qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Qemu-devel] [PATCH v16 07/10] target-avr: adding instruction translatio


From: Michael Rolnik
Subject: [Qemu-devel] [PATCH v16 07/10] target-avr: adding instruction translation
Date: Thu, 18 Aug 2016 01:38:41 +0300

Signed-off-by: Michael Rolnik <address@hidden>
---
 target-avr/Makefile.objs    |    1 +
 target-avr/translate-inst.c | 2641 +++++++++++++++++++++++++++++++++++++++++++
 target-avr/translate.h      |    1 +
 3 files changed, 2643 insertions(+)
 create mode 100644 target-avr/translate-inst.c

diff --git a/target-avr/Makefile.objs b/target-avr/Makefile.objs
index 85f9261..f4a82c4 100644
--- a/target-avr/Makefile.objs
+++ b/target-avr/Makefile.objs
@@ -20,5 +20,6 @@
 
 obj-y += translate.o cpu.o helper.o
 obj-y += gdbstub.o
+obj-y += translate-inst.o
 obj-$(CONFIG_SOFTMMU) += machine.o
 
diff --git a/target-avr/translate-inst.c b/target-avr/translate-inst.c
new file mode 100644
index 0000000..a0beebc
--- /dev/null
+++ b/target-avr/translate-inst.c
@@ -0,0 +1,2641 @@
+/*
+ *  QEMU AVR CPU
+ *
+ *  Copyright (c) 2016 Michael Rolnik
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2.1 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, see
+ *  <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "translate.h"
+#include "translate-inst.h"
+#include "qemu/bitops.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+    tcg_gen_or_tl(t1, t1, t3);
+
+    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+        /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_andc_tl(t1, t1, t2);
+
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    /* Cf & Hf */
+    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+    tcg_gen_and_tl(t3, t3, R);
+    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* Vf */
+        /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_and_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_NSf(TCGv R)
+{
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_ZNSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_push_ret(CPUAVRState *env, int ret)
+{
+    if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+
+    } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_const_i32((ret & 0x0000ff));
+        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_pop_ret(CPUAVRState *env, TCGv ret)
+{
+    if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+    } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_temp_new_i32();
+        TCGv hi = tcg_temp_new_i32();
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_jmp_ez(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+    tcg_gen_exit_tb(0);
+}
+
+static void gen_jmp_z(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_exit_tb(0);
+}
+
+/*
+ *  in the gen_set_addr & gen_get_addr functions
+ *  H assumed to be in 0x00ff0000 format
+ *  M assumed to be in 0x000000ff format
+ *  L assumed to be in 0x000000ff format
+ */
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+    tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+    tcg_gen_andi_tl(M, addr, 0x0000ff00);
+    tcg_gen_shri_tl(M, M, 8);
+
+    tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+static void gen_set_xaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static void gen_set_yaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static void gen_set_zaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+    TCGv addr = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(addr, M, H, 8, 8);
+    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+    return addr;
+}
+
+static TCGv gen_get_xaddr(void)
+{
+    return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static TCGv gen_get_yaddr(void)
+{
+    return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static TCGv gen_get_zaddr(void)
+{
+    return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+ *  Adds two registers and the contents of the C Flag and places the result in
+ *  the destination register Rd.
+ */
+int avr_translate_ADC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADC_Rd(opcode)];
+    TCGv Rr = cpu_r[ADC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+    tcg_gen_add_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds two registers without the C Flag and places the result in the
+ *  destination register Rd.
+ */
+int avr_translate_ADD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADD_Rd(opcode)];
+    TCGv Rr = cpu_r[ADD_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds an immediate value (0 - 63) to a register pair and places the result
+ *  in the register pair. This instruction operates on the upper four register
+ *  pairs, and is well suited for operations on the pointer registers.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+int avr_translate_ADIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * ADIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * ADIW_Rd(opcode)];
+    int Imm = (ADIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+int avr_translate_AND(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[AND_Rd(opcode)];
+    TCGv Rr = cpu_r[AND_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+    /* Vf */
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and a constant
+ *  and places the result in the destination register Rd.
