/* rtl8139-diag.c: Diagnostics/EEPROM setup for RealTek RTL8129/8139 chips. This is a diagnostic and EEPROM setup program for Ethernet adapters based on the RealTek RTL8129 and RTL8139 chips. Copyright 1998-2000 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Contact the author for use under other terms. This program must be compiled with "-O"! See the bottom of this file for the suggested compile-command. The author may be reached as address@hidden, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 References http://www.scyld.com/diag/index.html http://www.realtek.com.tw/cn/cn.html http://scyld.com/expert/mii-status.html http://scyld.com/expert/NWay.html */ /* modified Oct 4, 2000 by Laurent Itti: add implementation for hwaddr setting */ static char *version_msg = "rtl8139-diag.c:v2.00 4/19/2000 Donald Becker (address@hidden)\n" " http://www.scyld.com/diag/index.html\n"; static char *usage_msg = "Usage: rtl8139-diag [-aEefFmqrRtsvVwW] [-p ] [-[AF] ]\n"; #if ! defined(__OPTIMIZE__) #warning You must compile this program with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #include #include #include #include #include #include #if defined(__linux__) && __GNU_LIBRARY__ == 1 #include /* Newer libraries use instead. */ #else #include /* Use extern iopl(int level); if your glibc does not define it. */ #endif /* No libmii.h or libflash.h yet. */ extern int show_mii_details(long ioaddr, int phy_id); extern int monitor_mii(long ioaddr, int phy_id); extern int flash_show(long addr_ioaddr, long data_ioaddr); extern int flash_dump(long addr_ioaddr, long data_ioaddr, char *filename); extern int flash_program(long addr_ioaddr, long data_ioaddr, char *filename); extern int (*flash_in_hook)(long addr, int offset); extern void (*flash_out_hook)(long addr, int offset, int val); /* We should use __u8 .. __u32, but they are not always defined. */ typedef unsigned int u32; typedef unsigned short u16; typedef unsigned char u8; struct option longopts[] = { /* { name has_arg *flag val } */ {"Advertise", 1, 0, 'A'}, {"base-address", 1, 0, 'p'}, {"show_all_registers", 0, 0, 'a'}, /* Print all registers. */ {"help", 0, 0, 'h'}, /* Give help */ {"show-eeprom", 0, 0, 'e'}, /* Dump EEPROM contents (-ee valid). */ {"emergency-rewrite", 0, 0, 'E'}, /* Re-write a corrupted EEPROM. */ {"force-detection", 0, 0, 'f'}, {"new-interface", 1, 0, 'F'}, /* New interface (built-in, AUI, etc.) */ {"new-hwaddr", 1, 0, 'H'}, /* Set a new hardware address. */ {"show-mii", 0, 0, 'm'}, /* Dump MII management registers. */ {"port-base", 1, 0, 'p'}, /* Use the specified I/O address. */ {"quiet", 0, 0, 'q'}, /* Decrease verbosity */ {"reset", 0, 0, 'R'}, /* Reset the transceiver. */ {"chip-type", 1, 0, 't'}, /* Assume the specified chip type index. */ {"test", 0, 0, 'T'}, /* Do register and SRAM test. */ {"verbose", 0, 0, 'v'}, /* Verbose mode */ {"version", 0, 0, 'V'}, /* Display version number */ {"write-EEPROM", 1, 0, 'w'},/* Actually write the EEPROM with new vals */ { 0, 0, 0, 0 } }; /* The diagnostic functions supported. */ extern int rtl81x9_diag(int vend_id, int dev_id, long ioaddr, int part_idx); enum realtek_flags { HasMII=1, }; /* The table of known chips. Because of the bogus /proc/pci interface we must have both the exact name and a PCI vendor/device IDs. This table is searched in order: place specific entries followed by 'catch-all' general entries. */ struct pcidev_entry { char *proc_pci_name; char *part_name; int vendor, device, device_mask; int flags; int io_size; int (*diag_func)(int vendor_id, int device_id, long ioaddr, int part_num); } pcidev_tbl[] = { { "Realtek 