that previously computed function values at the same nodes, i.e. on
the edges of the domain for both algorithms or inside the Clenshaw-Curtis rules of
increasing degree for Algorithm 3, are re-used and not re-evaluated.

We have also not included the downdate of the interpolations when NaN or ±Inf
is encountered. This is done as is shown in Algorithm 5. If, when evaluating
the integrand, a non-numerical value is encountered, the function values is set to
zero and the index of the node is stored in nans (Line 4). The coefficients of the
interpolation are then computed for those function values (Line 6). For each index
in nans, first the coefficients b of the Newton polynomial over the nodes of the
quadrature rule are down-dated as per Equation (4) (Line 8). The downdated b is
then in turn used to downdate the interpolation coefficients c as per Equation (4)
(Line 9).

Furthermore, to improve memory efficiency, both algorithms maintain at most
200 intervals in the heap. If this number is exceeded, the interval with the smallest
error estimate is removed and its integral and error estimates are added to the
excess variables qxs and εxs respectively.

Algorithm 5 Interpolation downdate procedure
1: nans← {} (initialize nans)
2: for i = 0 . . . n do
3: fi ← f

(
a+ xi+1

2 (b− a)
)

(evaluate the integrand at the nodes xi)
4: if fi ∈ {NaN, Inf} then fi ← 0, nans← nans ∪ {i} end if

(if the result is non-numerical, set the node to zero and remember it)
5: end for
6: c← P−1f (compute the initial interpolation coefficients)
7: for i ∈ nans do
8: b← U−1

i b (downdate the coefficients of the Newton polynomial)
9: c← c− cn

bn
b (downdate the coefficients of the interpolation)

10: n← n− 1 (decrement the degree)
11: end for
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7. VALIDATION

In the following, we will test both algorithms described in Section 6 against the
following routines:

—quadl, MATLAB’s adaptive quadrature routine [The Mathworks 2003], based on
Gander and Gautschi’s adaptlob [Gander and Gautschi 2001]. This algorithm
uses a 4-point Gauss-Lobatto quadrature rule and its 7-point Kronrod extension.

—DQAGS, QUADPACK’s [Piessens et al. 1983] adaptive quadrature routine using a
10-point Gauss quadrature rule and its 21-point Kronrod extension as well as the
ε-Algorithm to extrapolate the integral and error estimate. The routine is called
through the GNU Octave [Eaton 2002] package’s quad routine.

—da2glob from Espelid [2007], which uses a doubly-adaptive strategy over rules
of degree 5, 9, 17 and 27 over 5, 9, 17 and 33 equidistant nodes11 respectively,
using the error estimator described in Berntsen and Espelid [1991].

The two algorithms in Section 6 were implemented in the MATLAB programming
language12.

Over the years, several authors have specified sets of test functions to evaluate
the performance and reliability of quadrature routines. In the following, we will
use, with some minor modifications, the test “families” suggested by Lyness and
Kaganove [1977] and the “battery” of functions compiled by Gander and Gautschi
[1998], which are an extension of the set proposed by Kahaner [1971].

The function families used for the Lyness-Kaganove test are∫ 1

0

|x− λ|α dx, λ ∈ [0, 1], α ∈ [−0.5, 0] (23)∫ 1

0

(x > λ)eαx dx, λ ∈ [0, 1], α ∈ [0, 1] (24)∫ 1

0

exp(−α|x− λ|) dx, λ ∈ [0, 1], α ∈ [0, 4] (25)∫ 2

1

10α/((x− λ)2 + 10α) dx, λ ∈ [1, 2], α ∈ [−6,−3] (26)∫ 2

1

4∑
i=1

10α/((x− λi)2 + 10α) dx, λi ∈ [1, 2], α ∈ [−5,−3] (27)

∫ 1

0

2β(x− λ) cos(β(x− λ)2) dx, λ ∈ [0, 1], α ∈ [1.8, 2], (28)