+ */
+int avr_translate_ANDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ANDI_Rd(opcode)];
+    int Imm = (ANDI_Imm(opcode));
+
+    /* op */
+    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ *  is loaded into the C Flag of the SREG. This operation effectively divides a
+ *  signed value by two without changing its sign. The Carry Flag can be used 
to
+ *  round the result.
+ */
+int avr_translate_ASR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ASR_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_andi_tl(t1, Rd, 0x80); /* t1 = (Rd & 0x80) | (Rd >> 1) */
+    tcg_gen_shri_tl(t2, Rd, 1);
+    tcg_gen_or_tl(t1, t1, t2);
+
+    /* Cf */
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+    /* Vf */
+    tcg_gen_and_tl(cpu_Vf, cpu_Nf, cpu_Cf);/* Vf = Nf & Cf */
+
+    gen_ZNSf(t1);
+
+    /* op */
+    tcg_gen_mov_tl(Rd, t1);
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears a single Flag in SREG.
+ */
+int avr_translate_BCLR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    switch (BCLR_Bit(opcode)) {
+        case 0x00: {
+            tcg_gen_movi_tl(cpu_Cf, 0x00);
+            break;
+        }
+        case 0x01: {
+            tcg_gen_movi_tl(cpu_Zf, 0x01);
+            break;
+        }
+        case 0x02: {
+            tcg_gen_movi_tl(cpu_Nf, 0x00);
+            break;
+        }
+        case 0x03: {
+            tcg_gen_movi_tl(cpu_Vf, 0x00);
+            break;
+        }
+        case 0x04: {
+            tcg_gen_movi_tl(cpu_Sf, 0x00);
+            break;
+        }
+        case 0x05: {
+            tcg_gen_movi_tl(cpu_Hf, 0x00);
+            break;
+        }
+        case 0x06: {
+            tcg_gen_movi_tl(cpu_Tf, 0x00);
+            break;
+        }
+        case 0x07: {
+            tcg_gen_movi_tl(cpu_If, 0x00);
+            break;
+        }
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+int avr_translate_BLD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BLD_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(Rd, Rd, ~(1u << BLD_Bit(opcode))); /* clear bit */
+    tcg_gen_shli_tl(t1, cpu_Tf, BLD_Bit(opcode)); /* create mask */
+    tcg_gen_or_tl(Rd, Rd, t1);
+
+    tcg_temp_free_i32(t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is cleared. This instruction branches 
relatively
+ *  to PC in either direction (PC - 63 < = destination <= PC + 64). The
+ *  parameter k is the offset from PC and is represented in two’s complement
+ *  form.
+ */
+int avr_translate_BRBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBC_Imm(opcode), 0, 7);
+
+    switch (BRBC_Bit(opcode)) {
+        case 0x00: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+            break;
+        }
+        case 0x01: {
+            tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+            break;
+        }
+        case 0x02: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+            break;
+        }
+        case 0x03: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+            break;
+        }
+        case 0x04: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+            break;
+        }
+        case 0x05: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+            break;
+        }
+        case 0x06: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+            break;
+        }
+        case 0x07: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+            break;
+        }
+    }
+
+    gen_goto_tb(env, ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is set. This instruction branches relatively to
+ *  PC in either direction (PC - 63 < = destination <= PC + 64). The parameter 
k
+ *  is the offset from PC and is represented in two’s complement form.
+ */
+int avr_translate_BRBS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBS_Imm(opcode), 0, 7);
+
+    switch (BRBS_Bit(opcode)) {
+        case 0x00: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+            break;
+        }
+        case 0x01: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+            break;
+        }
+        case 0x02: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+            break;
+        }
+        case 0x03: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+            break;
+        }
+        case 0x04: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+            break;
+        }
+        case 0x05: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+            break;
+        }
+        case 0x06: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+            break;
+        }
+        case 0x07: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+            break;
+        }
+    }
+
+    gen_goto_tb(env, ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Sets a single Flag or bit in SREG.
