GNATCOVERAGE Users Guide

Table of Contents

About this Document 1
1 Structural Coverage Analysis Basics.......... 2
1.1 General Definition & Intent, 2
1.2 Process Model 2
1.2.1 Basic Process Abstractionsoiiii... 2

1.2.2 Data Capitalization & Consolidation....................... 3

1.2.3 Process Integration................... i 4

1.3 Coverage Analysis Classification............ 4
1.3.1 Object Coverage Analysis ...t i... 5

1.3.2 Source Coverage Analysis......... 5

1.3.3 Source vs Object Quantifiers 6

2 GNATCOVERAGE Fundamentals................ 8
2.1 Instrumentation mode............ 8
2.2 Object Coverage Analysiscooiiiiiiii i 8
2.3 Source Coverage Analysis ...ttt 8
2.4 Modularity and Flexibility......... ... i 9

3 GNATCOVERAGE Users Guide................. 10
3.1 Getting Startedo 10
3.2 Instrumented Execution............ i 13
3.3 Object Coverage Analysis...........c.oiiiiiiiiiiiii.. 14
3.3.1 Machine level reports, ——annotate=asm................... 14

3.3.2 In-Source text reports, ——annotate=xcov[+] 16

3.3.3 In-Source html reports, ——annotate=html[+]............. 16

3.3.4 Synthetic reports, ——annotate=report 17

3.3.5 Inlined and Template/Generic entities.................... 17

3.3.6 Focusing on subprograms of interest...................... 18

3.4 Source Coverage Analysiscoiiiiiiiiiiiiiiii.. 20
3.4.1 Statement Coverage (SC).........cooiiiiiiiiiiiian.... 20

3.4.2 Decision Coverage (DC) ...t 21

3.4.3 Modified Condition/Decision Coverage (MCDC).......... 23

3.5 Advanced features 25
3.5.1 Coverage Data Capitalization & Consolidation............ 25

3.5.2 XML outputs for automated processing................... 26

3.5.3 Source Coverage Exemptions...............coooiiiia.. 26

4 Appendices..............iiiiiii 28
4.1 The “Explore” Guide Example.............o .. 28
4.2 Trace Format Definition.............o oL, 31
4.3 Source Coverage Obligations Definition........................ 35
4.4 XML output specifications ... 44
4.5 --annotate=report output format - source coverage 54

5 Bibliography 56

6 Index 57

ii

About this Document 1

About this Document

This document introduces the fundamental principles behind GNATCOVERAGE, a non in-
trusive structural coverage analysis framework, and offers a toolset user’s guide.

Chapter 1 [scov-basics], page 2 provides a brief introduction to the “Structural Cover-
age Analysis” process nature and intent, including a short discussion on the fundamental
distinction between “object” and “source” coverage criteria.

Chapter 2 [xcov-grounds|, page 8 describes the GNATCOVERAGE framework core oper-
ation mode and capabilities.

Chapter 3 [xcov-guide], page 10 is the toolset user’s guide, with details on the tool
command line interface, use examples for various situations and interpretation guidelines
for the different sorts of reports that the tool can produce.

Various concepts are illustrated with examples throughout. Most of the program sources
for these examples are taken from the “exploration robot” application, developed just for
this illustrative purpose and introduced in Section 4.1 [explore], page 28.

Chapter 1: Structural Coverage Analysis Basics 2

1 Structural Coverage Analysis Basics

1.1 General Definition & Intent

Structural coverage analysis can be viewed as a software development activity aimed at
examining which pieces of an application program (source and/or machine code) are exer-
cised by executions of the application software. There may be several reasons why coverage
analysis is performed. A typical case is the use in software certification processes such as
the DO-178B standard enforced in the civil avionics domain. In this context, the appli-
cation code and the test sequences are both derived from a common set of requirements,
independently, and the analysis is meant to fulfill two complementary goals:

e Assess the quality of a testing campain, on the grounds that insufficient testing of some
requirements often leads to improper coverage of the code that implement them,

e Identify pieces of the application code that aren’t tied to a requirement, on the grounds
that there would be no test to exercise them.

In the following sections we introduce the common components of a coverage analysis
process, together with terms to be reused throughout this document.

1.2 Process Model

1.2.1 Basic Process Abstractions
A typical coverage analysis process comprises three principal steps:

1. A binary executable program is produced from a set of program sources by a develop-
ment toolchain (compiler, linker, etc).

2. The executable program runs within an execution environment, and this execution
produces raw coverage data about paths it exercises.

3. The raw coverage data is interpreted or mapped into some user readable representation.

As an illustrative example, the common GCC/GCOV process is exactly along those lines:
the program is compiled and linked by Gcc [gec] with special command-line options, ex-
ecution produces a binary data file and GCoOvV is then used to generate annotated sources
from the original files, the executable and the execution data. Below is an example with a
simple test of the Explore queues abstraction, compiled with the GNAT toolchain for Ada:

Build with gcov related options - produces executable program
$ gnatmake test_queues.adb -fprofile-arcs -ftest-coverage
Run program - produces raw coverage data files (queues.gcda, ...)
$./test_queues
Map to user representation - produces annotated sources (queues.adb.gcov, ...)

$ gcov test_queues

Chapter 1: Structural Coverage Analysis Basics 3

The annotations are in the first column for each source line: ’-’ indicates there is
no associated object code, numbers indicates the number of times code for this line was
executed, and ’#’ signs indicates object code never executed:

1: 9:procedure Test_Queues is

10: package Integer_Queues is new Queues (Data_Type => Integer);
- 11: use Integer_Queues;
- 12:

13: X : Integer;

1: 14: Q : Integer_Queues.Queue (Capacity => 1);
- 15:begin
1: 16: Push (12, Q);
1: 17: Pop (X, Q;
1: 18: if X /= 12 then
#itH 19: raise Program_Error;
- 20: end if;
- 21:end;

In this excerpt, the never executed code on line 19 is expected, as it is intended to trigger
only when the test didn’t behave as it should. This points at an important distinction to
make: the Test_Queues procedure in this example is testing code written to exercise pieces
of the Queues abstraction, and only the latter will be an actual part of the application.
Most of the time, we’re only interested in the coverage results for such applicative code.

The form of the raw information depends on the coverage analysis toolset technology.
This is most often binary data. The production of raw coverage data at run time always
involves some sort of instrumentation to have the execution produce information it normally
wouldn’t produce. This may be achieved in several possible manners:

e Source Instrumentation: The coverage analysis toolset adds explicit statements and
data structures to the program source to maintain the coverage state. This is what
many commercial products do.

e Object Instrumentation: The development toolchain inserts extra machine state and
instructions in the program executable object code. This is the Gcc/acov approach.

e FEnvironment Instrumentation: The execution environment is setup to produce a trace
of the program paths taken at the machine instruction level, leaving the program code
untouched. This is what solutions based on hardware probes or on instrumented virtual
execution environments do.

There are variants of each technique in the field, each with its own set of advantages and
drawbacks compared to others.

1.2.2 Data Capitalization & Consolidation

Proper coverage of applicative code often requires several test executions on possibly disjoint
pieces of the final system, with each test providing its own partial coverage outcome. Capi-
talization denotes the capability to store and manage the partial results, and Consolidation
denotes the construction of a unified view from partial results gathered together.

Different tests could for instance be several executions of the same program with behavior
differences caused by external input variations. They could also be executions of different
programs exercising different units of the applicative code or common applicative code with
different parameters.

Chapter 1: Structural Coverage Analysis Basics 4

To illustrate, consider a common data structure implementation such as the bounded
Queues Ada package in the Explore example. To honor a common requirement, it contains
simple error handling code so that an "Ada exception X is raised on attempts to extract
an item out of an empty queue", and we expect this code not to be exercised in regular
executions. It remains applicative code, still, and even the weakest DO-178B certification
level requires tests to cover it, to make sure that at least minimal checks on its behavior
with respect to requirements were performed. Something has to be done outside nominal
executions in this case. One possibility is to construct a separate program dedicated to just
testing this abstraction, which would force an artificial queue underflow.

The point is that one-shot full coverage is generally not possible in complex situations
and the example shows it is already partially impossible with only regular Explore execu-
tions. System integration is most often a delicate process, not possible before late stages
of the project, and it is often useful or simply unavoidable to perform coverage analysis on
segregated pieces first.

Besides, even if full coverage of some applicative components could theortically be
achieved from a single execution, it is often just more convenient or sensible to be able
to reach the goal in an incremental fashion. In the Explore case, for instance, a strategy
like "purpose is to maximize the entire application coverage by running a minimal number
of sessions" would be a pain and actually go against the requirements based testing phi-
losophy. One instead typically runs different sessions to verify different specific application
requirements, each session produces its own coverage data.

Consolidation denotes the process of gathering the capitalized coverage information for
the various pieces of a system into a unified view, with explicit input on what pieces are
expected to have been covered. Pieces of no interest, or which might differ between the
various testing scenarii (e.g. unit test harness) may be abstracted away.

The need for coverage data consolidation often correlates with testing strategies: whether
coverage data is obtained from unit testing of individual components, from integration
testing of the system as a whole, from some intermediate organisation, or possibly from a
mix of all these.

1.2.3 Process Integration

As hinted by the previous sections, coverage analysis is a potentially complex activity, which
requires potentially complex metrics on potentially complex software involved in potentially
complex project development cycles.

Process integration refers to the organization of the analysis toolset that will provide
consistent and easy access to all the features of interest for a given project. The toolset
needs to be both powerful enough to provide the desired functionalities and flexible enough
to accomodate the various possible project organizations in the field.

1.3 Coverage Analysis Classification

Coverage analysis always involves the evaluation of various coverage quantifiers or metrics
such as “what percentage of my program source statements or of the corresponding machine
code was exercised (covered) by this set of executions?”. In practice, this is most often
refined down at the module or subprogram level and comes together with detailed reports
about the bits which were exercised and those that were not. The process is typically driven

Chapter 1: Structural Coverage Analysis Basics 5)

by specific objectives like “tests should result in coverage of 100% of the application program
source statements”. Every toolset offers its own spectrum of analysis possibilities, with
variations in the implementation schemes. We distinguish two broad classes of activities:
source and object coverage analysis.

1.3.1 Object Coverage Analysis

Object Coverage Analysis focuses on machine object code coverage, with two essential
quantifiers:

e Object Instruction Coverage (OIC) ; which/how-much of the program machine instruc-
tions were exercised by a set of program executions.

e Object Branch Coverage (OBC) ; OIC + indications on the machine decisions taken at
each machine conditional branch instruction.

Results can be rendered on a representation of the machine code, for example as an
annotated assembly output. They can also be rendered on a representation of the program
sources, for example by way of annotations for each source line to synthesize information
about all the machine code generated for that line. The focus is always on machine code
coverage, in any case, and source annotations in this context are just a means to organize
and hilight machine code properties of interest for the end user.

1.3.2 Source Coverage Analysis

Source Coverage Analysis focuses on user source code and simply abstracts the machine
code away. The DO-178B structural coverage criteria operate at this level, with quantifiers
defined over three core elements:

e Source statement, in the usual programming language sense.

e Decision, defined as “a top-level Boolean expression (that is not an operand of a Boolean
operator)”.

e Condition, defined as “an elementary Boolean expression (which is not a Boolean oper-
ator applied to some subexpressions)”. Note that if a given subexpression occurs more
than once in a decision, each occurrence is a distinct condition.

The quantifiers are as follows:

e Source Statement Coverage (SSC) ; which/how-much of the source statements were
exercised by a set of program executions.

e Source Decision Coverage (SDC) ; SSC + indications on the values taken by each logical
decision and of which entry/exit points were exercised.

e Source Modified Condition/Decision Coverage (SMCDC) ; SDC + indications on which
conditions took their two possible outcome and which were shown to have independent
effect on their decisions out of a set of program executions.

The quantifier names are often used standalone to denote coverage objectives, for in-
stance “achieving Source Statement Coverage” denotes covering 100% of the program source
statements. The “source” part is often omitted and implicitly assumed, and DO-178B
attaches specific structural coverage objectives to different certification levels this way:
full Statement Coverage at level C, Decision Coverage at level B and Modified Condi-
tion/Decision Coverage at level A.

Chapter 1: Structural Coverage Analysis Basics 6

Below is an illustration of the principal differences between the criteria over a simple
example function out of an early version of the Explore sources:

-- Whether execution of CTRL by Robot R is unsafe

function Unsafe
(Ctrl : Robot_Control; R : Robot_Access) return Boolean
is
Situ : Situation;
begin
-— Probe the current situation in SITU and evaluate.
-- Start by assuming CTRL is safe and adjust.