8129", "RealTek RTL8129", 0x10ec, 0x8129, 0xffff, HasMII, 128, rtl81x9_diag }, { "Realtek 8139", "RealTek RTL8139", 0x10ec, 0x8139, 0xffff, 0, 128, rtl81x9_diag }, { "SMC 1211", "SMC1211TX EZCard 10/100 (RealTek RTL8139)", 0x1113, 0x1211, 0xffff, 0, 128, rtl81x9_diag}, { "Accton MPX5030", "Accton MPX5030 (RealTek RTL8139)", 0x1113, 0x1211, 0xffff, 0, 128, rtl81x9_diag}, { "Realtek", "RealTek (unknown chip type)", 0x10ec, 0x8100, 0xff00, 0, 128, rtl81x9_diag }, { 0, 0, 0, 0}, }; int verbose = 1, opt_f = 0, debug = 0; int show_regs = 0, show_eeprom = 0, show_mii = 0; unsigned int opt_a = 0, /* Show-all-interfaces flag. */ opt_restart = 0, opt_reset = 0, opt_watch = 0, opt_G = 0; unsigned int opt_GPIO = 0; /* General purpose I/O setting. */ int do_write_eeprom = 0, do_test = 0; int nway_advertise = 0, fixed_speed = -1; int new_default_media = -1; /* Valid with libflash only. */ static unsigned int opt_flash_show = 0; static char *opt_flash_dumpfile = NULL, *opt_flash_loadfile = NULL; static unsigned char new_hwaddr[6], set_hwaddr = 0; static int scan_proc_pci(int card_num); static int parse_media_type(const char *capabilities); static int get_media_index(const char *name); int main(int argc, char **argv) { int port_base = 0, chip_type = 0; int errflag = 0, show_version = 0; int emergency_rewrite = 0; int c, longind; int card_num = 0; extern char *optarg; while ((c = getopt_long(argc, argv, "#:aA:DeEfF:G:mp:qrRst:vVwWH:BL:S:", longopts, &longind)) != -1) switch (c) { case '#': card_num = atoi(optarg); break; case 'a': show_regs++; opt_a++; break; case 'A': nway_advertise = parse_media_type(optarg); break; case 'D': debug++; break; case 'e': show_eeprom++; break; case 'E': emergency_rewrite++; break; case 'f': opt_f++; break; case 'F': new_default_media = get_media_index(optarg); if (new_default_media < 0) errflag++; break; case 'G': opt_G++; opt_GPIO = strtol(optarg, NULL, 16); break; case 'H': { int hwaddr[6], i; if (sscanf(optarg, "%2x:%2x:%2x:%2x:%2x:%2x", hwaddr, hwaddr + 1, hwaddr + 2, hwaddr + 3, hwaddr + 4, hwaddr + 5) == 6) { for (i = 0; i < 6; i++) new_hwaddr[i] = hwaddr[i]; set_hwaddr++; } else errflag++; break; } case 'm': show_mii++; break; case 'p': port_base = strtol(optarg, NULL, 16); break; case 'q': if (verbose) verbose--; break; case 'r': opt_restart++; break; case 'R': opt_reset++; break; case 't': chip_type = atoi(optarg); break; case 'v': verbose++; break; case 'V': show_version++; break; case 'w': do_write_eeprom++; break; case 'W': opt_watch++; break; case 'B': opt_flash_show++; break; case 'L': opt_flash_loadfile = optarg; break; case 'S': opt_flash_dumpfile = optarg; break; case '?': errflag++; } if (errflag) { fprintf(stderr, usage_msg); return 3; } if (verbose || show_version) printf(version_msg); if (chip_type < 0 || chip_type >= sizeof(pcidev_tbl)/sizeof(pcidev_tbl[0]) - 1) { int i; fprintf(stderr, "Valid numeric chip types are:\n"); for (i = 0; pcidev_tbl[i].part_name; i++) { fprintf(stderr, " %d\t%s\n", i, pcidev_tbl[i].part_name); } return 3; } /* Get access to all of I/O space. */ if (iopl(3) < 0) { perror("rtl8139-diag: iopl()"); fprintf(stderr, "This program must be run as root.\n"); return 2; } /* Try to read a likely port_base value from /proc/pci. */ if (port_base) { printf("Assuming a %s adapter at %#x.\n", pcidev_tbl[chip_type].part_name, port_base); pcidev_tbl[chip_type].diag_func(0, 0, port_base, chip_type); } else if ( scan_proc_pci(card_num) == 0) { fprintf(stderr, "Unable to find a recognized card in /proc/pci.\nIf there is" " a card in the machine, explicitly set the I/O port" " address\n using '-p -t '\n" " Use '-t -1' to see the valid chip types.