qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] cg14


From: Bob Breuer
Subject: Re: [Qemu-devel] cg14
Date: Sat, 29 May 2010 00:15:46 -0500
User-agent: Thunderbird 2.0.0.24 (Windows/20100228)

Artyom Tarasenko wrote:
> 2010/5/28 Blue Swirl <address@hidden>:
>   
>> On Fri, May 28, 2010 at 7:54 AM, Bob Breuer <address@hidden> wrote:
>>     
>>> Artyom Tarasenko wrote:
>>>       
>>>> 2010/5/27 Bob Breuer <address@hidden>:
>>>>
>>>>         
>>>>> Artyom Tarasenko wrote:
>>>>>
>>>>>           
>>>>>> Was going to put some more empty slots into SS-10/20 (VSIMMs, SX)
>>>>>> after we are done with SS-5 (due to technical limitations I can switch
>>>>>> access from one real SS model to another one once a few days only).
>>>>>>
>>>>>>
>>>>>>             
>>>>> I have a partial implementation of the SS-20 VSIMM (cg14) that I've been
>>>>> working on.  With the Sun firmware, I have working text console, color
>>>>> boot logo, and programmable video resolutions up to 1600x1280.
>>>>>
>>>>>           
>>>> Great news! This would allow qemu booting NeXTStep! Are you planning
>>>> to submit the patches any time soon?
>>>>
>>>>
>>>>         
>>> It's not in a state to be submitted yet, but I've attached a working
>>> patch if you want to give it a try.  I need to hook it up to qdev and
>>> fill in some more of the obviously incomplete switch cases before I'd
>>> sign off on it.
>>>       
>> Nice work. I have a few comments below.
>>
>> This probably needs support from OpenBIOS to be usable without OBP.
>>     
>
> Maybe it can be used as a second adapter without OpenBIOS support? At
> least under some OSes?
>
>   
Probably won't be used without at least being in the firmware device
tree.  One area that OpenBIOS could enhance would be a larger memory
size option.  The real hardware was only available in 4M and 8M options,
but the memory map allows for 16M.  OBP will identify a 16M VSIMM but
won't do anything else with it, and with 16M of vram it would allow for
a potential 2560x1600 32bit resolution.
>>> Bob
>>>
>>>
>>> diff --git a/Makefile.target b/Makefile.target
>>> index fda5bf3..b17b3af 100644
>>> --- a/Makefile.target
>>> +++ b/Makefile.target
>>> @@ -250,6 +250,7 @@ else
>>>  obj-sparc-y = sun4m.o lance.o tcx.o sun4m_iommu.o slavio_intctl.o
>>>  obj-sparc-y += slavio_timer.o slavio_misc.o sparc32_dma.o
>>>  obj-sparc-y += cs4231.o eccmemctl.o sbi.o sun4c_intctl.o
>>> +obj-sparc-y += cg14.o
>>>  endif
>>>
>>>  obj-arm-y = integratorcp.o versatilepb.o arm_pic.o arm_timer.o
>>> diff --git a/hw/sun4m.c b/hw/sun4m.c
>>> index 7ba0f76..8b23c9b 100644
>>> --- a/hw/sun4m.c
>>> +++ b/hw/sun4m.c
>>> @@ -864,6 +864,13 @@ static void sun4m_hw_init(const struct sun4m_hwdef 
>>> *hwdef, ram_addr_t RAM_size,
>>>         fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
>>>         exit (1);
>>>     }
>>> +  if (hwdef->machine_id == 65) { /* SS-20 */
>>>       
>> hwdef structure should contain a field for cg14. If non-zero, install
>> cg14. Was cg14 only available for SS-20? Was it always included? This
>> is also interesting for OpenBIOS, we need to detect cg14 vs. TCX.
>>     
The cg14 was only an option for SS-20 and the rare SS-10SX, but not the
regular SS-10, though the SS-10 chipset may have been capable of
supporting it.  Each cg14 vsimm takes the place of a stick of memory
with 2 slots physically capable of holding a vsimm.

Is there a way to pass the framebuffer type and/or address to OpenBIOS? 
I would be inclined to have the SS-20 machine default to cg14 instead of
TCX, but it will blow a hole in the support of more than 2G of emulated
system ram.