Devices.Probe (Situ, R.H.DH);
declare
Is_Unsafe : Boolean := False;
begin
-- Stepping ahead into a rock block or a water pit is unsafe

if Ctrl.Code = Step_Forward

and then (Situ.Sqa = Block or else Situ.Sqa = Water)
then

Is_Unsafe := True;
end if;

return Is_Unsafe;
end;
end;
Statement Coverage of the Unsafe function requires execution of all the source state-
ments at least once. This can be achieved with a single call to the function, as soon as the
boolean decision controlling the if statement evaluates to True.

Decision Coverage requires that every decision has evaluated at least once to True and
at least once False, which necessitates at least two calls in our example to exercise the if
controlling expression both ways. It also requires going through every possible entry and
exit point, without further impact of note on the simple example at hand.

Modified Condition/Decision Coverage requires additional variations over the conditions,
and combinations to show that each condition can affect the decision outcome in an indepen-
dent manner. This is expected to be possible with Nconditions+1 evaluations, so enforces
a more precise testing of the expressions structure while keeping the test base complexity
linear with the number of conditions. There exist several variants of the MCDC criteria,
with differences in the way independence may be shown - [ar0118], [cast6].

1.3.3 Source vs Object Quantifiers

Object and Source coverage quantifiers are of very different natures. Both have both pros
and cons, some very dependent on the evaluation context and purpose.

An interesting study is that of the implication relationships between criteria, to deter-
mine if satisfying one criteria may be used as a means to claim another. These correlations
are not at all trivial in the general case. Below are a few points to illustrate.

As a starter example, we may consider that Object Branch or even Instruction Coverage
implies Statement Coverage while the opposite is not true. To illustrate the basic idea, take
the case of a modulo computation: it is expressed with a single statement in C or Ada,

Chapter 1: Structural Coverage Analysis Basics 7

and the machine code typically features different paths to honor variations conditioned on
the sign of the operands. A single pass trough this code will cover the source statement
and not the full instruction set. Conversely, covering the full set of machine instructions
necessitates several passes through the code, hence coverage of the source statement. For
the general case, statements for which no machine code is produced need care but don’t
introduce fundamental difficulties.

Along similar lines, we may consider that full Object Branch Coverage implies Decision
Coverage while the opposite is not true. We also observe that Object Instruction Coverage
does not imply Decision Coverage, and that Obect Branch Coverage does not imply MC/DC
in the general case - [AR07/20], [obc-medc|. Besides, when it does imply MC/DC, Object
Branch Coverage often requires more extensive testing so is not necessarily an interesting
alternate.

In any case, assumptions validity need to be complemented with practical consequences
in industrial applications. In particular, using one criteria as a means to achieve another
when an implication holds (e.g. seeking OBC to achieve DC) might call for unrequired
significant additional testing efforts.

Chapter 2: GNATCOVERAGE Fundamentals 8

2 GNATCOVERAGE Fundamentals

2.1 Instrumentation mode

The core principle in the GNATCOVERAGE framework is to leverage the generation of raw
coverage data by a virtual execution environment instrumented to produce machine level
traces about the code it executes. We refer to these as execution traces.

The environment typically is a representative emulator of a real target microprocessor,
possibly augmented with extensions to let it communicate with external devices. For com-
mon architectures, we leverage QEMU [gemu] for this purpose, as a reliable and efficient
free-software emulator we can instrument to generate the traces.

The environment may also be a pure virtual machine such as existing ones for Java
or Caml like languages. In any case, the program itself isn’t instrumented, so coverage
measurements can be performed on target code, as embedded eventually, and the virtual
environment runs on development hosts, which offers a lot of flexibility.

The raw coverage data out of the execution environment is very low level information
about the executed instruction and branch sequences at the machine level. The actual
contents structure may vary, depending on the kind of analysis anticipated.

2.2 Object Coverage Analysis

To start with, GNATCOVERAGE allows the confrontation of execution traces with the full
machine code available from program files, hence precise object coverage analysis with both
instruction and branch coverage capabilities. This is achievable with simple traces that can
be gathered and represented in a very efficient manner, schematically as a flat compact map
of status per executed instruction or linear sequence.

The results may first be rendered at the assembly language level, with annotations for
each machine instruction to indicate whether it was executed or not, and for each conditional
branch whether it has been taken, not taken or both.

Then, provided extra information to establish instruction to source line correspondance,
GNATCOVERAGE is also able to render the object coverage outcome through source an-
notations, with source line annnotations derived from those of all the associated machine
instructions. Typically, a source line is marked as fully/partially covered when all/part of
the associated machine instructions were executed, and the instruction/line correspondance
is extracted from standard DWARF debug information or alike.

2.3 Source Coverage Analysis

GNATCOVERAGE is also designed to allow Source Coverage Analysis, with central focus
on user source code and support for the three DO-178B criteria: Statement, Decision and
Modified Condition/Decision Coverage. For MCDC, the framework sets up the necessary
elements to be able to reconstruct the exercised run-time condition/decision vectors. An
important part is the introduction of Source Coverage Obligations, or SCOs, compact tables
generated to indicate the source elements of relevance to coverage analysis activities. SCOs
are designed to be independent from the target certification level, which only influences the
way a given trace is determined to meet.

Chapter 2: GNATCOVERAGE Fundamentals 9

For QEMU targets and the GcC compilation toochain, the toolset uses SCOs and pre-
cise debug information to associate conditional branches with conditions, then traces are
extended to track the history of run-time behavior at those branch points. Indeed, the
object coverage flat execution traces aren’t precise enough in this case unless very strong
constraints are met by the source constructs. Using extended traces or flat ones with source
constraints, the MCDC capabilities of GNATCOVERAGE rely on the presence of a condi-
tional branch instruction for each non-constant condition. We provide sets of compilation
options suitable for both this particular purpose and for the Source Coverage analysis ac-
tivity in general.

2.4 Modularity and Flexibility

Different teams have different organizations and software development infrastructures.
GNATCOVERAGE is designed as a modular set of light tools, intended to be adaptable to
various operational contexts.

Chapter 3: GNATCOVERAGE Users Guide 10

3 GNATCOVERAGE Users Guide

3.1 Getting Started

Below is a verbatim copy of the distribution README file, which provides a brief description of
the package contents, installation instructions and a Quick Start section, basic introduction
to the toolset architecture and interface:

PACKAGE CONTENTS

This package provides the xcov front-end to coverage analysis activities. It
may be used both as a wrapper to an instrumented execution environment able to
produce machine-level execution traces (xcov run) and as a trace analyzer able
to render coverage results in various output formats (xcov coverage) .

Instrumented execution environments are provided as separate packages. As of
today, we leverage instrumented versions of (Qemu, an open source processor
emulator.

As part of the examples subdirectory, the package also includes:

* A light Qemu Board Support Package to link with your executable to let
it run within the emulated environment,

* A couple of very basic library components for Ada (simple IO, memory
copy/set/compare, ...) in case they are not available otherwise,

* A number of example programs you can exercise to get familiar with the
toolset, with Makefiles to illustrate build/run/analyze sequences.

The "Explore" example is introduced in the user’s guide and used for
illustration purposes there. It features both an interactive program and AUnit

based tests for some of the program units.

The "Engines" example is used to provide a quick first contact with the
tools, through the QUICK START section below.

INSTALL - binary distribution

If you retrieved this README from a binary distribution (zip or tar.gz archive
with -bin in the name), you have

* An <unpack-subdir>/share subdirectory with the doc and examples;
* An <unpack-subdir>/bin subdirectory with the "xcov" program.

The xcov binary is standalone, so you may access it by simply adjusting your
PATH environment variable. A prerequisite to using xcov run is to have the
instrumented environment available already.

If this is more convenient for you, you may transfer the contents of the
"shared" and "bin" subdirectories into their corresponding entries within a
pre-existing installation tree, where a compiler toolset is located for
instance.

Chapter 3: GNATCOVERAGE Users Guide 11

INSTALL - source distribution

If you retrieved this README from a source distribution (repository, zip or
tar.gz archive with -src in the name), you have

* Sources of the front-end straight at hand, together with this README
and a Makefile;

* Examples and the documentation in the "examples" and "doc" subdirectories
respectively.

To build the xcov binary, just invoke "make". This requires an Ada 2005
capable compiler and the Makefile resorts to GNAT for this purpose.

To build pdf and other versions of the documentation, invoke "make doc".

QUICK START - OBJECT COVERAGE

A quick starter is the "engines" basic example, assuming you have installed
your target compilation toolchain, this package, and the instrumented gemu
(gemu-system-ppc|sparc from binary distributions or built from the proper
source tree).
The first step is to setup the PATH environment variable to include locations
for both the target compiler and the xcov/gemu "bin" directory. For example
with a bash like shell:

$ PATH=/usr/local/gnat/6.1.2/bin:/usr/local/xcov/bin:$PATH

Then switch to the Xcov "engines" example directory and exercise the
"test_engines" test there for your target, thanks to the local Makefile:

engines $ make TARGET=powerpc-elf
Or if you want to test on a Leon board (sparc based):

engines $ make TARGET=leon-elf
This performs a build/run/analyze sequence out of which object coverage
results rendered in sources are produced in html format, browsable from
an index page in index-test_engines.html.
Here is a brief description of what is going on:
Step 1: Build an executable program suitable for Qemu. This is a
- regular Ada build with a couple of extra bsp components for
startup, io & a dedicated linker script:
powerpc-elf-gcc -c -o start.o ../support/powerpc-elf/start.s
powerpc-elf-gcc -c¢ -g -01 -fpreserve-control-flow test_engines.adb

Step 2: Run the executable program within the instrumented Qemu
- to get an execution ’.trace’ file:

Chapter 3: GNATCOVERAGE Users Guide 12

xcov run --target=powerpc-elf --level=branch test_engines

Step 3: Ask xcov to analyze the trace and produce an html version of
- the results, with object coverage branch info rendered on source:

xcov coverage --level=branch --annotate=html+ test_engines.trace
mv index.html index-test_engines.html

The local Makefile actually just includes a generic Makefile, common to all
the examples and which you may reuse and adapt to your specific needs.

QUICK START - SOURCE COVERAGE

Source coverage analysis involves a similar process, with few differences:

* It is requested by specific values of the --level argument: stmt,
stmt+decision or stmt+mcdc ;

* Sources should be compiled with -g -fpreserve-control-flow -gnateS,
and currently with -00. We don’t support optimized code yet ;

* The list of units for which analysis is desired needs to be passed as
a list of ALIs with the ’--scos’ option to both xcov run and xcov coverage,

for instance via a response file (--scos=0file_with_list_of_ALIs)

This can be exercised for our examples by passing an extra XCOVLEVEL
argument to ’make’ invocations, for example ’make XCOVLEVEL=stmt’.

FURTHER DOCUMENTATION

Further documentation is available from the "Xcov Fundamentals & Users Guide"
in the <unpack/installation-root>/share/doc/xcov directory of this package.

As suggested by the previous introduction, GNATCOVERAGE offers a front-end to vari-
ous coverage analysis related functionalities, each activated by a toplevel of command line
option:

e ‘run’; run code within an instrumented environment to produce execution traces.
e ‘coverage’ ; process execution traces to produce user-level results.
The following sections provide further details on the various modes of operation, first for

simple cases where a single trace is to be produced and analyzed, then for more sophisticated
needs requiring coverage data capitalization and consolidation.

Chapter 3: GNATCOVERAGE Users Guide 13

3.2 Instrumented Execution

xcov run offers a unified interface to launch programs for a specific target machine within
the appropriate instrumented execution environment to produce execution traces.

The Quick Start example in the distribution README illustrates a simple use for a
powerpc-elf or a leon-elf target, using the dedicated Gcc toolchain to build from sources
and the ‘--target’ execution engine selector. The general interface synopsis is available
from xcov —--help, as follows:

run [OPTIONS] FILE [-eargs EARGS...]
Options are:
-t TARGET --target=TARGET Set the target
targets: powerpc-elf leon-elf i1386-pok i1386-linux prepare

-v --verbose Be verbose

-T TAG --tag=TAG Put TAG in tracefile

-o FILE --output=FILE Write traces to FILE

-eargs EARGS Pass EARGS to the simulator

‘~v’ requests verbose output, in particular the commands to run the program within the
underlying instrumented environment.

The FILE argument is the executable program file name. This name is stored as-provided
in the output trace header, where it is retrieved later by xcov coverage for analysis pur-
poses.

By default, xcov run writes the execution trace in the current directory, in a
file named like the executable input with a .trace suffix. For example xcov run
/path/to/myexecfile produces a myexecfile.trace file in the current directory.
‘——output’ allows the selection of an alternate output file name.

The ‘--tag’ option expects a string argument and stores it verbatim as a trace tag
attribute in the output trace header. The tag so associated with a trace can be retrieved from
trace dumps and is output as part of some analysis reports. It is useful as a flexible trace
identification facility, structured as users see fit for custom trace management purposes.