β = 10α/max{λ2, (1− λ)2}

where the boolean expressions are evaluated to 0 or 1. The integrals are computed
to relative precisions13 of τ = 10−3, 10−6, 10−9 and 10−12 for 1 000 realizations of

11The final rule of degree 27 over 33 nodes is constructed such as to maximize its numerical
stability.
12The source-code of both routines is available online at

http://people.inf.ethz.ch/gonnetp/toms/
13Since all algorithms tested use an absolute error bound, the exact integral times the relative

tolerance was used.
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the random parameters λ and α. The results of these tests are shown in Table I.
For each function, the number of correct and incorrect integrations is given with,
in brackets, the number of cases each where a warning (either explicit or whenever
an error estimate larger than the requested tolerance is returned) was issued. We
consider an integration to be correct only when the returned value is within the
required tolerance of the exact result.

The functions used for the “battery” test are

f1 =
∫ 1

0
ex dx f14 =

∫ 10

0

√
50e−50πx2

dx
f2 =

∫ 1

0
(x > 0.3) dx f15 =

∫ 10

0
25e−25x dx

f3 =
∫ 1

0
x1/2 dx f16 =

∫ 10

0
50(π(2500x2 + 1))−1 dx

f4 =
∫ 1

−1
( 23
25 cosh(x)− cos(x)) dx f17 =

∫ 1

0
50(sin(50πx)/(50πx))2 dx

f5 =
∫ 1

−1
(x4 + x2 + 0.9)−1 dx f18 =

∫ π
0

cos(cos(x) + 3 sin(x) + 2 cos(2x) + 3 cos(3x)) dx
f6 =

∫ 1

0
x3/2 dx f19 =

∫ 1

0
log(x) dx

f7 =
∫ 1

0
x−1/2 dx f20 =

∫ 1

−1
(1.005 + x2)−1 dx

f8 =
∫ 1

0
(1 + x4)−1 dx f21 =

∫ 1

0

∑3
i=1

[
cosh(20i(x− 2i/10))

]−1 dx
f9 =

∫ 1

0
2(2 + sin(10πx))−1 dx f22 =

∫ 1

0
4π2x sin(20πx) cos(2πx) dx

f10 =
∫ 1

0
(1 + x)−1 dx f23 =

∫ 1

0
(1 + (230x− 30)2)−1 dx

f11 =
∫ 1

0
(1 + ex)−1 dx f24 =

∫ 3

0
bexc dx

f12 =
∫ 1

0
x(ex − 1)−1 dx f25 =

∫ 5

0
(x+ 1)(x < 1) + (3− x)(1 ≤ x ≤ 3)

f13 =
∫ 1

0
sin(100πx)/(πx) dx +2(x > 3) dx

where the boolean expressions in f2 and f25 evaluate to 0 or 1. The functions are
taken from Gander and Gautschi [1998] with the following modifications:

—No special treatment is given to the case x = 0 in f12, allowing the integrand to
return NaN.

—f13 and f17 are integrated from 0 to 1 as opposed to 0.1 to 1 and 0.01 to 1
respectively, allowing the integrand to return NaN for x = 0.

—No special treatment of x < 10−15 in f19 allowing the integrand to return −Inf.
—f24 was suggested by J. Waldvogel as a simple yet tricky test function with

multiple discontinuities.
—f25 was introduced in Gander and Gautschi [1998], yet not used in the battery

test therein.

The rationale for the modifications of f12, f13, f17 and f19 is that we can’t, on one
hand, assume that the user was careful enough or knew enough about his or her
integrand to remove the non-numerical values, and on the other hand assume that
he or she would still resort to a general-purpose quadrature routine to integrate it.
Any general purpose quadrature routine should be robust enough to deal with any
function, provided by either careful or careless users.