>>> +    /* cg14.c */
>>> +    void cg14_init(target_phys_addr_t ctrl_base, target_phys_addr_t 
>>> vram_base,
>>> +                uint32_t vram_size);
>>>       
>> This should go to sun4m.h or cg14.h.
>>
>>     
>>> +
>>> +    cg14_init(0x09c000000ULL, 0x0fc000000ULL, 8<<20);
>>> +  } else
>>>       
>> Please add braces and reindent.
>>
>>     
>>>     tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
>>>              graphic_depth);
>>>
>>> --- /dev/null   Fri May 28 02:08:36 2010
>>> +++ hw/cg14.c   Fri May 28 01:58:49 2010
>>> @@ -0,0 +1,785 @@
>>> +/*
>>> + * QEMU CG14 Frame buffer
>>> + *
>>> + * Copyright (c) 2010 Bob Breuer
>>> + *
>>> + * Permission is hereby granted, free of charge, to any person obtaining a 
>>> copy
>>> + * of this software and associated documentation files (the "Software"), 
>>> to deal
>>> + * in the Software without restriction, including without limitation the 
>>> rights
>>> + * to use, copy, modify, merge, publish, distribute, sublicense, and/or 
>>> sell
>>> + * copies of the Software, and to permit persons to whom the Software is
>>> + * furnished to do so, subject to the following conditions:
>>> + *
>>> + * The above copyright notice and this permission notice shall be included 
>>> in
>>> + * all copies or substantial portions of the Software.
>>> + *
>>> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
>>> OR
>>> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
>>> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
>>> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
>>> OTHER
>>> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
>>> FROM,
>>> + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 
>>> IN
>>> + * THE SOFTWARE.
>>> + */
>>> +
>>> +#include "console.h"
>>> +#include "sysbus.h"
>>> +
>>> +#ifdef DEBUG
>>>       
>
> DEBUG_CG14 ?
>
>   
>>> +#define DPRINTF(fmt, ...)                                       \
>>> +    do { printf("CG14: " fmt , ## __VA_ARGS__); } while (0)
>>> +#else
>>> +#define DPRINTF(fmt, ...)
>>> +#endif
>>> +
>>> +#define CG14_INFO(fmt, ...)                                     \
>>> +    do { printf("CG14: " fmt , ## __VA_ARGS__); } while (0)
>>> +#define CG14_ERROR(fmt, ...)                                    \
>>> +    do { printf("CG14: " fmt , ## __VA_ARGS__); } while (0)
>>> +
>>> +/*
>>> + * A[28:26] = slot number (4 to 7)
>>> + * regs: size   0x10000 @ 0x09c000000  (0x80000000 + slot * 64M)
>>> + * vmem: size upto 16MB @ 0x0fc000000  (0xE0000000 + slot * 64M)
>>> + */
>>>       
>> If you have any links to chipset docs, it would be nice to mention those 
>> here.
>>     
Chipset docs are hard to come by.  But here's what I've found:
    "Sun-4M System Architecture" section A.II.3 briefly covers VSIMM and
DSIMM size detection.
    Linux kernel 2.6 drivers/video/cg14.c has most of the registers named.
    US Patent 5815137 covers the cursor implementation, but it includes
drawings which show the various color and lookup table muxing and
blending capability.  I will not be implementing the cursor functionality.

>>> +
>>> +/*
>>> + * memory map:
>>> + * reg+0x0000 = control registers
>>> + * reg+0x1000 = cursor registers
>>> + * reg+0x2000 = dac registers (ADV7152)
>>> + * reg+0x3000 = xlut
>>> + * reg+0x4000 = clut1
>>> + * reg+0x5000 = clut2
>>> + * reg+0x6000 = clut3 (if implemented)
>>> + *
>>> + * mem+0x0000000 = XBGR (01234567)
>>> + * mem+0x1000000 = BGR  (.123.567)
>>> + * mem+0x2000000 = X16  (0246)
>>> + * mem+0x2800000 = C16  (1357)
>>> + * mem+0x3000000 = X32  (04)
>>> + * mem+0x3400000 = B32  (15)
>>> + * mem+0x3800000 = G32  (26)
>>> + * mem+0x3c00000 = R32  (37)
>>>       
>> Interesting device. You could increase the performance a lot by making
>> the XBGR area ordinary memory and detecting the dirtyness with
>> VGA_DIRTY_FLAG like TCX. The other areas could use multiple byte
>> stores to the memory so dirty information would be updated.