+ */
+int avr_translate_BSET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    switch (BSET_Bit(opcode)) {
+        case 0x00: {
+            tcg_gen_movi_tl(cpu_Cf, 0x01);
+            break;
+        }
+        case 0x01: {
+            tcg_gen_movi_tl(cpu_Zf, 0x00);
+            break;
+        }
+        case 0x02: {
+            tcg_gen_movi_tl(cpu_Nf, 0x01);
+            break;
+        }
+        case 0x03: {
+            tcg_gen_movi_tl(cpu_Vf, 0x01);
+            break;
+        }
+        case 0x04: {
+            tcg_gen_movi_tl(cpu_Sf, 0x01);
+            break;
+        }
+        case 0x05: {
+            tcg_gen_movi_tl(cpu_Hf, 0x01);
+            break;
+        }
+        case 0x06: {
+            tcg_gen_movi_tl(cpu_Tf, 0x01);
+            break;
+        }
+        case 0x07: {
+            tcg_gen_movi_tl(cpu_If, 0x01);
+            break;
+        }
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  The BREAK instruction is used by the On-chip Debug system, and is
+ *  normally not used in the application software. When the BREAK instruction 
is
+ *  executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+ *  Debugger access to internal resources.  If any Lock bits are set, or either
+ *  the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+ *  instruction as a NOP and will not enter the Stopped mode.  This instruction
+ *  is not available in all devices. Refer to the device specific instruction
+ *  set summary.
+ */
+int avr_translate_BREAK(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_BREAK) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /* TODO:   ??? */
+    return BS_NONE;
+}
+
+/*
+ *  Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+int avr_translate_BST(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BST_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << BST_Bit(opcode));
+    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, BST_Bit(opcode));
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire Program memory. The return
+ *  address (to the instruction after the CALL) will be stored onto the Stack.
+ *  (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+ *  CALL.  This instruction is not available in all devices. Refer to the 
device
+ *  specific instruction set summary.
+ */
+int avr_translate_CALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int Imm = CALL_Imm(opcode);
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+
+    gen_goto_tb(env, ctx, 0, Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Clears a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers – addresses 0-31.
+ */
+int avr_translate_CBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(CBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_andi_tl(data, data, ~(1 << CBI_Bit(opcode)));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(data);
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears the specified bits in register Rd. Performs the logical AND
+ *  between the contents of register Rd and the complement of the constant mask
+ *  K. The result will be placed in register Rd.
+ */
+int avr_translate_COM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[COM_Rd(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr.
+ *  None of the registers are changed. All conditional branches can be used
+ *  after this instruction.
+ */
+int avr_translate_CP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CP_Rd(opcode)];
+    TCGv Rr = cpu_r[CP_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr and
+ *  also takes into account the previous carry. None of the registers are
+ *  changed. All conditional branches can be used after this instruction.
+ */
+int avr_translate_CPC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPC_Rd(opcode)];
+    TCGv Rr = cpu_r[CPC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /* Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between register Rd and a constant.
+ *  The register is not changed. All conditional branches can be used after 
this
+ *  instruction.
+ */
+int avr_translate_CPI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + CPI_Rd(opcode)];
+    int Imm = CPI_Imm(opcode);
+    TCGv Rr = tcg_const_i32(Imm);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr, and
+ *  skips the next instruction if Rd = Rr.
+ */
+int avr_translate_CPSE(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPSE_Rd(opcode)];
+    TCGv Rr = cpu_r[CPSE_Rr(opcode)];
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_brcond_i32(TCG_COND_EQ, Rd, Rr, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts one -1- from the contents of register Rd and places the result
+ *  in the destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the DEC instruction to be used on a loop counter 
in
+ *  multiple-precision computations.  When operating on unsigned values, only
+ *  BREQ and BRNE branches can be expected to perform consistently.  When
+ *  operating on two’s complement values, all signed branches are available.