Chapter 3: GNATCOVERAGE Users Guide 14

3.3 Object Coverage Analysis

Over execution traces, various levels of object coverage analysis may be performed with
xcov coverage. An analysis variant first needs to be selected with the ‘--1level’ option:

=insn requests Object Instruction Coverage data, with an indication for every
instruction of whether it has been executed or not.

=branch requests Object Branch Coverage data, with extra details about the
directions taken by conditional branch instructions.

An additional ‘--annotate’ option selects the output format:

=asm annotated assembly code on standard output.

=xcov [+] annotated source files, with the object code for each source line inter-
spersed if the + variant is selected.

=html [+] html index of per source file coverage summary, with links to annotated
sources [+ code expandable from each source line].

=report synthetic report of per subprogram coverage results.

The following sections provides extra details and examples for each situation. In principle,
this is all pretty independent of the program compilation options. Aggressive optimizations
very often make source to object code associations more difficult, however. Besides, if
source coverage analysis is to be performed as well, the whole process is simpler if the same
compilation options are used, and these have to be strictly controlled for source coverage.

3.3.1 Machine level reports, -—annotate=asm

For object coverage analysis purposes, ‘--annotate=asm’ produces annotated assembly code
for all the program routines on standard output. The annotations are visible as a special
character at the beginning of each machine code line to convey information about the
corresponding instruction, with variants for instruction or branch coverage modes. We call
simple those machine instructions which are not conditional branch instructions.

For Object Instruction Coverage, with ‘~-level=insn’, we define:

Note Means ...
-3 instruction was never executed
47 instruction was executed

For Object Branch coverage (‘--level=branch’), the ‘+’ case is refined for conditional
branch instructions and two additional notes are possible:

Note Means ...

=’ instruction never was executed

'+ instruction was executed, taken both ways for a conditional branch
>’ conditional branch was executed, always taken

v’ conditional branch was executed, never taken

Chapter 3: GNATCOVERAGE Users Guide 15

We qualify instructions marked with ‘+’ as fully covered, those marked with ‘=’ as uncovered
and the others as partially covered.

To illustrate, we will consider the Branch Coverage outcome for a piece of the Explore
example, produced out of a couple of runs within QEMU for the PowerPC architecture.
The original source of interest is the if statement which controls the Station processing
termination, upon a Quit request from the user. The control is performed by a single
decision, composed by two connected conditions to expose a case insensitive interface:

procedure Run (Sta : Station_Access) is

Put ("’P’robe, ’S’tep, Rotate ’L’eft/’R’ight, ’Q’uit 7 ");
Flush;
Get (C);

if C = ’Q’ or else C = ’q’ then
Kill (Sta.all);

return;
else

We first run a sample session to exercise Probe, then Quit with 'Q’, and request branch
coverage data in assembly format:

. $ xcov run --target=powerpc-elf explore
[Explore runs in QEMU
- type ’p’, then ’Q’]

. $ xcov coverage --level=branch --annotate=asm explore.trace

For the code associated with the source bits of interest, this yields the following assembly
coverage report excerpt:

<stations__run>:

fffclcOc

+ 4b ff e6 7d bl Oxfffc0288 <text_io__get>
fffcilcl0 + 2f 83 00 51 cmpiw cr7,r3,0x0051
fffclcld +: 41 9e 00 Oc beg- cr7,0xfffc1c20 <stations__run+00000078>
fffclcl8 +: 2f 83 00 71 cmpiw c¢r7,r3,0x0071
fffclclc >: 40 9e 00 10 bne- cr7,0xfffclc2c <stations__run+00000084>
fffclc20 + 7f e3 fb 78 or r3,r31,r31
fffclc24 + 4b ff e7 di bl Oxfffc03f4 <actors__kill>

The beq and bne instructions are two conditional branches corresponding to the two
conditions. In addition to straightforward coverage of the rest of the code, the '+ for
the first branch indicates that it is fully covered and the '>’ for the second branch indicates
partial coverage only. Indeed, both conditions were evaluated to False on the p’ input, then
on ’Q’ the first condition was evaluated to True and the second one was short-circuited.

We run a second experiment, when the user quits with 'Q’ immediatly. We observe
that the first conditional branch is only partially covered and the second one is not even
exercised:

Chapter 3: GNATCOVERAGE Users Guide 16

<stations__run>:

fffcicOc

+: 4b ff e6 7d bl Oxfffc0288 <text_io__get>
fffclclO +: 2f 83 00 51 cmpiw cr7,r3,0x0051
fffclcld >: 41 9e 00 Oc beq- cr7,0xfffclc20 <stations__run+00000078>
fffclcl8 -: 2f 83 00 71 cmpiw cr7,r3,0x0071
fffclclc -: 40 9e 00 10 bne- cr7,0xfffclc2c <stations__run+00000084>
fffclc20 +: 7f e3 fb 78 or r3,r31,r31
fffclc24 +: 4b ff e7 dil bl Oxfffc03f4 <actors__kill>

3.3.2 In-Source text reports, ——annotate=xcov [+]

For object coverage analysis, ‘-—annotate=xcov’ produces annotated source files with the

.xcov extension in the current directory, one per original compilation unit. An alternate
output directory may be selected by passing a ‘—-output-dir=<directory name>’ com-
mand line option as well.

The annotations are visible as a special character at the beginning of every source line,
which synthesizes the coverage status of all the machine instructions generated for this line.
The machine instructions are printed next to their associated source line when the ‘+ option
extension is used. Eventhough the annotations are rendered on source lines in this case,
they are really meant to convey object code properties, hence are of a different nature than
what the DO-178B structural coverage criteria refer to.

We defined a uniform synthesis of source line from object code annotations for both
instruction and branch coverage:

Note Means ...

) no associated machine code for this line

all the instructions associated with the line are -’ (uncovered)

'+ all the instructions associated with the line are '+’ (fully covered)
otherwise

9

To lines with associated object code we apply qualifiers similar to those for individual
instructions: ’-’, '+’ and ’!" denote uncovered, fully covered or partially covered lines
respectively.

At this stage, gnatcov relies on dwarf debug information to associate machine instruc-
tions with their corresponding source lines, so these annotations are only possible when this
is available. In ccc parlance, this requires compilation with the ‘-g’ command line switch,
designed never to influence the generated code.

3.3.3 In-Source html reports, -—annotate=html [+]

‘-—annotate=html’ produces one .html browsable annotated source file per original compi-
lation unit in the current directory. The annotations are identical to the ‘=xcov’ ones, and
an alternate output directory may be selected with ‘—-output-dir’ as well. Each source line
is colorized to reflect its associated object code coverage completeness, with green, orange
and red for full, partial or null coverage respectively.

An index.html page summarizes the coverage results and provide links to the annotated
sources. With the + extension, the annotated machine code for each line may be expanded
below it by a mouse click on the line.

Chapter 3: GNATCOVERAGE Users Guide 17

3.3.4 Synthetic reports, —~—annotate=report

For object coverage analysis, ‘-—annotate=report’ produces a synthetic summary of per

function coverage results, with a single annotation assigned to each function in the same
way it is to each source line in the ‘=xcov’ or ‘=html’ cases.

3.3.5 Inlined and Template/Generic entities

The generated code for an inlined subprogram or a generic instantiation implicitely asso-
ciates with two source locations: the entity source itself (what code materializes) and where
the instantiation takes place (where the generated code goes). Choices were made for In-
Source reports. Behind the scenes, xcov uses standard debug information to establish the
links between object code and original source, so the choice stems from this information
essentially. The next paragraphs are specific to the GNAT/GCC chains in this respect.

For inlined calls, the Gcc debug information associates the generated machine code with
the inlined source positions, so the related object coverage information is reported there.
This scheme has all the instances reported at a centralized location and allows use of the
full inlined subprogram source structure to organize the results. Consider for example the
following excerpt of branch coverage report for the Station control code in Explore. A call
to an Update subprogram is inlined in Process_Pending_Inputs. We observe that the
code reported in the Update sources is coming from the process_pending_inputs symbol,
where it was inlined, and that absence of code is reported at the call site, since indeed all
the code for this call is attached to the inlined entity.

53 .: procedure Update (Map : in out Geomap; Situ : Situation) is

54 +: Posa : constant Position := Pos_Ahead_0f (Situ);
<stations__run__process_pending_inputs.1939+fffclbb4d>:+
fffclcO4 +: 4b ff ed c1 bl 0xfffc09c4 <geomaps__pos_ahead_of>
fffclc08 +: 90 61 00 30 stw r3,0x0030(r1)

55 .: begin

56 +: Map (Posa.X, Posa.Y) := Situ.Sqa;

<stations__run__process_pending_inputs.1939+fffclbcd>:+
fffclc28 +: 88 01 00 19 1bz r0,0x0019(r1)
fffclc2c +: 98 03 00 Of stb r0,0x000f (r3)

[...]

63 +: procedure Process_Pending_Inputs (Sta : Station_Access) is
[...]

68 .: Update (Sta.Map, Situ);

Similar principles apply to template instantiations such as those of Ada generic units,
and the centralized view property is well illustrated this way. The excerpt below provides
an example with the Queues abstraction in Explore, instantiated in several places. The
corresponding code sequences are all attached to original unit source, with an indication of
their instantiation locations via the symbol names in the start-of-sequence addresses:

39 +: function Empty (Q : Queue) return Boolean is
<robot_control_links__data_queue_p__empty+fffc02fc>:+
fffcO02fc +: 94 21 ff fO stwu r1,-0x0010(r1)

[...]
<geomaps__situation_links__data_queue_p__empty+fffc0878>:+
fffc0878 +: 94 21 ff fO stwu 1r1,-0x0010(r1)

[...]

Chapter 3: GNATCOVERAGE Users Guide 18

3.3.6 Focusing on subprograms of interest

GNATCOVERAGE provides a number of facilities to allow filtering results so that only those
of actual interest show up.

The primary filtering device for object coverage analysis is the ‘--routines’ option to
xcov coverage. ‘—-routines’ expects a single argument, to designate a set of symbols, and
restricts coverage results to machine code generated for this set. The argument is either a
single symbol name or the name of a file prefixed with a @ character, expected to contain a
list of symbol names.

To illustrate, the example command below produces a branch coverage report for the
Unsafe subprogram part of the Robots unit in Explore. Out of a GNAT compiler, the
corresponding object symbol name is robots__unsafe, here designated by way of a single
entry in a symbol list file:

$ cat slist
robots__unsafe

$ xcov coverage --level=branch --annotate=asm --routines=0slist explore.trace
Coverage level: BRANCH
robots__unsafe !: fffc1074-f£ffc109b

fffc1074 +: 2f 83 00 02 cmpiw cr7,r3,0x0002
f£f£fc1078 +: 40 be 00 1c bne+ cr7,0xfffc1094 <robots__unsafe+00000020>
[...]

GNATCOVERAGE provides a ‘disp-routines’ command to help the elaboration of sym-
bol lists. The general synopsis is as follows:

disp-routines {[--excludel|--include] FILES}
Build a list of routines from object files

xcov disp-routines outputs the list of symbols in a set built from object files provided
on the command line. 'Object file’ is to be taken in the general sense of 'conforming to
a supported object file format, such as ELF’, so includes executable files as well as single
compilation unit objects.

The output set is built incrementally while processing the arguments left to right.
‘-—include’ states “from now on, symbols defined in the forthcoming object files are to
be added to the result set”. ‘--exclude’ states “from now on, symbols defined in the
forthcoming object files are to be removed from the result set”. An implicit --include
is assumed right at the beginning, and each object file argument may actually be an @file
containing a list of object files. Below are a few examples of commands together with a
description of the set they build.

$ xcov disp-routines explore
(symbols defined in the ’explore’ executable)

$ xcov disp-routines explore --exclude test_stations.o
(symbols from the ’explore’ executable)
- (symbols from the ’test_stations.o’ object file)

$ xcov disp-routines --include @sll --exclude @sl2 --include 0sl3
(symbols from the object files listed in text file sl1)
- (symbols from the object files listed in text file sl2)
+ (symbols from the object files listed in text file sl13)

Chapter 3: GNATCOVERAGE Users Guide 19

In-source reports, when requested, are generated for sources associated with the selected
symbols’ object code via debug line information. Coverage synthesis notes are produced only
on those designated lines. For example, ——annotate=xcov --routines=robots__unsafe
will produce a single robots.adb.xcov in-source report with annotations on the Unsafe
function lines only, because the debug info maps the code of the unique symbol of interest
there and only there.

Note that inlining can have surprising effects in this context, when the machine code
is associated with the inlined entity and not the call site. When the code for a symbol A
in unit Ua embeds code inlined from unit Ub, an in-source report for routine A only will
typically produce two output files, one for Ua where the source of some of the symbol code
reside, and one for Ub, for lines referenced by the machine code inlined in A.