>>     

Hmm, interesting.  Might be cumbersome if the width isn't 1024 though.

>>> + */
>>> +
>>> +#define CG14_REG_SIZE         0x10000
>>> +#define CG14_VMEM_SLOTSIZE    (64<<20)
>>> +
>>> +#define CG14_MONID_1024x768   0
>>> +#define CG14_MONID_1600x1280  1
>>> +#define CG14_MONID_1280x1024  2
>>> +#define CG14_MONID_1152x900   7
>>> +
>>> +#define CG14_MONID_DEFAULT    CG14_MONID_1024x768
>>> +
>>> +#define MCR_PIXMODE_MASK  0x30
>>> +#define   MCR_PIXMODE_8     0x00
>>> +#define   MCR_PIXMODE_16    0x20  /* 8+8 (X16,C16) */
>>> +#define   MCR_PIXMODE_32    0x30  /* XBGR */
>>> +
>>> +
>>> +struct ADV7152_state {
>>> +    uint8_t mode;
>>> +    uint8_t address;
>>> +    int rgb_seq;
>>> +};
>>> +
>>> +typedef struct CG14State {
>>> +    SysBusDevice busdev;
>>> +    DisplayState *ds;
>>> +
>>> +    uint8_t *vram;
>>> +    uint32_t vram_amask;
>>> +    int width, height;
>>> +    int dirty, size_changed;
>>> +    struct {
>>> +        uint8_t mcr;
>>> +        uint8_t ppr;
>>> +    } ctrl;
>>> +    struct ADV7152_state dac;
>>> +    struct {
>>> +        uint16_t hblank_start;
>>> +        uint16_t hblank_clear;
>>> +        uint16_t vblank_start;
>>> +        uint16_t vblank_clear;
>>> +    } timing;
>>> +    uint8_t xlut[256];
>>> +    uint32_t clut1[256];
>>> +    uint32_t clut2[256];
>>> +} CG14State;
>>> +
>>> +static void cg14_screen_dump(void *opaque, const char *filename);
>>> +static void cg14_invalidate_display(void *opaque);
>>> +
>>> +static inline uint32_t bgr_to_rgb(uint32_t bgr)
>>> +{
>>> +    uint32_t rgb;
>>> +
>>> +    /* swap r & b */
>>> +    rgb = (bgr & 0x00FF00)
>>> +        | (bgr & 0x0000FF) << 16
>>> +        | (bgr & 0xFF0000) >> 16;
>>> +    return rgb;
>>> +}
>>> +
>>> +static void cg14_draw_line32(const CG14State *s, void *dst, const uint8_t 
>>> *src, int pixmode, int is_bgr)
>>> +{
>>> +    int i;
>>> +    int x, r, g, b;
>>> +    uint8_t xlut_val;
>>> +    uint32_t dval;
>>> +    uint32_t abgr;
>>> +
>>> +    xlut_val = s->ctrl.ppr;
>>> +
>>> +    for (i=0; i<s->width; i++) {
>>> +        x = *src++;
>>> +        if (pixmode == 8) {
>>>       
>> To increase performance, pixmode should not be passed at all but
>> instead separate functions should be added for each mode and the
>> function should be selected before the line loop.
>>     

Yes, at least for 8bit mode.  The per-pixel xlut value offers a lot of
flexibility that may be hard to speed up when fully implemented.  The
hardware supports simultaneous true-color and palette lookups to
generate 2 color values to blend together for every displayed pixel.