These changes have little effect on quadl and DQAGS since, as mentioned in Sec-
tion 4, the former shifts the integration boundaries by εmach if a non-numerical
value is encountered on the edges of the integration domain and the later uses
Gauss and Gauss-Kronrod quadrature rules which do not contain the end-points
and thus avoid the NaN returned at x = 0 for f12, f13 and f17 and the Inf at x = 0
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in f19. da2glob treats NaNs by setting the offending function values to 1. Due
to the rather fortunate coincidence that f12, f13 and f17 all have a limit of 1 for
x→ 0, this integrator is in no way troubled by these integrands.

The battery functions were integrated for the relative tolerances τ = 10−3, 10−6,
10−9 and 10−12 and compared to the exact result, computed analytically. The re-
sults are summarized in Table II, where the number of required function evaluations
for each combination of integrand, integrator and tolerance are given. If integration
was unsuccessful, the number is stricken through. If the number of evaluations was
the lowest for the given integrand and tolerance, it is shown in bold face.

Finally, the integrators were tested on the problem∫ 1

0

|x− λ|α dx, λ ∈ [0, 1]

for 1 000 realizations of the random parameter λ and different values of α ∈
[−0.1,−2] for a relative14 tolerance τ = 10−3. Since for α ≤ −1, the integral
diverges and can not be computed numerically, we are interested in the warnings
or errors returned by the different quadrature routines. The results are shown in
Table III and Figure 5. For each integrator we give the number of successes and
failures as well as, in brackets, the number of times each possible error or warning
was returned. The different errors, for each integrator, are:

—quadl: (Min/Max/Inf)
—Min: Minimum step size reached; singularity possible.
—Max: Maximum function count exceeded; singularity likely.
—Inf: Infinite or Not-a-Number function value encountered.

—DQAGS: (ier1/ier2/ier3/ier4/ier5)
—ier1: Maximum number of subdivisions allowed has been achieved.
—ier2: The occurrence of roundoff error was detected, preventing the requested

tolerance from being achieved. The error may be under-estimated.
—ier3: Extremely bad integrand behavior somewhere in the interval.
—ier4: The algorithm won’t converge due to roundoff error detected in the extrap-

olation table. It is presumed that the requested tolerance cannot be achieved,
and that the returned result is the best which can be obtained.

—ier5: The integral is probably divergent or slowly convergent.
—da2glob: (noise/min/max/sing)

—noise: The requested tolerance is below the noise level of the problem. Required
tolerance may not be met.

—min: Interval too small. Required tolerance may not be met.
—max: Maximum number of function evaluations. Required tolerance may not

be met.
—sing: Singularity probably detected. Required tolerance may not be met.

—Algorithms 3 and 4: (err/div)
—err: The final error estimate is larger than the required tolerance.
—div: The integral is divergent.

14For α ≤ −1 an absolute tolerance of τ = 10−3 was used.
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Fig. 5. Results of computing
R 1
0 |x− λ|

α dx for 1 000 realizations of λ ∈ [0, 1] for different values
of α (x-axis). The curves represent the number of correct integrations and the number of times

each different warning was issued for each value of α.

Thus, the results for DQAGS at α = −0.8 should be read as the algorithm returning
146 correct and 854 false (requested tolerance not satisfied) results and having re-
turned the error ier3 (bad integrand behavior) 58 times and the error ier5 (probably
divergent integral) 4 times.

8. DISCUSSION

As can be seen from the results in Table I, for the integrands in the Lyness-Kaganove
test, both new algorithms presented in Section 6 are clearly more reliable than
quadl and DQAGS. MATLAB’s quadl performs best for high precision requirements
(small tolerances, best results for τ = 10−9), yet still fails often without warning.
QUADPACK’s DQAGS does better for low precision requirements (large tolerances,
best results for τ = 10−3), yet also fails often, more often than not with a warning.