Chapter 3: GNATCOVERAGE Users Guide 20

3.4 Source Coverage Analysis

Source coverage analysis focuses on source elements such as “statements” or “decisions”.
Machine object code is entirely abstracted away. For source coverage assessment, gnatcov
relies on Source Coverage Obligation (SCO) tables, compact descriptions of the source
elements relevant to coverage analysis.

As of today, gnatcov supports SCOs provided as part of the Ada Library Information
files generated by the GNAT compilers when invoked with the ‘-gnateS’ command line
option. To obtain accurate results, the code should be compiled with optimizers disabled
(=00 in gcc parlance). Support for optimized code is being worked on for future versions.

The general process to perform source coverage analysis is similar to the one for object
coverage: xcov run produces execution traces, and xcov coverage generates reports out
of them. Source coverage analysis is requested thanks to variants of the —-level option,
which should be passed to both xcov run and xcov coverage.

The set of SCOs for which coverage is to be assessed is provided by way of a ‘--scos’
command line option, which accepts either a single .ali filename argument, or an @ prefixed
filename containing a list of ali files. --scos is the source oriented version of what -
-routines offers in the object coverage case. They may not be used together. --scos
conveys both SCO information to the analysis engine and the selection of units for which
result reports are to be produced. The option may be repeated on the command line, with
cumulative effects.

Source coverage results may be produced in several output formats, selected with the
‘-—annotate’ command line option. xcov, html, and report are available, with general
characteristics identical to those described in the object coverage section: xcov is a text
format with a coverage annotation on each source line, html features line colorization and
an index page, and report outputs the sequence of incomplete coverage diagnostics out of
the analysis performed.

3.4.1 Statement Coverage (SC)

Statement coverage is achieved with --level=stmt, together with --scos to provide the
set of SCOs of interest via ALI files. The xcov and html annotation formats both generate
a representation of the sources with annotations on each relevant line, according to the
following table:

Note Means ...

7 no SCO or no executable code for this line
statement uncovered (not executed) on this line
+ statement covered (executed) on this line

’_0

Below is a sample session to illustrate on the Explore example, for the robots unit
after recompilation with ‘~gnateS -00’. Note the ‘--1level’ option passed to both run and
coverage invocations:

$ xcov run --level=stmt explore
. run session, trace goes to explore.trace by default ...

$ xcov coverage --level=stmt --scos=obj/robots.ali --annotate=xcov explore.trace

Chapter 3: GNATCOVERAGE Users Guide 21

To analyze a full set of units at once, just fetch the list of ALI files in a list and provide
an @file to -—scos. For instance, in a Unix-like environment:

$ 1s obj/*.ali > alis
$ xcov coverage --scos=Qalis --level=stmt --annotate=xcov explore.trace

For the Stations unit, this produces a stations.adb.xcov output with:

Coverage level: STMT
87% of 38 lines covered

[...]
74 . function Control_For (C : Character) return Robot_Control;
75 .: -- Map user input character C to Robot_Control command, Nop if
76 .: -- the input isn’t recognized.
7 .
78 .: function Control_For
79 .: (C : Character) return Robot_Control is
80 .: begin
81 +: case C is
82 .: when ’p’ | P’ =>
83 +: return (Code => Probe, Value => 0);
84 .: when ’s’ | ’S’ =>
85 +: return (Code => Step_Forward, Value => 0);
86 .: when ’1° | °L’> =>
87 -: return (Code => Rotate_Left, Value => 0);
88 .: when ’r’ | ’R’> =>
89 -: return (Code => Rotate_Right, Value => 0);

--annotate=report instead simply diagnoses the set of source lines with uncovered state-
ments, for example like:

stations.adb:87: statement not executed
stations.adb:89: statement not executed

More details on the report format are available in a dedicated appendix of this docu-
mentation. By default, the report goes to standard output. It may be directed to a file
instead, with the addition of a ‘~o <filename>’ option on the command line.

3.4.2 Decision Coverage (DC)

gnatcov features combined Statement and Decision Coverage assessment capabilities with
‘--level=stmt+decision’. We consider to be decisions all the boolean expressions used
to influence the control flow via explicit constructs in the source program, such as if
statements or while loops. For proper operation, expressions may only resort to short-
circuit operators to combine operands. The GNAT compilers offer the No_Direct_Boolean_
Operator restriction pragma to make sure this rule is obeyed.

A decision is said fully covered when tests were made so that the decision has evaluated
to both True and False. If only one of these two possible outcomes was exercised, the
decision is said partially covered. The case where none of the possible decision outcomes
was exercised happens when the enclosing statement was not executed at all, or when all the
attempted evaluations were interrupted e.g. because of exceptions. Uncovered statements
remain reported as such, without further details even if there are decisions therein.

Chapter 3: GNATCOVERAGE Users Guide 22

The xcov and html annotation formats both generate a representation of the sources with
annotations at the beginning of each relevant line, according to the following table:

Note Means ...

no SCO or no executable code for this line

- statement uncovered on this line

decision partially covered on this line

'+ all the decisions on this line are fully covered

As for object coverage, additional information is available on request with an extra +
suffix on the annotation format, that is, with ——annotate=xcov+ or html+. Extra details
are typically provided for decisions partially covered, with information about which outcome
was not exercised.

The --annotate=report synthetic output lists information about uncovered statements
and partial decision coverage. For example, after exercising Explore to have the robot
execute safe commands in both Cautious and Dumb modes, we get the expected results
below on a sample of the Robots control code:

$ xcov coverage --level=stmt+decision --annotate=report
--scos=obj/powerpc-elf/robots.ali explore.trace

robots.adb:56:9: decision outcome TRUE never exercised
robots.adb:75:10: decision outcome TRUE never exercised
robots.adb:78: statement not executed

For decision related diagnostics, the source location features both a line and a column
number to designate the first token of the decision unambiguously. Below is the correspond-
ing ——annotate=xcov+ output excerpt. Decision diagnostics are always expanded on the
first line of the decision:

[...]

51 .: function Unsafe (Cmd : Robot_Command; Sqa : Square)
52 .: begin
53 .: -- Stepping forward with a block or a water pit ahead is Unsafe
54 .:
55 +: return
56 !: Cmd = Step_Forward
DECISION "Cmd = Ste..." at 56:9: outcome TRUE never exercised
57 !: and then (Sqa = Block or else Sqa = Water);
58 .: end Unsafe;
[...]
64 .: procedure Process_Next_Control
65 .: (Port : Robot_Control_Links.IOport_Access)
66 .: is
[...]
73 . -- Cautious, the robot refuses to process unsafe controls
74 .
75 if Robot.Mode = Cautious
DECISION "Robot.Mod..." at 75:10: outcome TRUE never exercised
76 !: and then Unsafe (Ctrl.Code, Probe_Ahead (Robot.Hw.Rad))
7oL then
78 -: return;
79 .: end if;

[...]

Chapter 3: GNATCOVERAGE Users Guide 23

3.4.3 Modified Condition/Decision Coverage (MCDC)

In a similar fashion to statement or decision coverage, gnatcov features Modified Condi-
tion/Decision Coverage assessment capabilities with ‘--level=stmt+mcdc’. In addition to
the particular level specification, you should also provide xcov run with the set of SCOs
you plan to analyze later on using the produced trace, with a ——scos argument as for xcov
coverage. If you plan different analysis for a single run, providing a common superset to
xcov run is fine. Providing xcov run with only a subset of the SCOs you will analyze might
result in pessimistic assessments later on (spurious MCDC not achieved outcome).

To support MCDC, we introduce a distinction between two kinds of Boolean expressions:

e Simple Boolean expressions are Boolean atoms such as a lone Boolean variable or a
function call, possibly negated.

e Complex Boolean expressions are those that feature at least two Boolean atoms com-
bined with short-circuit operators, the only ones allowed for proper operation as for
Decision Coverage.

In addition to simple and complex expressions used to influence control-flow statements,
we treat as decisions all the complex Boolean expressions anywhere they might appear. For
example, the Ada code excerpt below:

X := A and then not B;

if Y then [...]
... features two expressions subject to MCDC analysis: A and then not B (complex expres-
sion with two atoms), on the right hand side of the assignment to X, and the simple Y
expression that controls the if statement. The Boolean atoms in a decision are called con-
ditions in the DO-178 literature. The types involved need not be restricted to the standard
Boolean type when one is defined by the language; For Ada, typically, they may subtypes
or types derived from the fundamental Boolean type.

Compared to Decision Coverage, MCDC assessments incur extra verifications on the
demonstration by the tests of the independent influence of conditions on decisions. Several
variants of the criterion exist, with a common idea: for each condition in a decision, tests
are required to expose a pair of valuations where both the condition and the decision value
change while some extra property on the other conditions holds. The point is to demonstrate
that every condition is significant in the decision and that the tests exercised representative
combinations of the possible behaviors, while keeping the number of required tests linear
with the number of conditions in a decision.

Unique Cause MCDC is a common variant where the extra property is “all of the
other conditions in the decision shall remain unchanged”. To illustrate, the table below
expands the 4 possible condition/decision vectors for decision A and then B. T/F repre-
sent the True/False boolean values and the rightmost column indicates which vector pairs
demonstrate Unique Cause independent effect of each condition.

| # 1 A B A& B | Indep |
el | -—————- |
11T T T | A B

21 T F F	B	
31 F T F	A	
4	F F F	

Chapter 3: GNATCOVERAGE Users Guide 24

GNATCOVERAGE actually implements a common variant, accepting variations of other
conditions in an independence pair as long as they could for sure not possibly influence
the decision outcome, e.g. due to short-circuit semantics. This variant provides additional
flexibility on the set of tests required to satisfy the criterion without reducing the minimal
size of this set. In the and then case, it becomes possible to use the #4 + #1 pair as well
to demonstrate the independent influence of A, as B is not evaluated at all when A is False
so the change on B is irrelevant in the decision switch.

Output-wise, the in-source notes for the xcov or html formats are the same as
for decision coverage reports, with condition specific cases marked with '!” as well.
--annotate=report outputs feature specific diagnostics where conditions are identified
with their precise file:line:column source location. Using the same decision as in the
previous example to illustrate, we run the Explore robot in Cautious mode only, try both
safe and unsafe actions and get:

robots.adb:75:10: condition has no independent influence pair, MC/DC not achieved

Such condition related messages are only emitted when no more general diagnostic applies
on the associated decision or statement, however. In our familiar example, attempting
only safe actions in Cautious mode yields a “decision outcome TRUE never exercised”
diagnostic, not a couple of condition related messages.

Chapter 3: GNATCOVERAGE Users Guide 25

3.5 Advanced features

3.5.1 Coverage Data Capitalization & Consolidation

The gnatcov philosophy with respect to coverage data capitalization is to provide flexible
means to allow custom trace management facilities, not to dictate a specific organization.
Two devices were introduced for this purpose: trace tags let users associate an arbitrary
string with each execution trace, and xcov run stores a reference to the executable program
there as well. In addition to this, gnatcov features coverage consolidation capabilities, to
allow coverage analysis of a provided set of routines from runs exercising them possibly in
the context of different executable programs.

To illustrate, we analyze object branch coverage of the Unsafe function of the Explore
Robots unit. We first run a simple interactive session which exercises the function only
partially and look at the results:

$ xcov run --target=powerpc-elf --tag ’Safe explore session’ explore
[... Probe, Step on clear square, Quit ...]

$ xcov coverage --level=branch --annotate=xcov+ --routines=robots__unsafe
explore.trace

robots.adb.xcov

[...]

57 .: function Unsafe (Cmd : Robot_Command; Sqa : Square) return Boolean is
58 .: begin

59 .: -- Stepping forward into a rock block or a water pit is Unsafe

60 .:

61 .: return Cmd = Step_Forward

62 !: and then (Sqa = Block or else Sqa = Water);

<robots__unsafe>:
fffcl3a4 +: 2f 83 00 02 cmpiw cr7,r3,0x0002

fffc13a8 +: 40 be 00 1c Dbne+ cr7,0xfffc13c4 <robots__unsafe+00000020>
fffcl3ac +: 2f 84 00 01 cmpiw cr7,r4,0x0001

f£f£fc13b0 v: 41 9e 00 Oc beq- cr7,0xfffcl3bc <robots__unsafe+00000018>
fffci3b4 +: 2f 84 00 02 cmpiw cr7,r4,0x0002

fffc13b8 >: 40 be 00 Oc bne+ cr7,0xfffcl13c4 <robots__unsafe+00000020>
fffc1i3bc -: 38 60 00 01 1i r3,0x0001

fffc13cO -: 4e 80 00 20 blr

fffc13c4 +: 38 60 00 00 1i r3,0x0000

These results are as expected. The first branch is fully covered because the session
featured both a Probe and a Step forward, so the Cmd = Step_Forward condition is exercised
both ways. The two following branches are only partially covered because we never actually
try any of the unsafe steps forward.