+ */
+int avr_translate_DEC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[DEC_Rd(opcode)];
+
+    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+        /* cpu_Vf = Rd == 0x7f */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  The module is an instruction set extension to the AVR CPU, performing
+ *  DES iterations. The 64-bit data block (plaintext or ciphertext) is placed 
in
+ *  the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key 
(including
+ *  parity bits) is placed in registers R8- R15, organized in the register file
+ *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one 
DES
+ *  instruction performs one round in the DES algorithm. Sixteen rounds must be
+ *  executed in increasing order to form the correct DES ciphertext or
+ *  plaintext. Intermediate results are stored in the register file (R0-R15)
+ *  after each DES instruction. The instruction's operand (K) determines which
+ *  round is executed, and the half carry flag (H) determines whether 
encryption
+ *  or decryption is performed.  The DES algorithm is described in
+ *  “Specifications for the Data Encryption Standard” (Federal Information
+ *  Processing Standards Publication 46). Intermediate results in this
+ *  implementation differ from the standard because the initial permutation and
+ *  the inverse initial permutation are performed each iteration. This does not
+ *  affect the result in the final ciphertext or plaintext, but reduces
+ *  execution time.
+ */
+int avr_translate_DES(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO: */
+    if (avr_feature(env, AVR_FEATURE_DES) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect calls to the entire 4M (words) Program
+ *  memory space. See also ICALL. The Stack Pointer uses a post-decrement 
scheme
+ *  during EICALL.  This instruction is not available in all devices. Refer to
+ *  the device specific instruction set summary.
+ */
+int avr_translate_EICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect jumps to the entire 4M (words) Program
+ *  memory space. See also IJMP.  This instruction is not available in all
+ *  devices. Refer to the device specific instruction set summary.
+ */
+int avr_translate_EIJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ *  the I/O space, and places this byte in the destination register Rd. This
+ *  instruction features a 100% space effective constant initialization or
+ *  constant data fetch. The Program memory is organized in 16-bit words while
+ *  the Z-pointer is a byte address. Thus, the least significant bit of the
+ *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ *  instruction can address the entire Program memory space. The Z-pointer
+ *  Register can either be left unchanged by the operation, or it can be
+ *  incremented. The incrementation applies to the entire 24-bit concatenation
+ *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
+ *  capability can use the ELPM instruction to read the Fuse and Lock bit 
value.
+ *  Refer to the device documentation for a detailed description.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+int avr_translate_ELPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_ELPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPM2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_ELPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPMX_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical EOR between the contents of register Rd and
+ *  register Rr and places the result in the destination register Rd.
+ */
+int avr_translate_EOR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[EOR_Rd(opcode)];
+    TCGv Rr = cpu_r[EOR_Rr(opcode)];
+
+    tcg_gen_xor_tl(Rd, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ *  multiplication and shifts the result one bit left.
+ */
+int avr_translate_FMUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMUL_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+int avr_translate_FMULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+int avr_translate_FMULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire 4M (words) Program memory. The
+ *  return address (to the instruction after the CALL) will be stored onto the
+ *  Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme 
during
+ *  CALL.  This instruction is not available in all devices. Refer to the 
device
+ *  specific instruction set summary.
+ */
+int avr_translate_ICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. The Z-pointer Register is 16 bits wide and
+ *  allows jump within the lowest 64K words (128KB) section of Program memory.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+int avr_translate_IJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ *  etc.) into register Rd in the Register File.
+ */
+int avr_translate_IN(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[IN_Rd(opcode)];
+    int Imm = IN_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_inb(Rd, cpu_env, port);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds one -1- to the contents of register Rd and places the result in the
+ *  destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the INC instruction to be used on a loop counter 
in
+ *  multiple-precision computations.  When operating on unsigned numbers, only
+ *  BREQ and BRNE branches can be expected to perform consistently. When
+ *  operating on two’s complement values, all signed branches are available.