\n"); return ENODEV; } if (show_regs == 0 && show_eeprom == 0 && show_mii == 0) printf(" Use '-a' or '-aa' to show device registers,\n" " '-e' to show EEPROM contents, -ee for parsed contents,\n" " or '-m' or '-mm' to show MII management registers.\n"); return 0; } /* Generic (all PCI diags) code to find cards. */ static char bogus_iobase[] = "This chip has not been assigned a valid I/O address, and will not function.\n" " If you have warm-booted from another operating system, a complete \n" " shut-down and power cycle may restore the card to normal operation.\n"; static char bogus_irq[] = "This chip has not been assigned a valid IRQ, and will not function.\n" " This must be fixed in the PCI BIOS setup. The device driver has no way\n" " of changing the PCI IRQ settings.\n"; static int scan_proc_bus_pci(int card_num) { int card_cnt = 0, chip_idx = 0; int port_base; char buffer[514]; unsigned int pci_bus, pci_devid, irq, pciaddr0, pciaddr1; int i; FILE *fp = fopen("/proc/bus/pci/devices", "r"); if (fp == NULL) { if (debug) fprintf(stderr, "Failed to open /proc/bus/pci/devices.\n"); return -1; } while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parsing line -- %s", buffer); if (sscanf(buffer, "%x %x %x %x %x", &pci_bus, &pci_devid, &irq, &pciaddr0, &pciaddr1) <= 0) break; for (i = 0; pcidev_tbl[i].vendor; i++) { if (pci_devid != (pcidev_tbl[i].vendor << 16) + pcidev_tbl[i].device) continue; chip_idx = i; card_cnt++; /* Select the I/O address. */ port_base = pciaddr0 & 1 ? pciaddr0 & ~1 : pciaddr1 & ~1; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (irq == 0 || irq == 255) printf(bogus_irq); if (port_base) pcidev_tbl[chip_idx].diag_func(0,0,port_base, i); else printf(bogus_iobase); break; } } } fclose(fp); return card_cnt; } static int scan_proc_pci(int card_num) { int card_cnt = 0, chip_idx = 0; char chip_name[40]; FILE *fp; int port_base; if ((card_cnt = scan_proc_bus_pci(card_num)) >= 0) return card_cnt; card_cnt = 0; fp = fopen("/proc/pci", "r"); if (fp == NULL) return 0; { char buffer[514]; int pci_bus, pci_device, pci_function, vendor_id, device_id; int state = 0; if (debug) printf("Done open of /proc/pci.\n"); while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parse state %d line -- %s", state, buffer); if (sscanf(buffer, " Bus %d, device %d, function %d", &pci_bus, &pci_device, &pci_function) > 0) { chip_idx = 0; state = 1; continue; } if (state == 1) { if (sscanf(buffer, " Ethernet controller: %39[^\n]", chip_name) > 0) { int i; if (debug) printf("Named ethernet controller %s.\n", chip_name); for (i = 0; pcidev_tbl[i].proc_pci_name; i++) if (strncmp(pcidev_tbl[i].proc_pci_name, chip_name, strlen(pcidev_tbl[i].proc_pci_name)) == 0) { state = 2; chip_idx = i; continue; } continue; } /* Handle a /proc/pci that does not recognize the card. */ if (sscanf(buffer, " Vendor id=%x. Device id=%x", &vendor_id, &device_id) > 0) { int i; if (debug) printf("Found vendor 0x%4.4x device ID 0x%4.4x.\n", vendor_id, device_id); for (i = 0; pcidev_tbl[i].vendor; i++) if (vendor_id == pcidev_tbl[i].vendor && (device_id & pcidev_tbl[i].device_mask) == pcidev_tbl[i].device) break; if (pcidev_tbl[i].vendor == 0) continue; chip_idx = i; state = 2; } } if (state == 2) { if (sscanf(buffer, " I/O at %x", &port_base) > 0) { card_cnt++; state = 3; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (port_base) pcidev_tbl[chip_idx].diag_func (vendor_id, device_id, port_base, chip_idx); else printf(bogus_iobase); } } } } } fclose(fp); return card_cnt; } /* Convert a text media name to a NWay capability word. */ static int parse_media_type(const char *capabilities) { const char *mtypes[] = { "100baseT4", "100baseTx", "100baseTx-FD", "100baseTx-HD", "10baseT", "10baseT-FD", "10baseT-HD", 0, }; int cap_map[] = { 0x0200, 0x0180, 0x0100, 0x0080, 0x0060, 0x0040, 0x0020,}; int i; if (debug) fprintf(stderr, "Advertise string is '%s'.