Algorithms SCALE1, SCALE2, and SCALE3 for Determination of Scales on Computer Generated Plots [J6]

C.R. Lewart (Recd. 6 Aug. 1971 and 28 Jan. 1972)
Bell Telephone Laboratories, Incorporated, Holmdel, NJ 07733

Key Words and Phrases: plotting, scaling for plotting
CR Categories: 4.41
Language: Fortran

Description

Introduction. It is often desirable to plot computer generated output or obtain discrete distribution functions such as histograms automatically. In general the raw data does not lend itself directly to an easily readable presentation. The three related algorithms as presented here obtain readable linear or logarithmic scales with uniform interval sizes for users of various plot routines.

Readability. A readable linear scale is defined here as a scale with interval size a product of an integer power of 10 and 1,2 or 5 , and scale values integer multiples of the interval size.

A readable logarithmic scale on a display with uniform plotting intervals is defined here such that the ratio of adjoining scale values $D I S T=10^{(1 / L+K)}$, where K and L are integers, with $1 \leq L \leq 10$; scale values are equal to $D I S T^{M}$, where M is a set of successive integers.

The definition of readability used for SCALE 1 and SCALE 2 permits scale values such as:

```
-0.5,0.0, 0.5,1.0,...
1.24,1.26, 1.28, ..
100.0, 200.0, 300.0, ... , etc.
```

It prohibits the following examples:
$-1.0,4.0,9.0, \ldots$
1.2, 1.31, 1.42,...
$0.0,4.0,8.0,12.0, \ldots$, etc.
The definition of readability for logarithmic plots would permit scale values of $1, \sqrt[3]{ } 10,(\sqrt[2]{ } 10)^{2}, 10, \ldots$, but disallow $1, \sqrt{ } 5,5$, $5 \sqrt{ } 5,25, \ldots$.

Usage. A call of the form

CALL SCALE1 (XMIN, XMAX, N, XMINP, XMAXP, DIST)
where $X M I N$ and $X M A X$ are the minimum and maximum, respectively, of a given array and N a requested number of grid intervals will return a new minimum and maximum XMINP and XMAXP such that the range $[X M I N P, X M A X P]$ is the smallest range which will embrace the range $[X M I N, X M A X]$ and simultaneously result in approximately N grid intervals, each of the length DIST. Interval DIST is selected by SCALE 1 as the product of an integer power of 10 and 1, 2, or 5. XMINP and XMAXP are integer multiples of DIST.

In certain cases the number of plot intervals N has to be fixed. In particular, for plots generated by devices with relatively large pen increments, e.g. line printers or teletypewriters, N is restricted. For such cases SCALE2 for linear plots and SCALE3 for logarithmic plots have to be used.

SCALE2 with the same arguments as SCALE1 differs from SCALEI in that XMINP and XMAXP are determined such that exactly N grid intervals will result; as a consequence the range
[XMINP, XMAXP] will in general be less economical than that obtained by SCALEI. Parameters DIST, XMINP, and XMAXP will still satisfy requirements specified for SCALE1, namely DIST will be an integer power of 10 times 1, 2, or 5; and XMINP and $X M A X P$ will be integer multiples of DIST.

SCALE3 with the same arguments as SCALE1 will set XMINP and $X M A X P$ such that N logarithmic uniformly spaced grid intervals will cover the range $[X M I N, X M A X]$ |. DIST will be the ratio of adjacent grid line values.

SCALE3 selects DIST as $10^{(1 / L+K)}$, where K and L are integers and $1 \leq L \leq 10$. XMINP and XMAXP are selected so that $X M I N P=D I S T^{i}$, and $X M A X P=D I S T^{l}$ where j and l are integers.

Calling SCALE1, SCALE2, or SCALE3 will approximately center the range $[X M I N, X M A X]$ between XMINP and XMAXP. SCALE1, having determined DIST, selects the most economical limits, i.e. $(X M I N-D I S T)<X M I N P \leq X M I N$ and $X M A X \leq$ $X M A X P<(X M A X+D I S T) . S C A L E 2$ and SCALE 3 sclect limits to minimize ($X M A X P$ - XMAX) and (XMIN - XMINP) without necessarily satisfying the previous inequalities, but subject to the constraints of a fixed number of intervals.

The actual number of intervals N_{a}, determined from the outputs returned by $S C A L E 1$ is as follows:
$N_{a}=(X M A X P-X M I N P) / D I S T$.
N_{a} may be slightly larger or smaller than N as shown by the following inequality:
$(N / \sqrt{ } 2.5)<N_{a}<(N \times \sqrt{ } 2.5+2)$.
N_{a} will always equal N if SCALE2 or SCALE3 is called.
Round-off considerations. The three algorithms compensate for the computer round-off to assure that $X M I N$ and $X M A X$ are within the range $[X M I N P, X M A X P]$. A normalized parameter $D E L$ is introduced to scrve as a narrow gate around the minimum $X M I N$ and the maximum XMAX to avoid an unnecessarily large range $[X M I N P, X M A X P]$ caused by computer round-off. For example, if $D E L=0.0001, N=3$ and SCALE1 or SCALE 2 is called, XMINP of 1.0 and XMAXP of 4.0 will result for $0.9999<$ $X M I N \leq 1.0001$ and $3.9999 \leq X M A X<4.0001$. DEL is normalized to the interval size and should satisfy the following inequality:
$A<D E L<(B \times N) / C$,
where A is the round-off expected from a division and float operation, B is the minimum increment of the plotting device in inches, N is the number of intervals on the plot, and C is the plot size in inches. For example, using single precision REAL*4 variables (IBM 360): $A \sim 0.0000002$; for a precision flat bed ploter: $B=$ $0.002, C=50.0$. Assuming $N=10$ the following inequality is obtained:

$0.0000002<D E L<0.0004$.

It is obvious from this inequality that in practical cases the range of permissible values of $D E L$ is so large that $D E L$ is quite insensitive to the type of plotter and the type of computer used.
Examples

SCALE1						Actual No. of Intervals
XMIN	$X M A X$	N	XMINP	$X M A X P$	DIST	
-3.1	11.1	5	-4.0	12.0	2.0	8
5.2	10.1	5	5.0	11.0	1.0	6
-12000	-100	9	-12000	0	1000	12
$S C A L E 2$						Actual No. of Intervals
XMIN	$X M A X$	N	XMINP	XMAXP	DIST	
-3.1	11.1	5	-5.0	20.0	5.0	5
5.2	10.1	5	4.0	14.0	2.0	5
-12000	-100	9	-14000	4000	2000	9
Communi of the ACM	cations			tober 1973 lume 16 mber 10		

SCALE 3					Actual No．of Intervals	
XMIN	XMAX	N	XMINP	XMAXP	DIST	10
1.8	125.0	10	1.58	158.49	1.58	$(=\sqrt[5]{10)}$
					10.0	10.0
0.1	10.0	2	0.1		2	
0.1	1500.0	4	0.077	2154.4	12.92	4

Algorithm

SUBRDUTINE SGALFI（XMIN，XMAX，N，XMINP，XMAXP，DIST）

C ANSI FDRTKAN
C GIVEN XMIN．XMAX AND N SCALEL FINDS A NEW RANGE XMINP AND
C XMAXP DIVISIBLE INTE APPIROXIMATELY N LINEAK INTETVALS
G OF SIZE DIST
c vint is an array gf acceptable values fak dist stimes
C AN INTEGER POLEER OF 10）
C SQH IS AN ARRAY OF GEDMETRIC MFANS CF ADJACENT VALUES
C DF VINT，IT IS USED AS ARFAK PQINTS TO DETEKMINE
C WHICH VINT VALUE TO ASSIGN TO DIST DIMENSICN VINT（4），SOR（3）
DATA VINT（1），VINT（2），VINT（3），VINT（4）／1．，2．，5．， 10.1
DATA SOR（1），SQR（2），SQR（3）／A．414214，3．162273，7．071068，
C CHECK WHETHER PKEPER INPLI VALUES WEISE SUPPLIED
IF（XMIN•LT•XMAX ．AND．N．GT．O）GE TE 10
WKITE．（6，99999）
99999 FCRMATSЗAH LMPFCRER INPUT SUPPLIED TO SCALE1） RETURN
C DEl acceunts fer cemputek kound－bff
C DEL SHCULD EE GREATEK THAN THE KOUND－GFF EXPECTED FKEM
C DEL SHEULD 日E，GREATER THAN THE KQUND－GFF EXPECTED FKEM
C THE MINIMUM INCREMENT RF THE PLCTTING DEVICE USED EY
C THE MAIN PRQGKAM（IN．）DIVIDED BY THE PLET SIZE（IN．）
c TIMES NUMBER？OF INTERVALS N
$10 \mathrm{DEL}=.00002$
C FIND APPFEXIMATE INTERVAL SIZE A
$A=(X M A X-X M I N) / F N$
$A L=A L C G 10(A)$
$\mathrm{NAL}=A L$
c A IS SCALED INTO VARIABLE NAMEO B BETWEEN 1 AND 10
AノIO•＊＊NAL
c THE CLOSEST PERMISSIBLE VALUF FOK 8 is Found
DO $20 \quad \mathrm{I}=1,3$
IF（B．LT．SOM（I））Ge Te 30
： 20 CONTINUE $I=4$
C THE INTERVAL SIZE IS COMPUTED
30 DIST $=$ VINT（I）＊ $10 \cdot * *$ NAL
FM1 $=$ XMIN／DIST
$M 1=F M 1$
IF（FMILLT．O．）ML $=M 1-1$
$I F(A B S(F L Q A T(M 1)+1,-F M 1)-L T \cdot D E L) M 1=A 1+1$
C THE NEW MINIMLÍ AND MAXIMUM LIAITS AKE FOUND XMINP $=$ DIST＊FLOAT（MI）
FMI $=$ XMAX／DISI
$\mathrm{MF}=\mathrm{FFM2}+\mathrm{I}$ IF（Fí12．LT．（－1．））in2＝M2－ IF（ABS（FM2＋1，－FLQAT（ME））．LT．DEL）M2＝M2－ 1

C ADJUST LMMITS TO ACCOUNT F
IF（XMINH
IF（XMINF．GT．XMIN）XMINP $=$ XMIN
If（XMAXP－LT．XMAX：XIAAXP $=$ XMAX
RETUKN
END
SUBROUTINE SCALE $\left(X_{M I N}\right.$ ，XMAX，N，XMINF，XNAXP：DIST）
C ANSI FGRTRAN \quad GIVEN XMIN XMAX AND N SCALEZ FINDS A NEW RANGE XMINP AND
XMAXP DIVISIBLE INTO EXACTLY N LINEAG̈ LNTERVALS GF SIZE
c DIST，WHERE N is GrEATER THAN 1
DIMENSIEN VINT（5）
DATA VINT（1），VINT（2．，VINT（3），VINT（4），VINT（5）／1＊，2．，
C GHECK WHETHER PRפPER INPUT VALUES WEKE SUPPLIEL IF（XMIN．LT．XMAX ．AND．N．GT．1），GE TD 10 WKITE（6，99999）
99999 Fginmat（34H IMPK̃g？EN INPUT SUPFLIEL TC SCALEZ） RETURN
$10 \mathrm{DEL}=.00002$ $F N=N$
c FIND APPRGXIMATE INTERVAL SIZE A $A=(X$ MAX－XMIN）／FN
$A L=A L Q G 10(A)$ $N A L$
$I F$
F
$A . L T$
IF（A．LT．1．）NAL＝NAL－ 1
C A IS SCALED INTE VARIABLE NAMED B BETWEEN 1 AND 10 $B=A / 10 . * * N A L$
C THE CLOSEST PFRMISSIBLE VALUE FOR B IS FDUND $0020 \quad I=1,3$
IF（B．LT．（VINT（I）＋DEL．））GO T0 30
20 gentinue
$1=4$
c THE INTEKVAL SIZE IS CのMPUTED
30 DIST $=$ VINT（I） $210 \cdot * *$ NAL
FM1 $=$ XMIN／DIST
M1 $=$ FM1
IF（ABSLT：O．）M1＝M1－1
（LT．DEL）$H 1=M I+$ XMINP $=$ DIST＊FL＠AT（M1）
FME $=$ XMAX／DIST
KME $=$ KMAX
$M 2$ FMP +1.
IF（FMZ．LT．（－1．））M2＝M2－
IF（ABS（FMP＋1，－FLOAT（M2）），LT．DEL）WC＝ME－1 XMAXP $=$ DIST＊FLGAT（M2）