We then run the provided unit tests in addition, combine the results and observe full
object branch coverage:

$ make UNIT_TESTS=test_explore
[...]

Xcov run --target=powerpc-elf test_explore

$ xcov coverage --level=branch --annotate=xcov+ --routines=robots__unsafe
test_explore.trace explore.trace

Chapter 3: GNATCOVERAGE Users Guide 26

robots.adb.xcov

[...]

57 .: function Unsafe (Cmd : Robot_Command; Sqa : Square) return Boolean is
58 .: begin

59 .: -- Stepping forward into a rock block or a water pit is Unsafe

60 .:

61 .: return Cmd = Step_Forward

62 +: and then (Sqa = Block or else Sqa = Water);

<robots__unsafe>:

f££c3b00 +: 2f 83 00 02 cmpiw cr7,r3,0x0002

fffc3b04 +: 40 be 00 1c bne+ cr7,0xfffc3b20 <robots__unsafe+00000020>
f£f£fc3b08 +: 2f 84 00 01 cmpiw cr7,r4,0x0001

fffc3bOc +: 41 9e 00 Oc beq- cr7,0xfffc3bl8 <robots__unsafe+00000018>
fffc3b10 +: 2f 84 00 02 cmpiw cr7,r4,0x0002

fffc3bl4 +: 40 be 00 Oc bne+ cr7,0xfffc3b20 <robots__unsafe+00000020>

fffc3b18 +: 38 60 00 01 1i r3,0x0001
fffc3blc +: 4e 80 00 20 blr
f££fc3b20 +: 38 60 00 00 1i r3,0x0000

In this example, the set of traces to consolidate was provided as a sequence of trace
filenames on the command line. A text file containing a list of trace files, designated by an
@ prefixed filename, may also be used for this purpose. In the example at hand, we could
have, say, an explore.tracelist text file containing

test_explore.trace

explore.trace
and pass @explore.tracelist to xcov coverage to consolidate. The trace order has no
influence in either case.

To help traceability, gnatcov provides the full list of traces used to assess reported
results, in two possible places: in the html indexes and in the preliminary information part
of the ——annotate=report output when such formats are requested. Each trace filename
is listed together with information recorded in the trace by xcov run: the trace creation
timestamp, the path-to-executable command line argument, and the provided --tag value.

The example provided here focuses on object coverage analysis for illustrative puroposes.
GNATCOVERAGE’s consolidation capabilities apply identically to the source coverage anal-
ysis case, with multiple execution traces on input and --scos to specify the sources subset
of interest.

3.5.2 XML outputs for automated processing

In addition to the report, xcov[+] and html[+] output formats, gnatcov offers XML
outputs for all the supported criteria. These outputs are obtained with ‘--annotate=xml’
on the command line, which generates an XML file for each source file of interest, plus an
index.xml which includes all the others.

XML outputs are intended for automated processing by other tools, and provide a repre-
sentation of gnatcov internal computations with full details for maximum flexibility. Their
specification is provided as an appendix of this document.

3.5.3 Source Coverage Exemptions

In some circumstances, there are good and well understood reasons why proper coverage
of some source statement or decision is not achievable, and it is convenient to be able to

Chapter 3: GNATCOVERAGE Users Guide 27

abstract these coverage violations away from the genuine defects out of a testing sequence.
The GNATCOVERAGE exemptions facility was designed for this purpose.

For Ada with the GNAT compilers, coverage exemptions are requested for sections
of source by the insertion of dedicated pragmas. pragma Annotate (Xcov, Exempt_On,
"justification text"); starts a section, providing some exemption justification text
that will be recalled in coverage reports. pragma Annotate (Xcov, Exempt_0ff); closes
the current exemption section. There may be no overlap between exemption regions.

Exempted regions are reported as blocks in both the annotated source and the synthetic
text reports. In the former case, a '#’ or '*’ caracter annotates all the exempted lines,
respectively depending on whether 0 or at least 1 violation was exempted over the whole
section. In synthetic text reports, a single indication is emitted for each exempted region,
and the indications for all the regions are grouped in a separate report section. More
details on the format of these indications is provided in the appendix section dedicated to
the synthetic text report format.

Chapter 4: Appendices 28

4 Appendices

4.1 The “Explore” Guide Example

The Explore example is a toy Ada application we use throughout the gnatcov documen-
tation to introduce and illustrate a number of concepts. Below is a short functional and
organisational description, verbatim from the sources:

- Couverture/Explore example -
- Copyright (C) 2008-2009, AdaCore -

-- This example implements software pieces involved in the following
-- imaginary situation:

-- - A pilotless robot is set on a field to explore, where we expect to
- find either regular ground or rock blocks.

-- - An inhabited station off the field communicates with the robot to
- control it and visualize the explored portions of the field.

-- The robot is equipped with several devices:

-- - a steering engine, able to have the robot perform a short step
- forward or rotate 90 deg either way without advancing,

-- - a front radar, able to probe the field characteristics (ground or
- block) one step ahead,

-- - a locator, able to evaluate the robot’s position and orientation on
- the field.

—-- The robot communicates with the station via two communication links:

-- - a control link, through which the station sends commands for the
- robot to execute (probe ahead, step forward, ...)

-- - a situation link, through which the robot sends info about it’s
- current situation (position, orientation, field ahead).

-- The field is modeled as a set of squares, each represented by a
-- single character to denote the square nature:

- ’#’ is a rock block, ’ ’ is regular ground, ’7’ is water
- ’?’ is a square yet unexplored

- ’<?, ?>?, ?72 or ’v’ is the robot heading west, east, north
- or south, respectively.

-- Below is a schematic illustration of the various parts involved

Chapter 4: Appendices

-- for a rectangular field delimited by rock blocks, a robot heading
-- south and an ’S’ to materialize the Station:

- field view

-= HEHHH PTTPTTTY?
- # # # <- control link T # 777
- # v< >S 77 R 77
--= # - # situation link -> 77 7
-= H#d S ?PTPTTTT?Y?

-— The Robot and Station active entities are both called Actors in this
-- world, and Links are attached to local Ports owned by these actors.

—- The Robot runs in one of two modes: in Cautious mode, it wont execute
-- unsafe commands like stepping forward with a rock block ahead. In Dumb
-- mode it executes all the commands it receives.

-- A user running the program is like sitting at the Station, able to type
-- commands for the Robot to execute and to receive feedback on the new

-- situation, from which the local view of the field is updated. Below is
-- sample session with explanatory comments in []:

-- § ./explore

-- [The fake initial field is setup as a 5x5 area with blocks all around
- and 1 in the middle, like

- fi2:2:2:202
- # #
- ###
- # #
- HitH##

-- Robot is arbitrarily placed in the upperwest corner, heading east]

-- ’C’autious mode, ’D’umb mode
-- ’P’robe, ’S’tep, Rotate ’L’eft/’R’ight, ’Q’uit 7 P

- [Station asks for user input, user types "P" to probe ahead.

- Robot answers with it’s current situation: position (x=2, y=2),
-- looking east, square ahead is regular ground.

- Station displays its current knowledge of the field]:

-- [Probe command processing done, Next cycle ...]

-- ’C’autious mode, ’D’umb mode
-- ’P’robe, ’S’tep, Rotate ’L’eft/’R’ight, ’Q’uit 7 L

Chapter 4: Appendices

- [User asks "rotate left (counterclockwise)", station sends out
- command followed by a Probe request.

- Robot processes both requests and answers: position unchanged,
- now heading north, square ahead is a block.

- Station displays its current knowledge of the field]:

-- [etc until user requests ’Q’uit or crashes the robot by asking
- it to step forward into a block, in Dumb mode]

-- General software organization --

—-— The set of units and essential abstractions involved is sketched below -
-- units underlined, associated abstractions parenthesized).

-- This set is a pretty straightforward mapping of the general concepts
-- involved, as described in the Functional Overview. Only "Queues" is a
-- pure support unit, offering the well known datastructure abstraction.

-- See the package specs for extra descriptive details.

-- Actors (Actor) Robots (Robot) Stations (Station)

-- Links (IOports, IOlinks) Queues (Queue)

package Overview is
end Overview;

30

Chapter 4: Appendices 31

4.2 Trace Format Definition

This information is best located and maintained in the source comments, where it naturally
gets updated as the project evolves. Below is a verbatim inclusion of the relevant Ada
specification:

--= Couverture -
- Copyright (C) 2008-2009, AdaCore -

-- Couverture is free software; you can redistribute it and/or modify it -
-- under terms of the GNU General Public License as published by the Free -
-- Software Foundation; either version 2, or (at your option) any later -
-- version. Couverture is distributed in the hope that it will be useful, --
-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --
-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --
-- License for more details. You should have received a copy of the GNU --
—- General Public License distributed with GNAT; see file COPYING. If not, --
-- write to the Free Software Foundation, 59 Temple Place - Suite 330, --
-- Boston, MA 02111-1307, USA. --

with Interfaces; use Interfaces;
package Qemu_Traces is

-- Execution of a program with ’xcov run’ produces an "Execution Trace"
-- file, possibly controlled by an internal "Trace Control" file for the
-- simulation engine to help the support of mcdc like coverage criteria.

-- The Trace Control simulation input contains a list of addresses ranges
-- for which branch history is needed. This is computed by xcov from SCO
-- decision entries, and is referred to as a Decision Map.

-- The Execution Trace output contains a list of execution trace entries
-- generated by the simulation engine, preceded by a list of trace

-- information entries produced by xcov for items such as the path to the
-- binary file or a user provided tag string.

-- Here is a quick sketch of the information flow:

- XCOV run Execution Trace
- O——mm e — 220 —mmmmmmmm—me o
- | gen info section ----------- |-->|Info section]|
-= | | e |
- | QEMU --|-->|Exec section]|
-- mcdc : SCO.D --|--> gen decision map -----— - |

- | |
- | |Control sectionl |

-- All the files sections feature a section header followed by a sequence
—-- of entries. The section header structure is identical in all cases, and
-- always conveys some trace related data (trace control, trace context

-- info, or actual execution trace), identified by a Kind field.

Chapter 4: Appendices

-- The decision map file general structure is then:

- | SH | Section Header .Kind = Decision_Map
-- | TCE[] | Sequence of Trace Control Entries

-- IsH | Section Header .Kind = Info

-- ITIE[] | Sequence of Trace Info Entries

-- [---—- |

-- | SH | Section Header .Kind = Flat|History
-- |ETE[] | Sequence of Exec Trace Entries

-- File Section Header --

-- Must be kept consistent with the C version in gemu-traces.h

subtype Magic_String is String (1 .. 12);

Qemu_Trace_Magic : constant Magic_String := "#QEMU-Traces";

-- Expected value of the Magic field.

Qemu_Trace_Version : constant Unsigned_8 := 1;

-- Current version

type Trace_Kind is (Flat, History, Info, Decision_Map);
for Trace_Kind use

(Flat => 0, -- flat exec trace (gemu)

History => 1, -- exec trace with history (qemu)

Info = 2, -- 1info section (xcov)

Decision_Map => 3); -- history control section (xcov, internal)

for Trace_Kind’Size use 8;

type Trace_Header is record

Magic : Magic_String; -- Magic string
Version : Unsigned_8; -- Version of file format
Kind : Trace_Kind; —-- Section kind

Sizeof_Target_Pc : Unsigned_8;
-- ©Size of Program Counter on target, in bytes

Big_Endian : Boolean;
-- True if the host is big endian

Machine_Hi : Unsigned_8;
Machine_Lo : Unsigned_8;
-- Target ELF machine ID

Padding : Unsigned_16;
-—- Reserved, must be set to O
end record;

Chapter 4: Appendices

-- Trace Information Section (.Kind = Info) --

-- The section header fields after Kind (but big_endian) should be O.

-- The section contents is a sequence of Trace Info Entries, each with a
-- Trace Info Header followed by data. Data interpretation depends on the
-- entry Kind found in the item header. We expect an Info_End kind of

-- entry to finish the sequence.

type Info_Kind_Type is
(Info_End, Exec_File_Name, Coverage_Options, User_Data, Date_Time);

type Trace_Info_Header is record
Info_Kind : Unsigned_32;

-- Info_Kind_Type’Pos, in endianness indicated by file header

Info_Length : Unsigned_32;
-- Length of associated real data. This must be O for Info_End.

end record;

-- The amount of space actually occupied in the file for each entry is
-- always rounded up for alignment purposes. This is NOT reflected in
-- the Info_Length header field.