>>> +            b = x;
>>> +        } else {
>>> +            b = *src++;
>>> +            xlut_val = s->xlut[x];
>>> +        }
>>> +        if (pixmode != 32) {
>>> +            r = g = b;
>>> +        } else {
>>> +            g = *src++;
>>> +            r = *src++;
>>> +        }
>>> +        if (xlut_val == 0) {
>>> +            abgr = b << 16 | g << 8 | r;
>>> +        } else if (xlut_val == 0x40) {
>>> +            abgr = s->clut1[x];
>>> +        } else {
>>> +            abgr = 0;
>>> +        }
>>> +        /* dac lookup ? */
>>> +
>>> +        /* to surface format */
>>> +        dval = is_bgr ? (abgr & 0xFFFFFF) : bgr_to_rgb(abgr);
>>> +        ((uint32_t*)dst)[i] = dval;
>>> +    }
>>> +}
>>> +
>>> +static void cg14_update_display(void *opaque)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    int h, pixmode;
>>> +    uint8_t *pix;
>>> +    uint8_t *data;
>>> +    int new_width, new_height;
>>> +
>>> +    if (s->size_changed) {
>>> +        new_width = 4 * (s->timing.hblank_start - s->timing.hblank_clear);
>>> +        new_height = s->timing.vblank_start - s->timing.vblank_clear;
>>> +        s->size_changed = 0;
>>> +        if ((new_width != s->width || new_height != s->height) && 
>>> new_width > 0 && new_height > 0) {
>>> +            s->width = new_width;
>>> +            s->height = new_height;
>>> +            CG14_INFO("new resolution = %d x %d\n", new_width, new_height);
>>> +            qemu_console_resize(s->ds, s->width, s->height);
>>> +            s->dirty = 1;
>>> +        }
>>> +    }
>>> +
>>> +    if (!s->dirty || !s->width || !s->height) {
>>> +        return;
>>> +    }
>>> +
>>> +    if (ds_get_bits_per_pixel(s->ds) != 32) {
>>> +        CG14_ERROR("cg14_update: FIXME: bpp (%d) != 32, linesize %d\n",
>>> +            ds_get_bits_per_pixel(s->ds), ds_get_linesize(s->ds));
>>> +        return;
>>> +    }
>>> +
>>> +    switch (s->ctrl.mcr & MCR_PIXMODE_MASK) {
>>> +    case MCR_PIXMODE_32:
>>> +        pixmode = 32;
>>> +        break;
>>> +    case MCR_PIXMODE_16:
>>> +        pixmode = 16;
>>> +        break;
>>> +    case MCR_PIXMODE_8:
>>> +    default:
>>> +        pixmode = 8;
>>> +        break;
>>> +    }
>>> +
>>> +    pix = s->vram;
>>> +    data = ds_get_data(s->ds);
>>> +
>>> +    for (h=0; h<s->height; h++) {
>>> +        cg14_draw_line32(s, data, pix, pixmode, 
>>> is_surface_bgr(s->ds->surface));
>>> +        pix += s->width * (pixmode / 8);
>>> +        data += ds_get_linesize(s->ds);
>>> +    }
>>> +    dpy_update(s->ds, 0, 0, s->width, s->height);
>>> +    s->dirty = 0;
>>> +}
>>> +
>>> +static void cg14_invalidate_display(void *opaque)
>>> +{
>>> +    CG14State *s = opaque;
>>> +
>>> +    s->dirty = 1;
>>> +}
>>> +
>>> +static void ADV7152_write(struct ADV7152_state *s, unsigned int reg, 
>>> unsigned int val)
>>> +{
>>> +    switch (reg) {
>>> +    case 0: /* address register */
>>> +        DPRINTF("ADV7152 Write address %02x\n", val);
>>> +        s->address = val;
>>> +        s->rgb_seq = 0;
>>> +        break;
>>> +    case 1: /* look up table */
>>> +        DPRINTF("ADV7152 Write %02x to lookup table\n", val);
>>> +        s->rgb_seq++;
>>> +        break;
>>> +    case 2: /* control registers */
>>> +        DPRINTF("ADV7152 Write %02x to control reg %d\n", val, s->address);
>>> +        switch (s->address) {
>>> +        default:
>>> +            break;
>>> +        }
>>> +        break;
>>> +    case 3: /* mode register */
>>> +        CG14_INFO("ADV7152 Write mode %02x (%d bit DAC, %d bit bus)\n",
>>> +            val, (val & 2) ? 10 : 8, (val & 4) ? 10 : 8);
>>> +        if (!val & 0x01) {
>>> +            // reset the dac
>>> +            s->rgb_seq = 0;
>>> +        }
>>> +        s->mode = val;
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t cg14_reg_readb(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    unsigned int val;
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    case 0x0000:
>>> +        val = s->ctrl.mcr;
>>> +        break;
>>> +    case 0x0001:
>>> +        val = s->ctrl.ppr;
>>> +        break;
>>> +    case 0x0004: /* status ? */
>>> +        /* monitor code in bits 1..3 */