Espelid’s da2glob does significantly better, with only a few failures at τ = 10−3

(without warning) and a large number of failures for Equation (28) at τ = 10−12,
albeit all of them with prior warning. The former are due to the error estimate
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not detecting specific features of the integrand due to the interpolating polynomial
looking smooth, when it is, in fact, singular (see Figure 7). The latter were due
to the integral estimates being affected by noise (most often in the 17-point rule),
which was, in all cases, detected and warned against by the algorithm.

The new algorithms fail only for Equation (23) at small tolerances since the in-
tegral becomes numerically impossible to evaluate (there are not sufficient machine
numbers near the singularity to properly resolve the integrand), for which a warn-
ing is issued. This problem is shared by the other integrators as well. Algorithm 3
also fails a few times when integrating Equation (27). In all such cases, one of the
peaks was missed completely by the lower-degree rules, giving the appearance of a
flat curve. Both algorithms also failed a few times on Equation (28) in cases where
the resulting integral was several orders of magnitude smaller than the function
values themselves, making the required tolerance practically un-attainable.

Whereas the new algorithms out-perform the others in terms of reliability, they
do so at a cost of a higher number of function evaluations. On average, Algorithm 3
uses about twice as many function evaluations as da2glob, whereas Algorithm 4
uses roughly six times as many.

The results are summarized in Figure 6. The plots, for each tolerance and inte-
grand, show where each algorithm stand in terms of relative reliability and relative
efficiency. If we divide the plots into four regions

efficient and
reliable

slow yet
reliable

efficient yet
unreliable

slow and
unreliable

we can see that whereas da2glob is clearly efficient and reliable, the two new algo-
rithms are slightly more reliable, yet slow. The results for quadl and QUADPACK’s
DQAGS are scattered over all four regions.

This trend is also visible in the results of the “battery” test (Table II). Algo-
rithms 3 and 4 fail on f21 for all but the highest and second-highest tolerances
respectively, since the third peak at x = 0.6 is missed completely. da2glob also
does quite well, failing on f21 at the same tolerances and for the same reasons as
the new algorithms and on f24 for τ < 10−3, using, however, in almost all cases,
less function evaluations than Algorithms 3 or 4.

It is interesting to note that quadl, DAQGS and da2glob all failed to integrate f24
for tolerances τ < 10−3. A closer look at the intervals that caused each algorithm
to fail (see Figure 8) reveals that in all cases, multiple discontinuities in the same
interval caused the error estimate to be accidentally small, leading the algorithms to
erroneously assume convergence. This is not a particularity of the interval chosen:
if we integrate ∫ λ

0

bexc dx, λ ∈ [2.5, 3.5] (29)

for 1 000 realizations of the random parameter λ for τ = 10−6 using these three in-
tegrators, they fail on 894, 945 and 816 of the cases respectively. Both Algorithms 3
and 4 succeed in all cases.
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Fig. 6. Scatter-plots of the results of the Lyness-Kaganove test-suite for each tolerance. Each

point represents one of the test functions (Equations 23 to 28). Its location is determined by

the relative number of function evaluations (on the x-axis) and the relative number of correct
evaluations (on the y-axis).

One could argue that the different error estimates are all equally good and the
different ratios of reliability vs. efficiency are only due to their parameterization,
i.e. their scaling of the error estimate. We can test this hypothesis by scaling the
error estimates of all five algorithms by the smallest value15 ρ such that the 1 000
runs at τ = 10−3 for Equation (23) produce no incorrect results:

τ = 10−3 quadl DQAGS da2glob Algorithm 4 Algorithm 3
f(x) ρ neval ρ neval ρ neval ρ neval ρ neval

Eqn (23) 40 000 783.18 — — 50 229.40 0.006 319.24 0.02 243.85

For quadl, a scaling of ρ = 40 000 was necessary, resulting in an 8-fold increase
in the number of required evaluations and for QUADPACK’s DQAGS, no amount of
scaling produced the correct result. For da2glob, Algorithm 3 and Algorithm 4,
only moderate scaling was necessary, bringing the number of required function
evaluations much closer to each other. There is, therefore, for da2glob a potential

15For simplicity, we consider only values in units of the next-closest power of 10.
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for tuning empirical scaling factors towards more reliability, yet at the cost of close
to the same number of function evaluations as Algorithms 3 and 4, at least for
Equation (23).