+ */
+int avr_translate_INC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[INC_Rd(opcode)];
+
+    tcg_gen_addi_tl(Rd, Rd, 1);
+    tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+        /* cpu_Vf = Rd == 0x80 */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+    gen_ZNSf(Rd);
+    return BS_NONE;
+}
+
+/*
+ *  Jump to an address within the entire 4M (words) Program memory. See also
+ *  RJMP.  This instruction is not available in all devices. Refer to the 
device
+ *  specific instruction set summary.0
+ */
+int avr_translate_JMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_goto_tb(env, ctx, 0, JMP_Imm(opcode));
+    return BS_BRANCH;
+}
+
+/*
+ *  Load one byte indirect from data space to register and stores an clear
+ *  the bits in data space specified by the register. The instruction can only
+ *  be used towards internal SRAM.  The data location is pointed to by the Z 
(16
+ *  bits) Pointer Register in the Register File. Memory access is limited to 
the
+ *  current data segment of 64KB. To access another data segment in devices 
with
+ *  more than 64KB data space, the RAMPZ in register in the I/O area has to be
+ *  changed.  The Z-pointer Register is left unchanged by the operation. This
+ *  instruction is especially suited for clearing status bits stored in SRAM.
+ */
+static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullwr(cpu_env, data, addr);
+    } else {
+        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
+    }
+}
+
+static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullrd(data, cpu_env, addr);
+    } else {
+        tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
+    }
+}
+
+int avr_translate_LAC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAC_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+    tcg_gen_andc_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and set bits in data
+ *  space specified by the register. The instruction can only be used towards
+ *  internal SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for setting status bits stored in SRAM.
+ */
+int avr_translate_LAS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAS_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_or_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and toggles bits in
+ *  the data space specified by the register.  The instruction can only be used
+ *  towards SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for changing status bits stored in SRAM.
+ */
+int avr_translate_LAT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAT_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_xor_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect from the data space to a register. For parts
+ *  with SRAM, the data space consists of the Register File, I/O memory and
+ *  internal SRAM (and external SRAM if applicable). For parts without SRAM, 
the
+ *  data space consists of the Register File only. In some parts the Flash
+ *  Memory has been mapped to the data space and can be read using this 
command.
+ *  The EEPROM has a separate address space.  The data location is pointed to 
by
+ *  the X (16 bits) Pointer Register in the Register File. Memory access is
+ *  limited to the current data segment of 64KB. To access another data segment
+ *  in devices with more than 64KB data space, the RAMPX in register in the I/O
+ *  area has to be changed.  The X-pointer Register can either be left 
unchanged
+ *  by the operation, or it can be post-incremented or predecremented.  These
+ *  features are especially suited for accessing arrays, tables, and Stack
+ *  Pointer usage of the X-pointer Register. Note that only the low byte of the
+ *  X-pointer is updated in devices with no more than 256 bytes data space. For
+ *  such devices, the high byte of the pointer is not used by this instruction
+ *  and can be used for other purposes. The RAMPX Register in the I/O area is
+ *  updated in parts with more than 64KB data space or more than 64KB Program
+ *  memory, and the increment/decrement is added to the entire 24-bit address 
on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.
+ */
+int avr_translate_LDX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX1_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX2_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX3_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Y (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPY in register in the I/O area has to be changed.  The Y-pointer 
Register
+ *  can either be left unchanged by the operation, or it can be 
post-incremented
+ *  or predecremented.  These features are especially suited for accessing
+ *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note 
that
+ *  only the low byte of the Y-pointer is updated in devices with no more than
+ *  256 bytes data space. For such devices, the high byte of the pointer is not
+ *  used by this instruction and can be used for other purposes. The RAMPY
+ *  Register in the I/O area is updated in parts with more than 64KB data space
+ *  or more than 64KB Program memory, and the increment/decrement/displacement
+ *  is added to the entire 24-bit address on such devices.  Not all variants of
+ *  this instruction is available in all devices. Refer to the device specific
+ *  instruction set summary.  In the Reduced Core tinyAVR the LD instruction 
can
+ *  be used to achieve the same operation as LPM since the program memory is
+ *  mapped to the data memory space.