>>> +        val = CG14_MONID_DEFAULT << 1;
>>> +        break;
>>> +    case 0x0006: /* hw version */
>>> +        //val = 0x00; /* old version */
>>> +        val = 0x30;
>>> +        break;
>>> +    default:
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    CG14_INFO("readb %02x from reg %x\n", val, (int)addr);
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_reg_writeb(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t i;
>>> +
>>> +    if ((addr & 0xfcff) == 0x2000) {
>>> +        i = (addr & 0x300) >> 8;
>>> +        ADV7152_write(&s->dac, i, val);
>>> +        return;
>>> +    }
>>> +    if ((addr & 0xff00) == 0x3000) {
>>> +        /* xlut */
>>> +        i = addr & 0xff;
>>> +        if (s->xlut[i] != val) {
>>> +            s->dirty = 1;
>>> +            s->xlut[i] = val;
>>> +            if (val && val != 0x40)
>>> +                CG14_ERROR("writeb xlut[%d] = %02x\n", i, val);
>>> +        }
>>> +        return;
>>> +    }
>>> +
>>> +    s->dirty = 1;
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    case 0x0000:
>>> +        s->ctrl.mcr = val;
>>> +        break;
>>> +    case 0x0001:
>>> +        s->ctrl.ppr = val & 0xF0;
>>> +        break;
>>> +    case 0x0007:
>>> +        /* clock control (ICS1562AM-001) */
>>> +        DPRINTF("write %02x to clock control\n", val);
>>> +        break;
>>> +    default:
>>> +        CG14_ERROR("writeb %02x to reg %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t cg14_reg_readw(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    unsigned int val;
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    case 0x0018:
>>> +        val = s->timing.hblank_start;
>>> +        break;
>>> +    case 0x001a:
>>> +        val = s->timing.hblank_clear;
>>> +        break;
>>> +    case 0x0022:
>>> +        val = s->timing.vblank_start;
>>> +        break;
>>> +    case 0x0024:
>>> +        val = s->timing.vblank_clear;
>>> +        break;
>>> +    default:
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    CG14_INFO("readw 0x%08x from reg %x\n", val, (int)addr);
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_reg_writew(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +
>>> +    CG14_INFO("writew %04x to reg %x\n", val, (int)addr);
>>> +
>>> +    /* timing registers are 16bit */
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    case 0x0018:
>>> +        s->timing.hblank_start = val;
>>> +        break;
>>> +    case 0x001a:
>>> +        s->timing.hblank_clear = val;
>>> +       s->size_changed = 1;
>>> +        break;
>>> +    case 0x0022:
>>> +        s->timing.vblank_start = val;
>>> +        break;
>>> +    case 0x0024:
>>> +        s->timing.vblank_clear = val;
>>> +       s->size_changed = 1;
>>> +        break;
>>> +    case 0x001c: /* hsync_start */
>>> +    case 0x001e: /* hsync_clear */
>>> +    case 0x0020: /* csync_clear */
>>> +    case 0x0026: /* vsync_start */
>>> +    case 0x0028: /* vsync_clear */
>>> +    default:
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t cg14_reg_readl(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t val;
>>> +    uint32_t i;
>>> +
>>> +    i = (addr & 0x3ff) >> 2;
>>> +    switch (addr & 0xfc00) {
>>> +    case 0x4000:
>>> +        val = s->clut1[i];
>>> +        break;
>>> +    case 0x5000:
>>> +        val = s->clut2[i];
>>> +        break;
>>> +    default:
>>> +        val = 0;
>>> +        CG14_ERROR("readl %08x from reg %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_reg_writel(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t i;
>>> +
>>> +    s->dirty = 1;
>>> +
>>> +    i = (addr & 0x3ff) >> 2;
>>> +    switch (addr & 0xfc00) {
>>> +    case 0x4000:
>>> +        s->clut1[i] = val;
>>> +        break;
>>> +    case 0x5000:
>>> +        s->clut2[i] = val;
>>> +        break;
>>> +    default:
>>> +        CG14_ERROR("writel %08x to reg %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static CPUReadMemoryFunc *cg14_reg_read[3] = {
>>> +    cg14_reg_readb,
>>> +    cg14_reg_readw,
>>> +    cg14_reg_readl,
>>> +};
>>> +
>>> +static CPUWriteMemoryFunc *cg14_reg_write[3] = {
>>> +    cg14_reg_writeb,
>>> +    cg14_reg_writew,
>>> +    cg14_reg_writel,