Trace_Info_Alignment : constant := 4;

-- This is the structure of a Date_Time kind of entry:

type Trace_Info_Date is record
Year : Unsigned_16;

Month : Unsigned_8; - 1 .. 12
Day : Unsigned_8; - 1..31
Hour : Unsigned_8; -- 0 .. 23
Min : Unsigned_8; -- 0 .. 59
Sec : Unsigned_8; -- 0 .. 59
Pad : Unsigned_8; -- 0

end record;

-- Execution Trace Section (.Kind = Raw|History) --

-- The section contents is a sequence of Trace Entries. There is no
-- explicit sequence termination entry ; we expect the section to end with
-- the container file.

-- Each trace entry conveys OPerational data about a range of machine

-- addresses, most often execution of a basic block terminated by a branch
-- instruction. These have slightly different representations for 32 and
-- 64 bits targets.

-- Flat sections are meant to convey the directions taken by branches as
-- observed locally, independently of their execution context. This

-- limits the output to at most two entries per block (one per possible
-- branch outcome) and doesn’t allow mcdc computation.

33

Chapter 4: Appendices

-- History sections are meant to allow mcdc computation, so report block
-- executions and branch outcomes in the relevant cases, as directed by
-- the simulator decision map input.

type Trace_Entry64 is record

Pc : Unsigned_64;
Size : Unsigned_16;
Op : Unsigned_8;

Pad0 : Unsigned_8;
Padl : Unsigned_32;
end record;

type Trace_Entry32 is record

Pc : Unsigned_32;
Size : Unsigned_16;
Op : Unsigned_8;

Pad0 : Unsigned_8;
end record;

-- The Operation conveyed is a bitmask of the following possibilities:

Trace_Op_Block : constant Unsigned_8 := 16#10%#;
-- Basic block pc .. pc+size-1 was executed

Trace_Op_Fault : constant Unsigned_8 := 16#20#;
-- Machine fault occurred at pc

Trace_Op_Br0O : constant Unsigned_8 := 16#01#;

Trace_Op_Brl : constant Unsigned_8 := 16#02#;
-- Op_Block execution terminated with branch taken in direction O or 1

-- The section contents is a sequence of Trace Control Entries.

-- Entries are meant to convey range of addresses where branch history is
-- needed for mcdc computation purposes. The structure is piggybacked on
-- that of the Execution Trace output section, which has everything to

-- represent address ranges already.

end Qemu_Traces;

Chapter 4: Appendices

4.3 Source Coverage Obligations Definition
Below is a verbatim inclusion of the relevant Ada specification:

- GNAT COMPILER COMPONENTS -
- SCco0Ss -
- Spec -
- Copyright (C) 2009-2011, Free Software Foundation, Inc. -

-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- 0OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
—-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. -

-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. -

-- This package defines tables used to store Source Coverage Obligations. It
-- is used by Par_SCO to build the SCO information before writing it out to
-- the ALI file, and by Get_SCO/Put_SCO to read and write the text form that
-- 1is used in the ALI file.

with Snames; use Snames;

-- Note: used for Pragma_Id only, no other feature from Snames should be used,

-- as a simplified version is maintained in Xcov.

with Types; wuse Types;

with GNAT.Table;

package SCOs is
-- SCO information can exist in one of two forms. In the ALI file, it is
-- represented using a text format that is described in this specification.
-- Internally it is stored using two tables SCO_Table and SCO_Unit_Table,

-— which are also defined in this unit.

-- Par_SCO is part of the compiler. It scans the parsed source tree and
-- populates the internal tables.

-- Get_SCO reads the text lines in ALI format and populates the internal
-- tables with corresponding information.

-- Put_SCO reads the internal tables and generates text lines in the ALI
-- format.

Chapter 4: Appendices

-— SCO ALI Format --

-- Source coverage obligations are generated on a unit-by-unit basis in the
-- ALI file, using lines that start with the identifying character C. These
-- lines are generated if the -gnateS switch is set.

-- Sloc Ranges

- In several places in the SCO lines, Sloc ranges appear. These are used
-- to indicate the first and last Sloc of some construct in the tree and
- they have the form:

- line:col-line:col

- Note that SCO’s are generated only for generic templates, not for
- generic instances (since only the first are part of the source). So
- we don’t need generic instantiation stuff in these line:col items.

-— SCO File headers

- The SCO information follows the cross-reference information, so it

-- need not be read by tools like gnatbind, gnatmake etc. The SCO output
- is divided into sections, one section for each unit for which SCO’s
- are generated. A SCO section has a header of the form:

- C dependency-number filename

- This header precedes SCO information for the unit identified by
- dependency number and file name. The dependency number is the
- index into the generated D lines and is ones origin (i.e. 2 =
- reference to second generated D line).

- Note that the filename here will reflect the original name if
- a Source_Reference pragma was encountered (since all line number
- references will be with respect to the original file).

- Note: the filename is redundant in that it could be deduced from
- the corresponding D line, but it is convenient at least for human
-= reading of the SCO information, and means that the SCO information
- can stand on its own without needing other parts of the ALI file.

-- Statements

- For the purpose of SCO generation, the notion of statement includes
- simple statements and also the following declaration types:

- type_declaration

- subtype_declaration
-= object_declaration

- renaming_declaration
- generic_instantiation

- and the following regions of the syntax tree:
- the part of a case_statement from CASE up to the expression

-= the part of a FOR loop iteration scheme from FOR up to the
- loop_parameter_specification

36

Chapter 4: Appendices

- the part of a WHILE loop up to the condition

-= the part of an extended_return_statement from RETURN up to the

- expression (if present) or to the return_subtype_indication (if
- no expression)

- and any pragma that occurs at a place where a statement or declaration
- is allowed.

-- Statement lines

-= These lines correspond to one or more successive statements (in the
- sense of the above list) which are always executed in sequence (in the
- absence of exceptions or other external interruptions).

- Entry points to such sequences are:

- the first declaration of any declarative_part

- the first statement of any sequence_of_statements that is not in a
- body or block statement that has a non-empty declarative part

- the first statement after a compound statement

- the first statement after an EXIT, RAISE or GOTO statement

- any statement with a label (the label itself is not part of the

- entry point that is recorded) .

- Each entry point must appear as the first entry on a CS line.

- The idea is that if any simple statement on a CS line is known to have
- been executed, then all statements that appear before it on the same
- CS line are certain to also have been executed.

- The form of a statement line in the ALI file is:

- CS #sloc-range [*sloc-range...]

- where each sloc-range corresponds to a single statement, and * is

- one of:

- t type declaration

- s subtype declaration

- o object declaration

- r renaming declaration

- i generic instantiation

- C CASE statement (from CASE through end of expression)
- E EXIT statement

- F FOR loop (from FOR through end of iteration scheme)
- I IF statement (from IF through end of condition)

- P[name:] PRAGMA with the indicated name

- R extended RETURN statement

- W WHILE loop statement (from WHILE through end of condition)

- Note: for I and W, condition above is in the RM syntax sense (this
- condition is a decision in SCO terminology) .

- and is omitted for all other cases
- Note: up to 6 entries can appear on a single CS line. If more than 6

- entries appear in one logical statement sequence, continuation lines
- are marked by Cs and appear immediately after the CS line.

Chapter 4: Appendices

- Implementation permission: a SCO generator is permitted to emit a

- narrower SLOC range for a statement if the corresponding code

- generation circuitry ensures that all debug information for the code
-- implementing the statement will be labeled with SLOCs that fall within
- that narrower range.

-- Decisions

- Note: in the following description, logical operator includes only the
- short-circuited forms and NOT (so can be only NOT, AND THEN, OR ELSE).
-- The reason that we can exclude AND/OR/XOR is that we expect SCO’s to
-= be generated using the restriction No_Direct_Boolean_Operators if we
- are interested in decision coverage, which does not permit the use of
- AND/OR/X0OR on boolean operands. These are permitted on modular integer
- types, but such operations do not count as decisions in any case. If
- we are generating SCO’s only for simple coverage, then we are not

- interested in decisions in any case.

- Note: the reason we include NOT is for informational purposes. The
- presence of NOT does not generate additional coverage obligatioms,
- but if we know where the NOT’s are, the coverage tool can generate
- more accurate diagnostics on uncovered tests.

- A top level boolean expression is a boolean expression that is not an
- operand of a logical operator.

- Decisions are either simple or complex. A simple decision is a top

- level boolean expression that has only one condition and that occurs
- in the context of a control structure in the source program, including
- WHILE, IF, EXIT WHEN, or immediately within an Assert, Check,

-= Pre_Condition or Post_Condition pragma, or as the first argument of a
- dyadic pragma Debug. Note that a top level boolean expression with

-- only one condition that occurs in any other context, for example as
- right hand side of an assignment, is not considered to be a (simple)
-= decision.

- A complex decision is a top level boolean expression that has more

- than one condition. A complex decision may occur in any boolean

- expression context.

- So for example, if we have

- A, B, C, D : Boolean;
- function F (Arg : Boolean) return Boolean);

- Aiénd then (B or else F (C and then D))

- There are two (complex) decisions here:

- 1. X and then (Y or else Z)

- where X = A, Y =B, and Z = F (C and then D)

-- 2. C and then D

- For each decision, a decision line is generated with the form:

- C* sloc expression [chaining]

Chapter 4: Appendices

- Here * is one of the following characters:

decision in EXIT WHEN statement

decision in entry guard

decision in IF statement or conditional expression

decision in pragma Assert/Check/Pre_Condition/Post_Condition
decision in WHILE iteration scheme

decision appearing in some other expression context

|
|
=T HGQM

- For E, G, I, P, W, sloc is the source location of the EXIT, ENTRY, IF,
- PRAGMA or WHILE token, respectively

- For X, sloc is omitted
-- The expression is a prefix polish form indicating the structure of

- the decision, including logical operators and short-circuit forms.
- The following is a grammar showing the structure of expression:

- expression ::= term (if expr is not logical operator)
- expression ::= &sloc term term (if expr is AND or AND THEN)

- expression ::= |sloc term term (if expr is OR or OR ELSE)

- expression ::= !sloc term (if expr is NOT)

- In the last three cases, sloc is the source location of the AND, OR,
- or NOT token, respectively.

- term ::= element
- term ::= expression
- element ::= *sloc-range

- where * is one of the following letters:

-- c condition
- t true condition
- f false condition

- t/f are used to mark a condition that has been recognized by the

- compiler as always being true or false. c is the normal case of

- conditions whose value is not known at compile time.

- & indicates AND THEN connecting two conditions

- | indicates OR ELSE connecting two conditions

-- ! indicates NOT applied to the expression

- Note that complex decisions do NOT include non-short-circuited logical
- operators (AND/XOR/OR). In the context of existing coverage tools the
- No_Direct_Boolean_Operators restriction is assumed, so these operators
-- cannot appear in the source in any case.

- The SCO line for a decision always occurs after the CS line for the

- enclosing statement. The SCO line for a nested decision always occurs

- after the line for the enclosing decision.

- Note that membership tests are considered to be a single simple

Chapter 4: Appendices

- condition, and that is true even if the Ada 2005 set membership
- form is used, e.g. A in (2,7,11.15).

-- The expression can be followed by chaining indicators of the form
- Tsloc-range or Fsloc-range, where the sloc-range is that of some
- entry on a CS line.

- T* is present when the statement with the given sloc range is executed
- if, and only if, the decision evaluates to TRUE.

-- F* is present when the statement with the given sloc range is executed
- if, and only if, the decision evaluates to FALSE.

- For an IF statement or ELSIF part, a T chaining indicator is always
- present, with the sloc range of the first statement in the
-- corresponding sequence.

-- For an ELSE part, the last decision in the IF statement (that of the
- last ELSIF part, if any, or that of the IF statement if there is no
- ELSIF part) has an F chaining indicator with the sloc range of the
- first statement in the sequence of the ELSE part.

-- For a WHILE loop, a T chaining indicator is always present, with the
- sloc range of the first statement in the loop, but no F chaining
- indicator is ever present.

- For an EXIT WHEN statement, an F chaining indicator is present if
- there is an immediately following sequence in the same sequence of
-= statements.

- In all other cases, chaining indicators are omitted

- Implementation permission: a SCO generator is permitted to emit a

- narrower SLOC range for a condition if the corresponding code

-- generation circuitry ensures that all debug information for the code
- evaluating the condition will be labeled with SLOCs that fall within
- that narrower range.

-- Case Expressions

- For case statements, we rely on statement coverage to make sure that
- all branches of a case statement are covered, but that does not work
- for case expressions, since the entire expression is contained in a
- single statement. However, for complete coverage we really should be
- able to check that every branch of the case statement is covered, so
- we generate a SCO of the form:

- CC sloc-range sloc-range

- where sloc-range covers the range of the case expression

- Note: up to 6 entries can appear on a single CC line. If more than 6
- entries appear in one logical statement sequence, continuation lines
- are marked by Cc and appear immediately after the CC line.