\n", capabilities); for (i = 0; mtypes[i]; i++) if (strcasecmp(mtypes[i], capabilities) == 0) return cap_map[i]; if ((i = strtol(capabilities, NULL, 16)) <= 0xffff) return i; fprintf(stderr, "Invalid media advertisement '%s'.\n", capabilities); return 0; } /* Return the index of a valid media name. 0x0800 Power up autosense (check speed only once) 0x8000 Dynamic Autosense */ /* A table of media names to indices. This matches the Digital Tulip SROM numbering, primarily because that is the most complete list. Other chips will have to map these number to their internal values. */ struct { char *name; int value; } mediamap[] = { { "10baseT", 0 }, { "10base2", 1 }, { "AUI", 2 }, { "100baseTx", 3 }, { "10baseT-FDX", 0x204 }, { "100baseTx-FDX", 0x205 }, { "100baseT4", 6 }, { "100baseFx", 7 }, { "100baseFx-FDX", 8 }, { "MII", 11 }, { "Autosense", 0x0800 }, { 0, 0 }, }; static int get_media_index(const char *name) { int i; for (i = 0; mediamap[i].name; i++) if (strcasecmp(name, mediamap[i].name) == 0) return i; if (name && atoi(name) >= 00) return atoi(name); fprintf(stderr, "Invalid interface specified: it must be one of\n "); for (i = 0; mediamap[i].name; i++) fprintf(stderr, " %s", mediamap[i].name); fprintf(stderr, ".\n"); return -1; } /* Chip-specific section. */ /* The chip-specific section for the RealTek 8129/8139 diagnostic. */ static int read_eeprom(long ioaddr, int location, int addr_len); static void parse_eeprom(unsigned short *eeprom); static int do_update(long ioaddr, unsigned short *ee_values, int index, char *field_name, int new_value); static void mdio_sync(long ioaddr); int mdio_read(long ioaddr, int phy_id, int location); const char *intr_names[16] ={ "Rx Complete", "Rx Error", "Transmit OK", "Transmit Error", "Rx Buffer Overflow", "Rx Buffer Underrun", "Rx FIFO Overflow", "unknown-0080", "unknown-0100", "unknown-0200", "PCS timeout - packet too long", "PCI System Error", }; /* Symbolic offsets to registers. */ enum RTL8129_registers { MAC0=0, /* Ethernet hardware address. */ MAR0=8, /* Multicast filter. */ TxStat0=0x10, /* Transmit status (Four 32bit registers). */ TxAddr0=0x20, /* Tx descriptors (also four 32bit). */ RxBuf=0x30, RxEarlyCnt=0x34, RxEarlyStatus=0x36, ChipCmd=0x37, RxBufPtr=0x38, RxBufAddr=0x3A, IntrMask=0x3C, IntrStatus=0x3E, TxConfig=0x40, RxConfig=0x44, /* Must enable Tx/Rx before writing. */ Timer=0x48, /* A general-purpose counter. */ RxMissed=0x4C, /* 24 bits valid, write clears. */ Cfg9346=0x50, Config0=0x51, Config1=0x52, FlashReg=0x54, GPPinData=0x58, GPPinDir=0x59, MII_SMI=0x5A, HltClk=0x5B, MultiIntr=0x5C, TxSummary=0x60, MII_BMCR=0x62, MII_BMSR=0x64, NWayAdvert=0x66, NWayLPAR=0x68, NWayExpansion=0x6A, FlashAccess=0x74, }; /* Values read from the EEPROM, and the new image. */ static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len); #define EE_READ_CMD (6) #define EEPROM_SIZE 64 /* Really the maximum index we read. */ unsigned short eeprom_contents[EEPROM_SIZE]; unsigned short new_ee_contents[EEPROM_SIZE]; #ifdef LIBFLASH /* Support for Flash operations. */ static int rtl_flash_in(long ioaddr, int offset) { outl(0x1C0000 | (offset & 0x1ffff), ioaddr + FlashAccess); return inl(ioaddr + FlashAccess) >> 24; } static void rtl_flash_out(long ioaddr, int offset, int val) { outl((val<<24) | 0x1a0000 | (offset & 0x1ffff), ioaddr + FlashAccess); } #endif int rtl81x9_diag(int vendor_id, int device_id, long ioaddr, int part_idx) { int flags = pcidev_tbl[part_idx].flags; /* Capabilities. */ int chip_active = 0; int i; /* It's mostly safe to examine the registers and EEPROM during operation. But warn the user, and make then pass '-f'. */ if ((inb(ioaddr + ChipCmd) & 0x000C) != 0x0000) chip_active = 1; if (show_regs) { unsigned intr_status; if (chip_active && !opt_f) { printf("The RealTek chip appears to be active, so some registers" " will not be read.\n" "To see all register values use the '-f' flag.\n"); } else chip_active = 0; /* Ignore the chip status with -f */ printf("RealTek chip registers at %#lx", ioaddr); for (i = 0; i < 0x80; i += 4) { if ((i & 0x1f) == 0) printf("\n 0x%3.3X:", i); printf(" %8.8x", inl(ioaddr + i)); } printf(".\n"); intr_status = inw(ioaddr + IntrStatus); printf(" %snterrupt sources are pending.\n", (intr_status & 0x03ff) ? "I": "No i"); if (intr_status) { for (i = 0; i < 16; i++) if (intr_status & (1<>6], cfg1 & 0x40 ? "full" : "half"); } } /* Read the EEPROM. */ { int testval = do_eeprom_cmd(ioaddr, (((EE_READ_CMD<<8)|0) << 16) | 0xffff, 3 + 8 + 16); int addr_size = (read_eeprom(ioaddr, 0, 6) & 0xffff) == 0x8129 ? 6 : 8; printf("EEPROM size test returned %d, %#x / %#x.\n", addr_size, testval, read_eeprom(ioaddr, 0xff, 8)); for (i = 0; i < EEPROM_SIZE; i++) eeprom_contents[i] = read_eeprom(ioaddr, i, addr_size); } /* The user will usually want to see the interpreted EEPROM contents. */ if (show_eeprom) parse_eeprom(eeprom_contents); if (show_eeprom > 1) { unsigned short sum = 0; printf("EEPROM contents:"); for (i = 0; i < EEPROM_SIZE; i++) { printf("%s %4.4x", (i & 7) == 0 ? "\n ":"", eeprom_contents[i]); sum += eeprom_contents[i]; } printf("\n The word-wide EEPROM checksum is %#4.4x.\n", sum); } /********** INSERTED BY LI *********************/ if (set_hwaddr) { printf("\n ****** OK, setting the HWADDR! *****\n"); do_update(ioaddr, eeprom_contents, 7, "hw1", ((int)(new_hwaddr[1]))*256+((int)(new_hwaddr[0]))); do_update(ioaddr, eeprom_contents, 8, "hw2", ((int)(new_hwaddr[3]))*256+((int)(new_hwaddr[2]))); do_update(ioaddr, eeprom_contents, 9, "hw3", ((int)(new_hwaddr[5]))*256+((int)(new_hwaddr[4]))); printf(" ****** New HWADDR set! *****\n"); if (show_eeprom) parse_eeprom(eeprom_contents); if (show_eeprom > 1) { unsigned short sum = 0; printf("EEPROM contents:"); for (i = 0; i < EEPROM_SIZE; i++) { printf("%s %4.4x", (i & 7) == 0 ? "\n ":"", eeprom_contents[i]); sum += eeprom_contents[i]; } printf("\n The word-wide EEPROM checksum is %#4.4x.\n", sum); } } /*******************************/ /* Show up to four (not just the on-board) PHYs. */ if (show_mii && (flags & HasMII)) { int phys[4], phy, phy_idx = 0; mdio_sync(ioaddr); for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy, 0); if (mii_status != 0xffff) { phys[phy_idx++] = phy; printf(" MII PHY found at address %d (%4.4x).\n", phy, mii_status); } } if (phy_idx == 0) printf(" ***WARNING***: No MII transceivers found!\n"); #ifdef LIBMII else if (show_mii > 1) { show_mii_details(ioaddr, phys[0]); if (show_mii > 2) monitor_mii(ioaddr, phys[0]); } #else else for (phy = 0; phy < phy_idx; phy++) { int mii_reg; printf(" MII PHY #%d transceiver registers:", phys[phy]); for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, phys[phy], mii_reg)); printf(".\n"); } #endif } if (show_mii && (flags & HasMII)) { printf(" The RTL8139 does not use a MII transceiver.\n" " It does have internal MII-compatible registers:\n" " Basic mode control register 0x%4.4x.\n" " Basic mode status register 0x%4.4x.