>>> +};
>>> +
>>> +static uint32_t cg14_vram_readb(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t offset;
>>> +    uint32_t val = 0;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    case 0x0000000:
>>> +        offset = addr & s->vram_amask;
>>> +        val =  ldub_p(s->vram+offset);
>>> +        break;
>>> +    case 0x1000000:
>>> +        offset = addr & s->vram_amask;
>>> +        val = 0; // FIXME
>>> +        break;
>>> +    case 0x2000000:
>>> +        offset = ((addr << 1) & s->vram_amask) + ((addr >> 23) & 1);
>>> +        val =  ldub_p(s->vram+offset);
>>> +        break;
>>> +    case 0x3000000:
>>> +        offset = ((addr << 2) & s->vram_amask) + ((addr >> 22) & 3);
>>> +        val =  ldub_p(s->vram+offset);
>>> +        break;
>>> +    }
>>> +    CG14_INFO("readb %02x from vram %x\n", val, (int)addr);
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_vram_writeb(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t offset;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    case 0x0000000:
>>> +        offset = addr & s->vram_amask;
>>> +        stb_p(s->vram+offset, val);
>>> +        if (offset < 4 * s->width * s->height) {
>>> +            s->dirty = 1;
>>> +        }
>>> +        break;
>>> +    default:
>>> +        CG14_ERROR("writeb %02x to vram %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t cg14_vram_readw(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t offset;
>>> +    uint32_t val;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    default:
>>> +        offset = addr & s->vram_amask;
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    CG14_ERROR("readw %04x from vram %x\n", val, (int)addr);
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_vram_writew(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +
>>> +    CG14_ERROR("writew %04x to vram %x\n", val, (int)addr);
>>> +
>>> +    s->dirty = 1;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    default:
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t cg14_vram_readl(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t offset;
>>> +    uint32_t val = 0;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    case 0x0000000:
>>> +        offset = addr & s->vram_amask;
>>> +        val = ldl_be_p(s->vram+offset);
>>> +        break;
>>> +    case 0x1000000:
>>> +    case 0x2000000:
>>> +    case 0x3000000:
>>> +        CG14_ERROR("readl %08x from vram %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +
>>> +    return val;
>>> +}
>>> +
>>> +static void cg14_vram_writel(void *opaque, target_phys_addr_t addr, 
>>> uint32_t val)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    uint32_t offset;
>>> +
>>> +    switch (addr & 0x3000000) {
>>> +    case 0x0000000:
>>> +        offset = addr & s->vram_amask;
>>> +        stl_be_p(s->vram+offset, val);
>>> +        if (offset < 4 * s->width * s->height) {
>>> +            s->dirty = 1;
>>> +        }
>>> +        break;
>>> +    case 0x1000000:
>>> +    case 0x2000000:
>>> +    case 0x3000000:
>>> +        CG14_ERROR("writel %08x to vram %x\n", val, (int)addr);
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static CPUReadMemoryFunc *cg14_vram_read[3] = {
>>> +    cg14_vram_readb,
>>> +    cg14_vram_readw,
>>> +    cg14_vram_readl,
>>> +};
>>> +
>>> +static CPUWriteMemoryFunc *cg14_vram_write[3] = {
>>> +    cg14_vram_writeb,
>>> +    cg14_vram_writew,
>>> +    cg14_vram_writel,
>>> +};
>>> +
>>> +
>>> +/******** SX *********/
>>> +
>>> +static uint32_t sx_reg_readb(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +    int val;
>>> +
>>> +    printf("SX readb reg " TARGET_FMT_plx "\n", addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    return val;
>>> +}
>>> +
>>> +static void sx_reg_writeb(void *opaque, target_phys_addr_t addr, uint32_t 
>>> val)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +
>>> +    printf("SX writeb %02x to reg " TARGET_FMT_plx "\n", val, addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t sx_reg_readw(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +    int val;
>>> +
>>> +    printf("SX readw reg " TARGET_FMT_plx "\n", addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    return val;
>>> +}
>>> +
>>> +static void sx_reg_writew(void *opaque, target_phys_addr_t addr, uint32_t 
>>> val)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +
>>> +    printf("SX writew %04x to reg " TARGET_FMT_plx "\n", val, addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static uint32_t sx_reg_readl(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +    int val;
>>> +
>>> +    printf("SX readl reg " TARGET_FMT_plx "\n", addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        val = 0;
>>> +        break;
>>> +    }
>>> +    return val;
>>> +}
>>> +
>>> +static void sx_reg_writel(void *opaque, target_phys_addr_t addr, uint32_t 
>>> val)
>>> +{
>>> +    //CG14State *s = opaque;
>>> +
>>> +    printf("SX writel %08x to reg " TARGET_FMT_plx "\n", val, addr);
>>> +
>>> +    switch (addr & 0xffff) {
>>> +    default:
>>> +        break;
>>> +    }
>>> +}
>>> +
>>> +static CPUReadMemoryFunc *sx_reg_read[3] = {
>>> +    sx_reg_readb,
>>> +    sx_reg_readw,
>>> +    sx_reg_readl,
>>> +};
>>> +
>>> +static CPUWriteMemoryFunc *sx_reg_write[3] = {
>>> +    sx_reg_writeb,
>>> +    sx_reg_writew,
>>> +    sx_reg_writel,
>>> +};
>>> +
>>> +/*********************/
>>> +
>>> +static uint32_t bad_mem_read(void *opaque, target_phys_addr_t addr)
>>> +{
>>> +    printf("Bad read from " TARGET_FMT_plx "\n", addr);
>>> +    //cpu_abort(cpu_single_env, "bad ram read access at " TARGET_FMT_plx 
>>> "\n", addr);
>>> +    return 0;
>>> +}
>>> +static void bad_mem_write(void *opaque, target_phys_addr_t addr, uint32_t 
>>> val)
>>> +{
>>> +    printf("Bad write of 0x%02x to " TARGET_FMT_plx "\n", val, addr);
>>> +    //cpu_abort(cpu_single_env, "bad ram write access at " TARGET_FMT_plx 
>>> "\n", addr);
>>> +}
>>> +static CPUReadMemoryFunc *bad_memr[3] = { bad_mem_read, bad_mem_read, 
>>> bad_mem_read };
>>> +static CPUWriteMemoryFunc *bad_memw[3] = { bad_mem_write, bad_mem_write, 
>>> bad_mem_write };
>>> +
>>> +void cg14_init(target_phys_addr_t ctrl_base, target_phys_addr_t vram_base,
>>> +                uint32_t vram_size)
>>> +{
>>> +//    DeviceState *dev;
>>> +//    SysBusDevice *s;
>>> +
>>> +//    dev = qdev_create(NULL, "SUNW,cg14");
>>> +//    qdev_init(dev);
>>> +//    s = sysbus_from_qdev(dev);
>>> +//}
>>> +
>>> +//static void cg14_init1(SysBusDevice *dev)
>>> +//{
>>> +    CG14State *s;// = FROM_SYSBUS(CG14State, dev);
>>> +    ram_addr_t vram_offset;
>>> +    uint8_t *vram;
>>> +    int ctrl_memory, vram_memory;
>>> +    int sx_registers;
>>> +    int bad_mem;
>>> +
>>> +    s = qemu_mallocz(sizeof(CG14State));
>>> +
>>> +    vram_offset = qemu_ram_alloc(vram_size);
>>> +    vram = qemu_get_ram_ptr(vram_offset);
>>> +
>>> +    s->vram = vram;
>>> +    s->vram_amask = vram_size - 1;
>>> +
>>> +    ctrl_memory = cpu_register_io_memory(cg14_reg_read, cg14_reg_write, s);
>>> +    cpu_register_physical_memory_offset(ctrl_base, CG14_REG_SIZE, 
>>> ctrl_memory, ctrl_base);
>>> +
>>> +    vram_memory = cpu_register_io_memory(cg14_vram_read, cg14_vram_write, 
>>> s);
>>> +    cpu_register_physical_memory_offset(vram_base, CG14_VMEM_SLOTSIZE, 
>>> vram_memory, vram_base);
>>> +
>>> +    s->ds = graphic_console_init(cg14_update_display,
>>> +                                 cg14_invalidate_display,
>>> +                                 cg14_screen_dump, NULL, s);
>>> +
>>> +    s->width = 640;
>>> +    s->height = 480;
>>> +    qemu_console_resize(s->ds, s->width, s->height);
>>> +
>>> +    /* SX or SPAM (Sun Pixel Arithmetic Memory) */
>>> +    sx_registers = cpu_register_io_memory(sx_reg_read, sx_reg_write, s);
>>> +    cpu_register_physical_memory(0xf80000000ULL, 0x2000, sx_registers);
>>> +
>>> +    bad_mem = cpu_register_io_memory(bad_memr, bad_memw, s);
>>> +    /* missing vsimms */
>>> +    cpu_register_physical_memory_offset(0x90000000, 0x2000, bad_mem, 
>>> 0x90000000);
>>> +    cpu_register_physical_memory_offset(0x94000000, 0x2000, bad_mem, 
>>> 0x94000000);
>>> +    cpu_register_physical_memory_offset(0x98000000, 0x2000, bad_mem, 
>>> 0x98000000);
>>>       
>> Can't we just have more VSIMMS? The empty_slot device may be useful here.