-- Disabled pragmas

- No SCO is generated for disabled pragmas

Chapter 4: Appendices

-- Internal table used to store Source Coverage Obligations (SCOs) --

type Source_Location is record
Line : Logical_Line_Number;
Col : Column_Number;

end record;

No_Source_Location : Source_Location := (No_Line_Number, No_Column_Number) ;

type SCO_Table_Entry is record

From : Source_Location := No_Source_Location;
To : Source_Location := No_Source_Location;
C1 : Character =2 7

Cc2 : Character = 0y

Last : Boolean = False;

Pragma_Sloc : Source_Ptr := No_Location;

-- For the statement SCO for a pragma, or for any expression SCO nested
-- in a pragma Debug/Assert/PPC, location of PRAGMA token (used for
-- control of SCO output, value not recorded in ALI file).

Pragma_Name : Pragma_Id := Unknown_Pragma;
-- For the statement SCO for a pragma, gives the pragma name
end record;

package SCO_Table is new GNAT.Table (
Table_Component_Type => SCO_Table_Entry,

Table_Index_Type => Nat,
Table_Low_Bound =1,

Table_Initial => 500,
Table_Increment => 300);

-- The SCO_Table_Entry values appear as follows:

- Statements
- Cl =S’ for entry point, ’s’ otherwise
- C2 = statement type code to appear on CS line (or ’ ’ if none)

- From = starting source location
- To ending source location
- Last = False for all but the last entry, True for last entry

- Note: successive statements (possibly interspersed with entries of

- other kinds, that are ignored for this purpose), starting with one

-- labeled with C1 = ’S’, up to and including the first one labeled with
- Last = True, indicate the sequence to be output for a sequence of

- statements on a single CS line (possibly followed by Cs continuation
- lines).

-- Note: for a pragma that may be disabled (Debug, Assert, PPC, Check),
- the entry is initially created with C2 = ’p’, to mark it as disabled.
- Later on during semantic analysis, if the pragma is enabled,

-= Set_SCO_Pragma_Enabled changes C2 to ’P’ to cause the entry to be

-- emitted in Put_SCOs.

- Decision (EXIT/entry guard/IF/WHILE)

41

Chapter 4: Appendices 42

- c1 = 'E’/’G’/’I’/’W’ (for EXIT/entry Guard/IF/WHILE)
—_ c2 =

- From = EXIT/ENTRY/IF/WHILE token

-= To = No_Source_Location

- Last = unused

- Decision (PRAGMA)

—_ C1 = p?

- c2 = 7

- From = PRAGMA token

- To = No_Source_Location

- Last = unused

- Note: when the parse tree is first scanned, we unconditionally build a
- pragma decision entry for any decision in a pragma (here as always in
- SCO contexts, the only pragmas with decisions are Assert, Check,

- dyadic Debug, Precondition and Postcondition). These entries will

- be omitted in output if the pragma is disabled (see comments for

- statement entries).

- Decision (Expression)

—_ C1 = X’
- c2 = 7
-= From = No_Source_Location
-= To = No_Source_Location

- Last = unused

-= Operator

__ Cc1 =)!:’)&:’)|:

PR C2 =))

- From = location of NOT/AND/OR token
- To = No_Source_Location

- Last = False

- Element (condition)

—_ Cc1 = 7

- C2 = ’c¢c’, ’t’, or ’f’ (condition/true/false)
- From = starting source location

- To = ending source location

- Last = False for all but the last entry, True for last entry

- Element (chaining indicator)

- c1 ’H’> (cHain)

- C2 >T’ or ’F’ (chaining on decision true/false)
- From = starting source location of chained statement
- To ending source location of chained statement

- Note: the sequence starting with a decision, and continuing with
- operators and elements up to and including the first one labeled with
- Last = True, indicate the sequence to be output on one decision line.

-- This table keeps track of the units and the corresponding starting and
-- ending indexes (From, To) in the SCO table. Note that entry zero is
-- present but unused, it is for convenience in calling the sort routine.

Chapter 4: Appendices

-— Thus the lower bound for real entries is 1.

type SCO_Unit_Index is new Int;
-- Used to index values in this table. Values start at 1 and are assigned
-- sequentially as entries are constructed.

type SCO_Unit_Table_Entry is record
File_Name : String_ Ptr;
-— Pointer to file name in ALI file

Dep_Num : Nat;
-- Dependency number in ALI file

From : Nat;
-- Starting index in SCO_Table of SCO information for this unit

To : Nat;
-- Ending index in SCO_Table of SCO information for this unit
end record;

package SCO_Unit_Table is new GNAT.Table (
Table_Component_Type => SCO_Unit_Table_Entry,

Table_Index_Type => SCO0_Unit_Index,
Table_Low_Bound => 0, -- see note above on sorting
Table_Initial => 20,
Table_Increment => 200);
-- Subprograms --

procedure Initialize;
-- Reset tables for a new compilation

end SCOs;

43

Chapter 4: Appendices

4.4 XML output specifications
Below is a verbatim inclusion of the relevant Ada specification:

Couverture -
Copyright (C) 2009-2010, AdaCore -

Couverture is free software; you can redistribute it and/or modify it -
under terms of the GNU General Public License as published by the Free -
Software Foundation; either version 2, or (at your option) any later -
version. Couverture is distributed in the hope that it will be useful, -
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- -
TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -
License for more details. You should have received a copy of the GNU -
General Public License distributed with GNAT; see file COPYING. If not, -
write to the Free Software Foundation, 59 Temple Place - Suite 330, -
Boston, MA 02111-1307, USA. -

package Annotations.Xml is

-- This package provides support to output coverage results in XML format.

-- To make this easily useable by an external tool, there is only one
-- single entry for the XML output. To avoid to make this file a monster,
-- it is broken down into sub-units by the use of the Xinclude standard.

-- The following files are generated:
-- * an index file, named index.xml;
-- * one file per compilation unit, named after the corresponding source

-- file with a suffix ".xml".

-- The following sections will describe each file type. The following
-- convention will be used to denotate possible values for attributes:

-- * COVERAGE_KIND: can be either ’insn’, ’branch’, ’stmt’,

- ’stmt+decision’, ’stmt+mcdc’.

-- x COVERAGE: can be either ’+’ (total coverage for the chosen coverage
- criteria), ’-’ (null coverage), ’!’ (partial coverage) or
- >.? (no code for this line).

-- % OBJ_COVERAGE: can be either ’+’ (covered), ’>’ (branch taken),

-- >V’ (branch fallthrough) and ’-’ (not covered).

-- * TEXT: any text into quotes. Mostly used for source lines.

-- x ADDRESS: an hexademical number, C convention. e.g. Oxdeadbeef.
-- % NUM: a decimal number.

-- The index file contains one root element:

44

Chapter 4: Appendices

-- <coverage_report>: it contains the following attributes:

- coverage_level: COVERAGE_KIND; type of coverage operation that has
- been recorded in this report.

-- <coverage_report> has the following child elements:

- <coverage_info>: information related to the coverage operation
- (e.g. list of trace files).

-= This should contain a list of child elements <xi:include>
- with the following attributes:

- parse : set to "xml"
- href : path to the file that contains a trace info file.

- <sources>: List of annotated source files. This should contain a list
- of child elements <xi:include> with the following attributes:

- parse : set to "xml"
-- href : path to the file that contains an annotated source
- report.

-- Consider a program hello.adb that contains a package

-- pack.adb. Suppose that two runs have been done for this program,
-- generating two trace files tracel/hello.trace and

-- trace2/hello.trace. Its branch coverage report would look like:

-- <7xml version="1.0" 7>

-- <document xmlns:xi="http://www.w3.org/2001/XInclude">
- <coverage_report coverage_level="stmt">

- <coverage_info>

-— <xi:include parse="xml" href="trace.xml"/>

-= </coverage_info>

-- <sources>

- <xi:include parse="xml" href="hello.adb.xml"/>

- <xi:include parse="xml" href="pack.adb.xml"/>

- </sources>

-- </coverage_report>

-- </document>

-- Trace info

45

Chapter 4: Appendices

The trace info contains one root element:

<traces>: it represents the list of trace files given to the coverage
tool. It should contain a list of the following child elements:

<trace>: represents a given trace file. It shall have the following
attributes:

filename : name of the trace file on the host file system.

program : name of the executable program on the host file system.
date : date of the run that generated the trace file.
tag : trace file tag.

Example

<?7xml version="1.0" 7>
<traces>
<trace filename="explorel.trace"
program="explore"
date="2009-06-18 18:19:17"
tag="first run"/>

<trace filename="explore2.trace"
program="explore"
date="2009-06-18 18:22:32"
tag="second run"/>
</traces>

Annotated compilation unit

Some preliminary discussion first. A priori, there are two ways to
organize the coverage information in an annotated source:
* source-based view: iterating on lines; for each line, coverage
items (instruction/statement/decision...) are included.
* coverage-based view: iterating on coverage items; for each item, line
information is given.

Both approaches have their utility; the source-based view makes it easy
to generate source-based html reports (similar to the one generated by
--annotate=html+); the coverage-based view, closer to what the SCOs
provide, can more easily express the structure of decisions (the
condition that they contain, and which values they have taken).

The limitation of one approach is actually the asset of the other: a
coverage-centric report would make it hard for an external to rebuild
the source out of it; at the contrary, a source-centric report would
make it painful to aggregates informations about a particular decision.

The xml format proposed here tries to take the advantages of both
worlds. Instead of starting from lines or from coverage item and
trying to make one a child of the other, this format is based on
an element that pairs the two together. That is to say, instead of
having:

[...]

<line num="1" src=" A :=1;">

46

Chapter 4: Appendices

- <statement_start coverage="+"/>
-- </line>

- [...]

-- or something like:

- [...]
-- <statement line_begin="1" line_end="2" coverage="+" src="A := 1;"/>
- [...]

-- we will have:

- [...]

-- <src_mapping>

- <src>

- <line num="1" src=" A = 1;"/>
- </src>

- <statement coverage="+"/>
-- </src_mapping>

- [...]

-- What we call here a "src mapping" is the relation between a set of
-- line in the source code and a tree of coverage items.

-- One property that we would then be able to inforce is: monotonic

-- variation of src lines. More clearly: if a src mapping has a child

-- element src that contains line 12 and 13, the src mapping before it
-- will contain line 11, the src mapping after it will contain line 14.
-- This will ease the generation of a human-readable (say, HTML) report
-- Dbased on source lines; remember, that was one of the good properties
-- of the line-based approach.

-- Now, let us have a look to the details...

-- Description :

-- The annotated compilation unit contains one root element:

-- <source>: it contains the following attributes:

- file : TEXT; path to the source file.

- coverage_level : COVERAGE_KIND; type of coverage operation that has
- been recorded in this report.

-- It may contain a list of the followind child elements:

- <src_mapping>: node that associate a fraction of source code to
- coverage item. It may have the following attribute:

- coverage: aggregated coverage information for this fraction of
- source code.

- It should contains the following mandatory child element...

- <src>: node that contains a list of contiguous source lines of
- code.

47

Chapter 4: Appendices

- It contains a list of the following child elements:

- <line/>: represents a line of source code. It shall have the
-- following attributes:

- num : NUM; line number in source code.
- src : TEXT; copy of the line as it appears in the source
-= code.

- ...and <src_mapping> may also contain a list of child elements
- that represents coverage items. These coverage items can be

- instruction sets, statements or decision. Here are the

- corresponding child elements:

- <message/>: represents an error message or a warning attached to
- this line. It can have the following attributes:

- kind : warning or error
- SCO : Id of the SCO to which this message is attached
- message : actual content of the message

- <instruction_set>: node that represents a set of instructions.
- It should contain the following attribute:

- coverage : COVERAGE; coverage information associated to this
-= instruction set.

- The element <instruction_set> may also contain a list of the
- following child elements:

- <instruction_block>: coverage information associated to
- contiguous instructions. It has the following attributes:

- name : TEXT; name of the symbol. e.g. "main",
— "_ada_p".
- offset : ADDRESS; offset from the symbol.

- coverage : COVERAGE; how this instruction block
- is covered.

- The element <instruction_block> may contain a list of the
- following child elements:

- <instruction/>: coverage information associated to
- a given instruction. it contains the following
- attributes:

- address : ADDRESS;

-= coverage : OBJ_COVERAGE; how this instruction has
- been covered.

-= assembly : TEXT; assembly code for this

- instruction.

- <statement>: represents a statement. It may contain the
- following attributes:

48

Chapter 4: Appendices

- coverage : COVERAGE; coverage information associated to a
- statement.

- id : NUM; identifier of the associated source coverage

-- obligation

- text : TEXT,; short extract of code used that can be used to
- identify the corresponding source entity.

- The element <statement> may contain one child element:

- <src>: source information associated to this statement. If
- no src node is given, then the src of the upper node is
- "inherited".

- Same thing for conditions, decisions, statements...

-- The element <src> may contain a list of the following child
-= elements:

- <line/>: represents a line of source code. It may have
- the following attributes:

- num : NUM; line number in source code.
-= column_begin : NUM; column number for the beginning
- of the coverage item we are

- considering.

-= column_end : NUM; column number for the end of the
- coverage item we are considering.

- src : TEXT; copy of the line as it appears

- in the source code.

- <decision>: represents a decision. It may contain the following
-= attributes:

- coverage : COVERAGE; coverage information associated to a
- statement.

- id : NUM; identifier of the associated source coverage

- obligation

- text : TEXT; short extract of code used that can be used to
- identify the corresponding source entity.

- The element <decision> may also contain the following child
- elements:

- <src>: same as its homonym in <statement>; see above.

- <condition>: represents a condition. It may contains the
-= following attributes:

- coverage : COVERAGE; coverage information associated to a
- statement.

- id : NUM; identifier of the associated source coverage

- obligation

- text : TEXT; short extract of code used that can be

- used to identify the corresponding source entity.

- ...and the following child elements:

- <src>: same as its homonym in <statement>; see above.

49

Chapter 4: Appendices

-- Consider the following Ada function, defined in a file named test.adb:
-- -- file test.adb
-- with Pack;

-— function Test

- (A : Boolean;

- B : Boolean;

- C : Boolean;

- D : Boolean) return Integer is
-- Dbegin

- if A and then (B or else F (C
- and then D))
- return 12;

- end if;

- Pack.Func; return 13;

-- end Test;

-- This coverage of this file can be represented by the report shown below.
-- Notice in particular:

-- * how the two statements at line 14 can be represented;

-- * how the coverage of the two decisions on line 11-12 are represented.

-- <7?xml version="1.0" 7>
-- <source file="test.adb" coverage_level="stmt+mcdc">

- <src_mapping coverage=".">
- <src>
- <line num="1" src="-- file test.adb"/>

- <line num="2" src=""/>

- <line num="3" src="with Pack;"/>

- <line num="4" src=""/>

- <line num="5" src="function Test"/>

- <line num="6" src=" (A : Boolean;"/>

- <line num="7" src=" B : Boolean;"/>

- <line num="8" src=" C : Boolean;"/>

- <line num="9" src=" D : Boolean) return Integer is"/>
-— <line num="10" src="begin"/>

- </src>

- <src_mapping>

- <src_mapping coverage="!">
- <src>
- <line num="11" src=" if A and then (B or else F (C"/>

- # This src_mapping could also contain the line that follows;
- # after all, the two decisions that it contains end on line
- # 12. It does not matter much at this point. The important
- # property is that every coverage entity that starts on line
- # 11 is defined in this src_mapping.

- </src>

- <decision id="1" text="A and th..." coverage="!">
- <src>

50

Chapter 4: Appendices 51

- <line num="11" src=" if A and then (B or else F (C"/>
—-— <line num="12"

- src=" and then D))"/>
- </src>

- <condition id="2" text="A" coverage="+">
-- <src>

- <line num="11"

- column_begin="6"

-= column_end="7"

- src="A"/>

-- </src>

- </condition>

-- <condition id="3" text="B" coverage="-">
- <src>

- <line num="11"
-= column_begin="18"
- column_end="19"

- src="B"/>

- </src>

- </condition>

- <condition id="4" text="F (C..." coverage="-">
- <src>

- <line num="11"
- column_begin="28"

- src="F (C"/>

—-— <line num="12"

- src=" and then D"/>
- </src>

- </condition>

- </decision>

-— <decision id="5" text="C..." coverage="-">

- <src>

- <line num="11"

- column_begin="31"
J— SI‘C:"C"/>

- <line num="12"

- column_end="41"

- src=" and then D"/>
- </src>

- <condition id="6" text="C" coverage="-">

- <src>

- <line num="11"

- column_begin="31"

-= column_end="32"

- src="C"/>

- </src>

- </condition>

Chapter 4: Appendices 52

- <condition id="7" text="D" coverage="-">
- <src>

-- <line num="12"

- column_begin="40"

- column_end="41"

J— src="D"/>

- </src>

- </condition>

- </decision>

-= <message kind="warning"

- SCO="8CO #3: CONDITION"

- message="failed to show independent influence"/>
- <message kind="warning"

- SCO="8CO #4: CONDITION"

-- message="failed to show independent influence"/>
- <message kind="error"

- SC0="SCO #5: DECISION"

- message="statement not covered"/>

- </src_mapping>
-- <src_mapping coverage=".">

- # As said previously, this line could have been included in the
- # previous src_mapping.

- <src>

- <line num="12"

- src=" and then D))"/>
- </src>

- </src_mapping>

- <src_mapping coverage="+">

- <src>

- <line num="13" src=" return 12;"/>

- </src>

- <statement id="8" text="return 1..." coverage="+"/>

- </src_mapping>

- <src_mapping>

- <src>

-- <line num="13" src=" end if;"/>
- </src>

- </src_mapping>

- <src_mapping coverage="+">

- <src>

- <line num="14" src=" Pack.Func; return 13;"/>
- </src>

- <statement id="9" text="Pack.Fun..." coverage="+">
- <src>

- <line num="14"

-— column_begin="3"

-= column_end="12"

- src="Pack.Func;"/>

- </src>

- </statement>

Chapter 4: Appendices

- <statement id="9" text="return 1..." coverage="+">

- <src>

- <line num="14"

- column_begin="14"
== column_end="23"

- src="return 13;"/>

- </src>
- </statement>
- </src_mapping>

-- </source>

function To_Xml_String (S

String) return String;

-- Return the string S with ’>’, ’<’ and ’&’ replaced by XML entities

procedure Generate_Report;

end Annotations.Xml;

53

Chapter 4: Appendices 54

4.5 --annotate=report output format - source coverage

This section describes the format of the synthetic text report produced by the
--annotate=report mode of GNATCOVERAGE for source coverage criteria. We use a
generated report as an example, filtering the elements relevant to the code excerpt below:

[...]

59 procedure Notify_Error_On (Q : in Queue) is

60 begin

61 raise Program_Error;

62 end Notify_Error_On;

63

64 procedure Push (Item : Data_Type; Q : in out Queue) is
65 begin

66 pragma Annotate (Xcov, Exempt_On, "we never overflow a Queue");
67 if Full (Q) then

68 Notify_Error_On (Q);

69 end if;

70 pragma Annotate (Xcov, Exempt_0ff);

[...]

This code excerpt is extracted from a sample Queues data type abstraction. Queue
overflows are expected never to happen, so an exemption section is in place for the code
performing the corresponding check at the beginning of a Push operation. Below is a copy
of the report produced for a sample run where the general Notify_Error_0n subprogram
is not called otherwise:

COVERAGE REPORT
1. OVERVIEW

Date and time of execution: 2010-11-10 18:16:59.00

Tool version: XCOV 1.0.0w (20081119)

Command line:

XCOV coverage --scos=queues.ali --level=stmt+decision --annotate=report xplr.trace

Coverage level: stmt+decision
trace files:
xplr.trace
program: obj/powerpc-elf/explore
date: 2010-11-10 17:16:47
tag: some exemption test

2. NON-EXEMPTED VIOLATIONS

queues.adb:61:7: statement not executed
1 violation

3. EXEMPTED VIOLATIONS

queues.adb:66:7-70:7: 2 exempted violations, justification:
we never overflow a Queue

1 exempted region.

END OF REPORT

Chapter 4: Appendices 55

The start and end of report are explicit, and the report body features three sections: Over-
view, Non-exempted violations and Exempted violations.

The Overview section exposes elements about the report production context:
- Date & time when the report was produced
- Command line and Version of GNATCOVERAGE that produced the report
- Coverage criterion assessed

- Details on the input trace files: path to binary program exercised (as provided on the
command line), production time stamp, —tag argument to xcov run when the trace
was produced

The Exempted violations section lists and counts the exempted regions, displaying for each
the source location span, the number of actually exempted violations in the region, and the
exemption justification text.

The Non-exempted violations section lists and counts the coverage violations (with respect
to the assessed criteria) that relate to source lines not part of an exemption region. All the
non-exempted violations are reported using a consistent format, as follows:

queues.adb:1641:17: statement not executed
(source) : (loc) : (vfamily) (details)

source and loc are the basename of the source file and the precise 1ine:column location
within that source where the violation was detected. vfamily identifies the family of coverage
violation reported in this particular case, and details provides additional information. Below
is the list of family /detail items that might be emitted together with the --level argument
from which each may appear:

--level family detail
=stmt statement not executed

=stmt+decision decision outcome TRUE not covered
outcome FALSE not covered
one outcome not covered

=stmt+mcdc condition has no independent influence pair

Violations for one level may be issued while assessing stricter levels as well. For example,
"statement not executed" or "decision outcome TRUE not covered" violations might be
emitted in the course of a stmt+mcdc assessement.

When multiple violations apply someplace, the largest grain diagnostic is emitted
alone. For instance, if an Ada statement like "X := A and then B;" is not covered at all,
a "statement not executed" violation is emitted alone, even if we're assessing for, say,
--level=stmt+decision ; gnatcov emits no decision oriented violation in this case.

Chapter 5: Bibliography

5 Bibliography

[gec]

lqem]

[mctut]

[mcapp]

[cast6]

[cast10]

[ar0118]

[ar0654]

[ar0720]

[obc-
mecdc]

[redc]

GCC: The GNU Compiler Collection. http://gcc.gnu.org

QEMU, a Fast and Portable Dynamic Translator. Fabrice Bellard.
Proceedings of the “USENIX 2005 Annual Technical Conference,
FREENIX Track”, pp 41-46. http://bellard.org/qemu/

A Practical Tutorial on Modified Condition/Decision Coverage. John
J. Chilenski et al. NASA/TM-2001-210876, 2001.

Applicability of Modified Condition/Decision Coverage to Software
Testing. John J. Chilenski and S. Miller. TEEE Software Engineer-
ing Journal, volume 9, issue 5, September 2004.

Rationale for accepting Masking MCDC in certification projects.
CAST, Certification Authorities Software Team. Position Paper #6,
August 2001.

What is a Decision in Application of Modified Condition/Decision Cov-
erage (MC/DC) and Decision Coverage (DC) ? CAST, Certification
Authorities Software Team. Position Paper #10, June 2002.

An Investigation of Three Forms of the Modified Condition/Decision
Coverage (MCDC) Criterion. John J. Chilenski. DOT/FAA/AR-
01/18, April 2001.

Software Verification Tools Assessment Study. FAA, Federal Aviation
Administration. DOT/FAA/AR-06/54, June 2007.

Object Oriented Technology Verification Phase 3 Report - Structural
Coverage at the Source Code and Object Code Levels. John J. Chilen-
ski and John L. Kurtz. DOT/FAA/AR-07/20, June 2007.

Technical Report on OBC/MCDC properties. Jrme Guitton, Yannick
Moy and Thomas Quinot. Couverture project, October 2010.

From MC/DC to RC/DC: Formalization and Analysis of Control-Flow
Testing Criteria. S. Vilkomir and J. Bowen. ZB2002: Formal Specifi-
cation and Development in Z and B, Springer LNCS 2272, 2002.

Chapter 6: Index

6 Index

D

Decision Coverage with GNATCOVERAGE

M

MCDC Coverage with GNATCOVERAGE.........

S

Statement Coverage with GNATCOVERAGE ...

21

20

o7

T

Trace tags............ooiiiiii i 13

X

xcov coverage, for object coverage analysis

... 14
xcov coverage, for source coverage analysis

... 20
XCOV TUI vttt ettt e e e e 13

	About this Document
	Structural Coverage Analysis Basics
	General Definition & Intent
	Process Model
	Basic Process Abstractions
	Data Capitalization & Consolidation
	Process Integration

	Coverage Analysis Classification
	Object Coverage Analysis
	Source Coverage Analysis
	Source vs Object Quantifiers

	 Fundamentals
	Instrumentation mode
	Object Coverage Analysis
	Source Coverage Analysis
	Modularity and Flexibility

	GNATcoverage Users Guide
	Getting Started
	Instrumented Execution
	Object Coverage Analysis
	Machine level reports, --annotate=asm
	In-Source text reports, --annotate=xcov[+]
	In-Source html reports, --annotate=html[+]
	Synthetic reports, --annotate=report
	Inlined and Template/Generic entities
	Focusing on subprograms of interest

	Source Coverage Analysis
	Statement Coverage (SC)
	Decision Coverage (DC)
	Modified Condition/Decision Coverage (MCDC)

	Advanced features
	Coverage Data Capitalization & Consolidation
	XML outputs for automated processing
	Source Coverage Exemptions

	Appendices
	The ``Explore'' Guide Example
	Trace Format Definition
	Source Coverage Obligations Definition
	XML output specifications
	--annotate=report output format - source coverage

	Bibliography
	Index