+ */
+int avr_translate_LDY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDY_Imm(opcode)); /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer 
Register
+ *  can either be left unchanged by the operation, or it can be 
post-incremented
+ *  or predecremented.  These features are especially suited for Stack Pointer
+ *  usage of the Z-pointer Register, however because the Z-pointer Register can
+ *  be used for indirect subroutine calls, indirect jumps and table lookup, it
+ *  is often more convenient to use the X or Y-pointer as a dedicated Stack
+ *  Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ *  with no more than 256 bytes data space. For such devices, the high byte of
+ *  the pointer is not used by this instruction and can be used for other
+ *  purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ *  than 64KB data space or more than 64KB Program memory, and the
+ *  increment/decrement/displacement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.  For using the Z-pointer for table lookup in Program memory see the
+ *  LPM and ELPM instructions.
+ */
+int avr_translate_LDZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LDDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+    Loads an 8 bit constant directly to register 16 to 31.
+ */
+int avr_translate_LDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + LDI_Rd(opcode)];
+    int imm = LDI_Imm(opcode);
+
+    tcg_gen_movi_tl(Rd, imm);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte from the data space to a register. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the register file only. The EEPROM has a separate address 
space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+int avr_translate_LDS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, LDS_Imm(opcode));
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register into the destination
+ *  register Rd. This instruction features a 100% space effective constant
+ *  initialization or constant data fetch. The Program memory is organized in
+ *  16-bit words while the Z-pointer is a byte address. Thus, the least
+ *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ *  byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ *  Program memory. The Zpointer Register can either be left unchanged by the
+ *  operation, or it can be incremented. The incrementation does not apply to
+ *  the RAMPZ Register.  Devices with Self-Programming capability can use the
+ *  LPM instruction to read the Fuse and Lock bit values.  Refer to the device
+ *  documentation for a detailed description.  The LPM instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary
+ */
+int avr_translate_LPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPM2_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_LPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPMX_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    tcg_gen_andi_tl(L, addr, 0xff);
+
+    tcg_gen_shri_tl(addr, addr, 8);
+    tcg_gen_andi_tl(H, addr, 0xff);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ *  loaded into the C Flag of the SREG. This operation effectively divides an
+ *  unsigned value by two. The C Flag can be used to round the result.
+ */
+int avr_translate_LSR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LSR_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+    tcg_gen_shri_tl(Rd, Rd, 1);
+
+    gen_ZNSf(Rd);
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register into another. The source
+ *  register Rr is left unchanged, while the destination register Rd is loaded
+ *  with a copy of Rr.
+ */
+int avr_translate_MOV(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[MOV_Rd(opcode)];
+    TCGv Rr = cpu_r[MOV_Rr(opcode)];
+
+    tcg_gen_mov_tl(Rd, Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register pair into another register
+ *  pair. The source register pair Rr+1:Rr is left unchanged, while the
+ *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+int avr_translate_MOVW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MOVW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[MOVW_Rd(opcode) * 2 + 0];
+    TCGv RdH = cpu_r[MOVW_Rd(opcode) * 2 + 1];
+    TCGv RrL = cpu_r[MOVW_Rr(opcode) * 2 + 0];
+    TCGv RrH = cpu_r[MOVW_Rr(opcode) * 2 + 1];
+
+    tcg_gen_mov_tl(RdH, RrH);
+    tcg_gen_mov_tl(RdL, RrL);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+int avr_translate_MUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[MUL_Rd(opcode)];
+    TCGv Rr = cpu_r[MUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+int avr_translate_MULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+    tcg_gen_andi_tl(R1, R0, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ *  signed and an unsigned number.
+ */
+int avr_translate_MULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+    tcg_gen_andi_tl(R1, R0, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Replaces the contents of register Rd with its two’s complement; the
+ *  value $80 is left unchanged.
+ */
+int avr_translate_NEG(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv t0 = tcg_const_i32(0);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, t0, Rd);
+    gen_sub_Vf(R, t0, Rd);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a single cycle No Operation.
+ */
+int avr_translate_NOP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+
+    /* NOP */
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+int avr_translate_OR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OR_Rd(opcode)];
+    TCGv Rr = cpu_r[OR_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_or_tl(R, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and a
+ *  constant and places the result in the destination register Rd.
+ */
+int avr_translate_ORI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ORI_Rd(opcode)];
+    int Imm = (ORI_Imm(opcode));
+
+    tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores data from register Rr in the Register File to I/O Space (Ports,
+ *  Timers, Configuration Registers, etc.).
+ */
+int avr_translate_OUT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OUT_Rd(opcode)];
+    int Imm = OUT_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_outb(cpu_env, port, Rd);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction loads register Rd with a byte from the STACK. The Stack
+ *  Pointer is pre-incremented by 1 before the POP.  This instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+int avr_translate_POP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[POP_Rd(opcode)];
+
+    tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+    gen_data_load(ctx, Rd, cpu_sp);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction stores the contents of register Rr on the STACK. The
+ *  Stack Pointer is post-decremented by 1 after the PUSH.  This instruction is
+ *  not available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+int avr_translate_PUSH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[PUSH_Rd(opcode)];
+
+    gen_data_store(ctx, Rd, cpu_sp);
+    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+ *  return address (the instruction after the RCALL) is stored onto the Stack.
+ *  See also CALL. For AVR microcontrollers with Program memory not exceeding 
4K
+ *  words (8KB) this instruction can address the entire memory from every
+ *  address location. The Stack Pointer uses a post-decrement scheme during
+ *  RCALL.
+ */
+int avr_translate_RCALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    int ret = ctx->inst[0].npc;
+    int dst = ctx->inst[0].npc + sextract32(RCALL_Imm(opcode), 0, 12);
+
+    gen_push_ret(env, ret);
+
+    gen_goto_tb(env, ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from subroutine. The return address is loaded from the STACK.
+ *  The Stack Pointer uses a preincrement scheme during RET.
+ */
+int avr_translate_RET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(env, cpu_pc);
+
+    tcg_gen_exit_tb(0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from interrupt. The return address is loaded from the STACK and
+ *  the Global Interrupt Flag is set.  Note that the Status Register is not
+ *  automatically stored when entering an interrupt routine, and it is not
+ *  restored when returning from an interrupt routine. This must be handled by
+ *  the application program. The Stack Pointer uses a pre-increment scheme
+ *  during RETI.
+ */
+int avr_translate_RETI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(env, cpu_pc);
+
+    tcg_gen_movi_tl(cpu_If, 1);
+
+    tcg_gen_exit_tb(0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+ *  AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+ *  instruction can address the entire memory from every address location. See
+ *  also JMP.
+ */
+int avr_translate_RJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    int dst = ctx->inst[0].npc + sextract32(RJMP_Imm(opcode), 0, 12);
+
+    gen_goto_tb(env, ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation, combined
+ *  with ASR, effectively divides multi-byte signed values by two. Combined 
with
+ *  LSR it effectively divides multi-byte unsigned values by two. The Carry 
Flag
+ *  can be used to round the result.
+ */
+int avr_translate_ROR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ROR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_shli_tl(t0, cpu_Cf, 7);
+    tcg_gen_andi_tl(cpu_Cf, Rd, 0);
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_ZNSf(Rd);
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and subtracts with the C Flag and places the
+ *  result in the destination register Rd.
+ */
+int avr_translate_SBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SBC_Rd(opcode)];
+    TCGv Rr = cpu_r[SBC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  SBCI – Subtract Immediate with Carry
+ */
+int avr_translate_SBCI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SBCI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SBCI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Sets a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers – addresses 0-31.
+ */
+int avr_translate_SBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_ori_tl(data, data, 1 << SBI_Bit(opcode));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is cleared. This instruction operates on the
+ *  lower 32 I/O Registers – addresses 0-31.
+ */
+int avr_translate_SBIC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIC_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is set. This instruction operates on the lower
+ *  32 I/O Registers – addresses 0-31.
+ */
+int avr_translate_SBIS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIS_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts an immediate value (0-63) from a register pair and places the
+ *  result in the register pair. This instruction operates on the upper four
+ *  register pairs, and is well suited for operations on the Pointer Registers.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+int avr_translate_SBIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * SBIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * SBIW_Rd(opcode)];
+    int Imm = (SBIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, R, Rd);
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, Rd, R);
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is cleared.
+ */
+int avr_translate_SBRC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRC_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is set.
+ */
+int avr_translate_SBRS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRS_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction sets the circuit in sleep mode defined by the MCU
+ *  Control Register.
+ */
+int avr_translate_SLEEP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_sleep(cpu_env);
+
+    return BS_EXCP;
+}
+
+/*
+ *  SPM can be used to erase a page in the Program memory, to write a page
+ *  in the Program memory (that is already erased), and to set Boot Loader Lock
+ *  bits. In some devices, the Program memory can be written one word at a 
time,
+ *  in other devices an entire page can be programmed simultaneously after 
first
+ *  filling a temporary page buffer. In all cases, the Program memory must be
+ *  erased one page at a time. When erasing the Program memory, the RAMPZ and
+ *  Z-register are used as page address. When writing the Program memory, the
+ *  RAMPZ and Z-register are used as page or word address, and the R1:R0
+ *  register pair is used as data(1). When setting the Boot Loader Lock bits,
+ *  the R1:R0 register pair is used as data. Refer to the device documentation
+ *  for detailed description of SPM usage. This instruction can address the
+ *  entire Program memory.  The SPM instruction is not available in all 
devices.
+ *  Refer to the device specific instruction set summary.  Note: 1. R1
+ *  determines the instruction high byte, and R0 determines the instruction low
+ *  byte.
+ */
+int avr_translate_SPM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_SPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /* TODO:   ??? */
+    return BS_NONE;
+}
+
+int avr_translate_SPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_SPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /* TODO:   ??? */
+    return BS_NONE;
+}
+
+int avr_translate_STX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX1_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX2_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX3_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDY_Imm(opcode));
+                                                /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+int avr_translate_STDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores one byte from a Register to the data space. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the Register File only. The EEPROM has a separate address 
space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+int avr_translate_STS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, STS_Imm(opcode));
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and places the result in the destination
+ *  register Rd.
+ */
+int avr_translate_SUB(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv Rr = cpu_r[SUB_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts a register and a constant and places the result in the
+ *  destination register Rd. This instruction is working on Register R16 to R31
+ *  and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+int avr_translate_SUBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SUBI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SUBI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr);
+                                                    /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Swaps high and low nibbles in a register.
+ */
+int avr_translate_SWAP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SWAP_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(t0, Rd, 0x0f);
+    tcg_gen_shli_tl(t0, t0, 4);
+    tcg_gen_andi_tl(t1, Rd, 0xf0);
+    tcg_gen_shri_tl(t1, t1, 4);
+    tcg_gen_or_tl(Rd, t0, t1);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction resets the Watchdog Timer. This instruction must be
+ *  executed within a limited time given by the WD prescaler. See the Watchdog
+ *  Timer hardware specification.
+ */
+int avr_translate_WDR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_wdr(cpu_env);
+
+    return BS_NONE;
+}
+
+/*
+ *  Exchanges one byte indirect between register and data space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer 
Register
+ *  is left unchanged by the operation. This instruction is especially suited
+ *  for writing/reading status bits stored in SRAM.
+ */
+int avr_translate_XCH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[XCH_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, t0, addr);
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_mov_tl(Rd, t0);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
diff --git a/target-avr/translate.h b/target-avr/translate.h
index 9dc707e..444d235 100644
--- a/target-avr/translate.h
+++ b/target-avr/translate.h
@@ -33,6 +33,7 @@
 #include "exec/helper-proto.h"
 #include "exec/helper-gen.h"
 #include "exec/log.h"
+#include "translate-inst.h"
 
 extern TCGv_env cpu_env;
 
-- 
2.4.9 (Apple Git-60)




reply via email to

[Prev in Thread] Current Thread [Next in Thread]