This approach, however, breaks down completely for Equation (29). As can be
seen in Figure 8, the error estimates which cause the individual algorithms to fail
are not merely small: they are zero, and hence no amount of scaling will fix them.
The two new algorithms are therefore not only more reliable due to a stricter (or
more pessimistic) scaling of the error estimate, but mainly due to the fundamentally
different type of error estimate, which is less prone to accidentally small estimates
(see [Gonnet 2009a]).

In the final test evaluating divergent integrals (Table III), quadl fails to distin-
guish between divergent and non-divergent integrals, reporting that a non-numerical
value was encountered for −1.0 ≥ α ≥ −1.4 and then aborting after the maximum
10 000 function evaluations16 for α < 1.4. For α < −1.0, DQAGS reports the in-
tegral to be either subject to too much rounding error or divergent. The latter
correct result was returned in more than half of the cases tested. In most cases
where α < −0.8, da2glob aborted, reporting that the smallest interval size had
been reached, or, in some cases, that the maximum number of evaluations (by
default 10 000) had been exceeded. All these cases were accompanied by an ad-
ditional warning that a singularity had probably been detected. For α = −0.8,
Algorithm 4 fails with a warning that the required tolerance was not met and as of
α < −1.1 both Algorithms 4 and 3 abort, correctly, after deciding that the integral
is divergent.

We conclude that the new Algorithms 4 and 3, presented herein, are more reliable
than MATLAB’s quadl, QUADPACK’s DQAGS and Espelid’s da2glob. This higher
reliability is not due to a stricter scaling of the error, but to a new type of error
estimator which avoids most of the problems observed in the other algorithms. This
increased reliability comes at a cost of two to six times higher number of function
evaluations required for complicated integrands such as those in Equations 23 to
28.

The tradeoff between reliability and efficiency should, however, be of little concern
in the context of automatic or general-purpose quadrature routines, which should
work reliably for any type of integrand. Most modifications which increase efficiency
usually rely on making certain assumptions on the integrand, e.g. smoothness,
continuity, non-singularity, monotonically decaying coefficients, etc. . . If, however,
the user knows enough about his or her integrand as to know that these assumptions
are indeed valid and therefore that the algorithm will not fail, then he or she knows
enough about the integrand as to not have to use a general-purpose quadrature
routine and, if efficiency is crucial, should consider integrating it by a specialized
routine or even trying to do so analytically.

In making any assumptions for the user, we would be making two mistakes:

(1) The increase in efficiency would reward users who, despite knowing enough
about their integrand to trust the quadrature rule, have not made the effort to
look for a specialized or less general routine,

16This termination criteria had been disabled for the previous tests.
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(2) The decrease in reliability punishes users who have turned to a general-purpose
quadrature routine because they knowingly can not make any assumptions re-
garding their integrand.

It is for this reason that we should have no qualms whatsoever in sacrificing a bit of
efficiency on some special integrands for much more reliability on tricky integrands
for which we know, and can therefore assume, nothing.

Ideally, software packages such as Matlab or libraries such as the Gnu Scientific
Library [Galassi et al. 2009] should offer both heavy-duty quadrature routines such
as Algorithms 3 and 4 presented herein, alongside other efficient routines, such as
da2glob [Espelid 2007] for less tricky integrands, as well as even more efficient meth-
ods (e.g. the exponentially convergent integrator proposed by Waldvogel [2009]) for
analytic (continuous and smooth) integrands, allowing the user to choose according
to his or her specific needs or level of understanding regarding the integrand.
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