\n" " Autonegotiation Advertisement 0x%4.4x.\n" " Link Partner Ability register 0x%4.4x.\n" " Autonegotiation expansion 0x%4.4x.\n" " Disconnects 0x%4.4x.\n" " False carrier sense counter 0x%4.4x.\n" " NWay test register 0x%4.4x.\n" " Receive frame error count 0x%4.4x.\n", inw(ioaddr + MII_BMSR), inw(ioaddr + MII_BMCR), inw(ioaddr + NWayAdvert), inw(ioaddr + NWayLPAR), inw(ioaddr + NWayExpansion), inw(ioaddr + 0x6C), inw(ioaddr + 0x6E), inw(ioaddr + 0x70), inw(ioaddr + 0x72)); #ifdef LIBMII if (show_mii > 1) { show_mii_details(ioaddr, -1); if (show_mii > 2) monitor_mii(ioaddr, 32); } #endif } #ifdef LIBFLASH { flash_in_hook = rtl_flash_in; flash_out_hook = rtl_flash_out; /* Turn on the Flash chip. */ outl(0x020000, ioaddr + FlashAccess); if (opt_flash_show) flash_show(ioaddr, 0); if (opt_flash_dumpfile) if (flash_dump(ioaddr, 0, opt_flash_dumpfile) < 0) { fprintf(stderr, "Failed to save the old Flash BootROM image " "into file '%s'.\n", opt_flash_dumpfile); return 3; } if (opt_flash_loadfile) if (flash_program(ioaddr, 0, opt_flash_loadfile) < 0) { fprintf(stderr, "Failed to load the new Flash BootROM image " "from file '%s'.\n", opt_flash_loadfile); return 4; } /* Turn off the Flash chip. */ outl(0x000000, ioaddr + FlashAccess); } #else if (opt_flash_loadfile || opt_flash_dumpfile || opt_flash_show) printf("Flash operations not configured into this program.\n"); #endif if (do_test) { printf("FIFO buffer test not yet available.\n"); /* Here just to prevent compile warnings. */ if (0) do_update(0, 0, 0, 0, 0); } return 0; } /* Serial EEPROM section. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x08 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */ #define EE_WRITE_0 (0x00 | EE_ENB) #define EE_WRITE_1 (0x02 | EE_ENB) #define EE_DATA_READ 0x01 /* EEPROM chip data out. */ #define EE_ENB (0x80 | EE_CS) /* Delay between EEPROM clock transitions. No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. */ #define eeprom_delay() inl(ee_addr) /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5) #define EE_READ_CMD (6) #define EE_ERASE_CMD (7) static int read_eeprom(long ioaddr, int location, int addr_len) { int i; unsigned retval = 0; long ee_addr = ioaddr + Cfg9346; int read_cmd = location | (EE_READ_CMD << addr_len); outb(EE_ENB & ~EE_CS, ee_addr); outb(EE_ENB, ee_addr); /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; outb(EE_ENB | dataval, ee_addr); eeprom_delay(); outb(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inb(ee_addr) & EE_DATA_READ) ? 1 : 0); } outb(EE_ENB, ee_addr); eeprom_delay(); for (i = 16; i > 0; i--) { outb(EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inb(ee_addr) & EE_DATA_READ) ? 1 : 0); outb(EE_ENB, ee_addr); eeprom_delay(); } /* Terminate the EEPROM access. */ outb(~EE_CS, ee_addr); return retval; } /* This executes a generic EEPROM command, typically a write or write enable. It returns the data output from the EEPROM, and thus may also be used for reads. */ static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len) { unsigned retval = 0; long ee_addr = ioaddr + Cfg9346; if (debug > 1) printf(" EEPROM op 0x%x: ", cmd); outb(EE_ENB | EE_SHIFT_CLK, ee_addr); /* Shift the command bits out. */ do { short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; outb(dataval, ee_addr); eeprom_delay(); if (debug > 2) printf("%X", inl(ee_addr) & 15); outb(dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inb(ee_addr) & EE_DATA_READ) ? 1 : 0); } while (--cmd_len >= 0); outb(EE_ENB, ee_addr); /* Terminate the EEPROM access. */ outb(EE_ENB & ~EE_CS, ee_addr); outb(~EE_CS, ee_addr); if (debug > 1) printf(" EEPROM result is 0x%5.5x.