C CHECK WHETHER A SECOND PASS IS REQUIIEED
$N P=M 2-M 1$
IF（NP－LE．N）GO TO 40
$I=I+1$
$40 N K=(N-N P) / 2$
XMINP $=$ XMINP－FLQAT（INX）＊DIST
C ADJUST LIMITS TE ACCOUNT FQR ROUND－GF：IF NECESSAKY IF（XMINP．GT．XMIN）XMINP $=$ XMIN IF（XMAXP•LT•XMAX）XMAXP $=$ XMAX RETURN
END

SUBROUTINE SCALEZ（XMIN，XMAX，N ，XMINP，XMAYP，DIST）
C ANSI FORTRAN
C GIVEN KMIN，XMAX AND N，WHENE N IS GREATEK THAN 1，SCALES
C FINDS A NEw RANGE XMINP AND XMAXP DIVISIBLE INTO EXACTLY
C N L ØGARITHMIC INTERVALS，WHEKE THE RATI曰 0F ADJACENT
C UNIFDRMLY SPACED SCALE VALUES IS dist
DIMENSION VINT（11）
DATA VINT（1），VINT（2），VINT（3），VINT（4），VINT（5），VINT（6），
＊VINT（7）．VINT（8），VINT（9），VINT（10），VINT（11）／10．，9．，
＊8．，7．．6．，5．．4．，3．，2．，1．．．．5／
C CHECK WHETHER PRGPER INPUT VALUES WERE SUPPI，IED
IF（XMIN．LT．XMAX ．AND．N．GT．1 AND．XMIN．GT．O．）Gø T0 10 URITE（6．99999）
99999 FGRMAT（34H IMPREPER INPUT SUPPLIED TO SCALE3） RETURN
$10 \mathrm{DEL}=.00002$
C VALUES ARE TRANSLATED FROM THE LINEAR INTO LGGAKI THMIC c REGION

XMINL $=$ ALOGIO（XMIN）
$X M A X L=A L D G 10(X: A X)$
$F N=N$
C FIND APPRQXIMATE INTERVAL SILE A
$A=(X M A X L-X M I N L) / F N$
$A L=A L O G 10(A)$
$N A L=A L$
C A IS SGALED INTD VARIABLE NAMED B BETWFFN 1 AND 10
C A IS SGALEU INTD
c thf clesest permissible value for b is found
D0 $20 \quad I=1,9$
10．NINT（I）＋DELノ） 60 TO 30
CONTINUE
$I=10$
C THE INTERVAL SIZE IS COMPUTED
30 DISTL $=10 . * *(N Q L+i) / V I N T(I)$
FM1 $=$ XMINL／DISTL
M1＝FM1
IF（FM1•LT•D．）M1 $=M 1-1$
$1 F(A B S(F L D A T(M I)+1 .-F M 1) . L T \cdot D E L) M 1=M 1+1$
C THE NEW MINLMUM aNU MAXIMUM LIMITS ANE FgUND XMINP $=$ DISTL＊FLCATCMI） FM2 $=$ XMAXL／DISTL
$\mathrm{M} 2=\mathrm{FM} 2+1$ ．
IF（FM2．LT．（－1．））ME $=12-1$
IF（ABS（FM2＋1，－FLGAT（MZ））LLT．DEL）M2＝M2－ 1
XMAXP $=$ DISTL＊FLOAT（M2） $N P=M P-M 1$
C CHECK ，hether angthen pass is necessary
IF（NP－LE．N）GO TO 40
$\mathbf{I}=1+1$
G0 1230
$40 \mathrm{NK}=(\mathrm{N}-\mathrm{NP}) / 2$
XMINP $=X M I N P-F L Q A T(N X) * D I S T L$
XMAXP $=X M I N H$
XMAXP $=$ XMINF + FLGATKN）$* D I S T L$
C VALUES ARE TRANSLATED FRGM THE LGGARITHMIC LNTE THE LINEAR c REGION

DIST $=10 \cdot * *$ DISTL
XMINP $=10 \cdot * *$ XMINP
C ADJUST LIMITS TG ACCGUNT FGR KØUND－DFF IF NECESSARY
IF（XMINP．GT•XMIN）XMINP＝XMIN
IF（XMAXF．LT．XMAX）KMAXP $=$ XMAX
RETUKN
END

Communications	October 1973 of the ACM
Volume 16	
	Number 10