>>     
Each VSIMM would have it's own monitor attached.  Does Qemu and/or
OpenBIOS support multiple displays?  I think the limit for a real SS-20
is 5 displays - 2 VSIMMs and 3 GX/TGX cards.  I'll just go with
empty_slot for the extras.
>
> And btw, VSIMMs addresses may currently overlap with RAM. Maybe we
> should keep "SS-20" (and SS-10) compatible with original, and rename
> the current machine definition to "SS-20qemu" or SS-20-60G?
>   
Well, the real machines are limited to 512M, so dropping the framebuffer
registers into the middle of the first 4G wasn't an issue back then.  I
think the SX accelerator also limits the system and video memory to the
lower 4G of address space.

>>> +    /* DBRI (audio) */
>>> +    cpu_register_physical_memory_offset(0xEE0001000ULL, 0x10000, bad_mem, 
>>> 0xE0001000);
>>>       
>> Please add a new DBRI device ;-).
>>     
>
> Or maybe just a field in hwdef + empty_slot? :-)
>   
Yes, empty_slot should work fine.  I was trying to hack in enough to get
it to boot, but no luck yet.  The cpu models are still lacking - with
the SS-20 v2.25 rom, SuperSparc 61 fails before initializing the
display, SuperSparc 60 has a data access error when trying to boot, and
Ross 625 is mis-detected as an incompatible cpu type.

>>> +}
>>> +
>>> +/* save to file */
>>> +static void cg14_screen_dump(void *opaque, const char *filename)
>>> +{
>>> +    CG14State *s = opaque;
>>> +    FILE *f;
>>> +    int y, pixmode, linesize;
>>> +    void *buf;
>>> +    uint8_t *pix;
>>> +
>>> +    f = fopen(filename, "wb");
>>> +    if (!f) {
>>> +        return;
>>> +    }
>>> +    fprintf(f, "P6\n%d %d\n%d\n", s->width, s->height, 255);
>>> +
>>> +    linesize = s->width * 3;
>>> +    buf = qemu_mallocz(linesize);
>>> +    pix = s->vram;
>>> +
>>> +    switch (s->ctrl.mcr & MCR_PIXMODE_MASK) {
>>> +    case MCR_PIXMODE_32:
>>> +        pixmode = 32;
>>> +        break;
>>> +    case MCR_PIXMODE_16:
>>> +        pixmode = 16;
>>> +        break;
>>> +    case MCR_PIXMODE_8:
>>> +    default:
>>> +        pixmode = 8;
>>> +        break;
>>> +    }
>>> +
>>> +    for (y=0; y<s->height; y++) {
>>> +        // cg14_draw_line24_bgr(s, buf, pix, pixmode);
>>> +        fwrite(buf, 1, linesize, f);
>>> +        pix += s->width * (pixmode / 8);
>>> +    }
>>> +
>>> +    qemu_free(buf);
>>> +    fclose(f);
>>> +}
>>>
>>>       



reply via email to

[Prev in Thread] Current Thread [Next in Thread]