\n", retval); return retval; } /* Caution! This routine works! It will permanently change the EEPROM contents. "You could put an eye out with that thing." */ static int do_update(long ioaddr, unsigned short *ee_values, int index, char *field_name, int new_value) { if (ee_values[index] == new_value) return 0; if (do_write_eeprom) { int ee_addr_size = read_eeprom(ioaddr, 0, 8) == 0x8129 ? 8 : 6; int i; u16 newval; printf("Writing new %s entry 0x%4.4x to offset %d.\n", field_name, new_value, index); /* Enable programming modes. */ do_eeprom_cmd(ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size); /* Do the actual write. */ do_eeprom_cmd(ioaddr, (((EE_WRITE_CMD<= 0; i--) { outb(MDIO_WRITE1, mdio_addr); mdio_delay(); outb(MDIO_WRITE1 | MDIO_CLK, mdio_addr); mdio_delay(); } return; } int mdio_read(long ioaddr, int phy_id, int location) { long mdio_addr = ioaddr + MII_SMI; int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; int retval = 0; int i; if (phy_id == 32) { /* Really a 8139. Use internal registers. */ return location < 8 && mii_2_8139_map[location] ? inw(ioaddr + mii_2_8139_map[location]) : 0; } mdio_sync(mdio_addr); /* Shift the read command bits out. */ for (i = 15; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_DATA_OUT : 0; if (verbose > 3) /* Debug: 5 */ printf("%d", (mii_cmd & (1 << i)) ? 1 : 0); outb(MDIO_DIR | dataval, mdio_addr); mdio_delay(); outb(MDIO_DIR | dataval | MDIO_CLK, mdio_addr); if (verbose > 4) printf(" %x ", (inb(mdio_addr) & 0x0f)); mdio_delay(); } if (verbose > 3) printf("-> %x", inb(mdio_addr) & 0x0f); /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { outb(0, mdio_addr); mdio_delay(); retval = (retval << 1) | ((inb(mdio_addr) & MDIO_DATA_IN) ? 1 : 0); outb(MDIO_CLK, mdio_addr); mdio_delay(); if (verbose > 3) printf("%x", inb(mdio_addr) & 0x0f); } if (verbose > 2) printf(" MII read of %d:%d -> %4.4x.\n", phy_id, location, retval); return (retval>>1) & 0xffff; } void mdio_write(long ioaddr, int phy_id, int location, int value) { long mdio_addr = ioaddr + MII_SMI; int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; int i; if (phy_id == 32) { /* Really a 8139. Use internal registers. */ if (location < 8 && mii_2_8139_map[location]) outw(value, ioaddr + mii_2_8139_map[location]); return; } mdio_sync(mdio_addr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; outb(dataval, mdio_addr); mdio_delay(); outb(dataval | MDIO_CLK, mdio_addr); if (verbose > 4) printf(" %x ", (inb(mdio_addr) & 0x0f)); mdio_delay(); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { outb(0, mdio_addr); mdio_delay(); outb(MDIO_CLK, mdio_addr); mdio_delay(); } return; } static void parse_eeprom(unsigned short *eeprom) { unsigned char *p = (void *)eeprom; int i, sum = 0; printf("Parsing the EEPROM of a RealTek chip:\n" " PCI IDs -- Vendor %#4.4x, Device %#4.4x, Subsystem %#4.4x.\n" " PCI timer settings -- minimum grant %d, maximum latency %d.\n" " General purpose pins -- direction 0x%2.2x value 0x%2.2x.\n" " Station Address ", eeprom[1], eeprom[2], eeprom[3], p[10], p[11], p[13], p[12] ); for (i = 14; i < 19; i++) printf("%2.2X:", p[i]); printf("%2.2X.\n" " Configuration register 0/1 -- 0x%2.2x / 0x%2.2x.\n", p[i], p[21], p[22]); for (i = 0; i < 24; i++) sum += p[i]; printf(" EEPROM active region checksum is %4.4x.\n", sum); return; } /* * Local variables: * compile-command: "cc -O -Wall -o rtl8139-diag rtl8139-diag.c `[ -f libmii.c ] && echo -DLIBMII libmii.c`" * simple-compile-command: "cc -O -Wall -o rtl8139-diag rtl8139-diag.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */