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Abstract 
A goal of systems biology and human genetics is to 
understand how DNA sequence variations impact human 
health through a hierarchy of biochemical, metabolic, and 
physiological systems.  We present here a proof-of-principle 
study that demonstrates how artificial life in the form of 
agent-based simulation can be used to generate hypothetical 
systems biology models that are consistent with pre-defined 
genetic models of disease susceptibility.  Here, an 
evolutionary computing strategy called grammatical 
evolution is utilized to discover artificial life models.  The 
goal of these studies is to perform thought experiments 
about the nature of complex biological systems that are 
consistent with genetic models of disease susceptibility.  It 
is anticipated that the utility of this approach will be the 
generation of biological hypotheses that can then be tested 
using experimental systems. 

Introduction 
Human genetics is largely concerned with the relationship 
between DNA sequence variations and measures of human 
health.  Genotypes influence phenotypes through a 
hierarchical network of biochemical, metabolic, and 
physiological systems in the context of environmental 
exposure.  Systems biology is an emerging discipline 
focused on developing comprehensive laboratory and 
analytical strategies for understanding the complex 
biological systems that complete the genotype to 
phenotype mapping relationship (Ideker et al. 2001).  The 
promise of a joint human genetics and systems biology 
approach is improved human health through advances in 
disease diagnosis, prevention, and treatment. 
 Understanding the genetic architecture of common 
human diseases such as essential hypertension requires a 
research strategy that embraces, rather than ignores, 
complexity due to nonlinear gene-gene interactions or 
epistasis (Moore and Williams 2002).  The biological 
definition of epistasis is one gene standing upon or 
masking the effects of another gene (Bateson 1909) while 
the statistical definition is a deviation from additivity in a 
linear model (Fisher 1918).  We have presented the 
working hypothesis that epistasis is a ubiquitous 
component of the genetic architecture of common human 
diseases (Moore 2003). 
 There are several general systems biology strategies that 
can be utilized to study the genetics of susceptibility to 

common human diseases.  One strategy relies on the 
collection and integrated analysis of genetic, genomic, and 
proteomic data from complex biological systems (e.g. Reif 
et al. 2004).  A second strategy relies on perturbation of 
complex biological systems in model organisms (Jansen 
2003).  A third strategy relies on computer simulations for 
carrying out thought experiments that can be used to 
generate testable hypotheses (e.g. Di Paolo et al. 2000).  In 
the present study, we explore the utility of using artificial 
life in the form of agent-based modeling for carrying out 
systems biology thought experiments for generating 
hypotheses about the mapping relationship between 
genotype and susceptibility to common disease. 
 Our previous work in this area has focused on the use of 
a discrete dynamical systems modeling tool called Petri 
nets.  Petri nets are a type of directed graph (Desel and 
Juhas 2001) that have been used to model biochemical 
systems (Goss and Pecoud 1998).  We utilized an 
evolutionary computing strategy called grammatical 
evolution to discover Petri net models of hypothetical 
biochemical systems that are consistent with a fixed 
genetic model of disease susceptibility (Moore and Hahn 
2003a, 2003b, 2004a, 2004b).  These proof-of-principle 
studies provided evidence that it is possible to routinely 
generate discrete dynamic systems models that are 
consistent with genetic models in which disease 
susceptibility is dependent on nonlinear interactions among 
genotypes from two or three DNA sequence variations. 
 While the Petri net approach has been very successful, it 
is our conjecture that agent-based modeling will provide 
more flexibility for carrying out thought experiments.  That 
is, we anticipate a system comprised of agents and rules for 
their physical interaction will provide a wider range of 
possible system behaviors than that afforded by the Petri 
nets.  To this end, we provide here an initial proof-of-
principle study that demonstrates an artificial life modeling 
strategy is capable of generating systems biology models 
that are consistent with a defined genetic model.  This 
interdisciplinary study brings together concepts from 
several disparate fields that are summarized in the next 
several sections.  We first review the nonlinear gene-gene 
interaction models from which the systems biology models 
are derived.  Next, we review agent-based simulation and 
then our agent-based modeling strategy.  Finally, we 
review our evolutionary computing strategy for model 
discovery that is based on grammatical evolution.  The 



final sections of the paper present the research results and a 
discussion with future directions. 

The Nonlinear Gene-Gene Interaction Models 
Our two high-order, nonlinear, gene-gene interaction (i.e. 
epistasis) models are based on penetrance functions. 
Penetrance functions represent one approach to modeling 
the relationship between genetic variations and risk of 
disease. Penetrance is simply the probability (P) of disease 
(D) given a particular combination of genotypes (G) that 
was inherited (i.e. P[D|G]). Figure 1 illustrates the 
penetrance functions used for Models 1 and 2, 
respectively. Each model has been described previously 
(Frankel and Schork 1996; Li and Reich 2000; Moore et al. 
2002). What makes these models interesting is that disease 
risk is dependent on each particular combination of all 
three genotypes inherited. Each single genotype has 
effectively no main effect on disease risk. 

 
Figure 1: Gene-gene interaction Models 1 and 2. 

Agent Based Simulation 
Agent based simulation (ABS) refers to a branch of 
artificial intelligence in computer science that is concerned 
with multiple, autonomous, interacting computing elements 
and their emergent behavior (d’Inverno 2001, Woolridge 
2002). While the idea of what an agent is and does is not 
well defined, agents used in this study follow the notion of 
“weak agency” as put forth by Wooldridge and Jennings 
(1995) in which agents are defined as being autonomous, 
interacting with other agents, reacting to their environment 
and pursuing their own goals in self interest. 

Agents in our simulations move and collide with each 
other on a grid of fixed size. Boundary conditions are 
handled by allowing wraparound at the grid edges, that is, 
the world is a toroidial grid. Agents begin in a random 
spatial configuration with predefined move and collision 
behaviors and end in a final state after a specified number 
of time steps. Some agents move in fixed ways, while 
others are dependent on global environmental conditions 
specified at the beginning of the simulation, specifically 
whether agent behavior is dependent on characteristics of 
the system being modeled. Agent interaction (therefore 
communication) happens via collisions. Agents can sense 
whether the location they move to has an agent already 

occupying that location. If so, the agent is said to have 
collided with the existing agent, and it reacts using its 
collision rule. Agents are allowed to occupy the same 
space; therefore, infinite move-collision recursions are 
avoided. In cases where no collision is detected, agents 
continue to move according to their move rules, which 
define their goals. The expected emergent behavior relates 
agent interaction dynamics to the system being modeled. 

Our Agent Based Simulation Modeling Strategy 
Moore and Hahn (2003a, 2003b, 2004a, 2004b) developed 
a strategy for identifying discrete, dynamic models of 
biochemical systems that are consistent with observed 
gene-gene interactions that define disease susceptibility. 
The specific systems used to model the biochemical 
pathways were Petri nets with time (Merlin 1974, 
Ramchandani 1974). 

The goal of identifying discrete models of biochemical 
systems that are consistent with observed population-level 
gene-gene interactions is accomplished here by developing 
agent based simulations that are dependent on specific 
genotypes from two DNA sequence variations. We allow 
movement and collision behavior to be genotype-
dependent; therefore, simulations can yield different 
ending configurations. Each agent based simulation model 
is related to the genetic model using a discrete version of 
the threshold model from population genetics (Falconer 
and Mackay, 1996). With a classic threshold or liability 
model, it is the concentration of a biochemical or 
environmental substance that is related to the risk of 
disease, under the hypothesis that risk of disease is greatly 
increased once a particular substance exceeds some 
threshold concentration. Conversely, the risk of disease 
may increase in the absence of a particular factor or with 
any significant deviation from a reference level. In such 
cases, high or low levels are associated with high risk 
while an intermediate level is associated with low risk. 
Here, we use a discrete version of this model for our 
deterministic ABS. For each model, the number of agents 
at a particular space of the simulation world is recorded, 
and if they exceed a certain threshold, the appropriate risk 
assignment is made. If the number of agents does not 
exceed the threshold, the alternative risk assignment is 
made. The high-risk and low-risk assignments made by the 
discrete threshold from the output of the ABS can then be 
compared to the high-risk and low-risk genotypes from the 
genetic model. A perfect match indicates the ABS model is 
consistent with the gene-gene interactions observed in the 
genetic model. The ABS then becomes a model that relates 
the DNA sequence variations to risk of disease through an 
intermediate biochemical network.  

Identifying ABS models that are consistent with the 
genotype-dependent distribution of risk is challenging by 
trial and error. Therefore, we developed an evolutionary 
computing approach to the discovery of ABS models. This 
approach is described in the next section. 



A Grammatical Evolution Approach to 
Discovering Agent Based Simulation Models 

Overview of Grammatical Evolution 
Evolutionary computation arose from early work on 
evolutionary programming (Fogel 1962, Fogel et al. 1966) 
and evolution strategies (Rechenberg, 1964, Schwefel  
1965) that used simulated evolution for artificial 
intelligence.  The focus on representations at the genotypic 
level lead to the development of genetic algorithms by 
Holland (1962, 1975) and others. Genetic algorithms have 
become a popular machine intelligence strategy because 
they can be effective for implementing parallel searches of 
rugged fitness landscapes (Goldberg 1989).  Briefly, this is 
accomplished by generating a random population of 
models or solutions, evaluating their ability to solve the 
problem at hand, selecting the best models or solutions, 
and generating variability in these models by exchanging 
model components among different models. The process of 
selecting models and introducing variability is iterated 
until an optimal model is identified or some termination 
criteria are satisfied. Koza (1992) developed a variation on 
genetic algorithms called genetic programming where the 
models or solutions are represented by tree structures that 
are in turn executed as computer programs.  Koza (2001) 
and others (Kitagawa 2003) have applied genetic 
programming to modeling metabolic networks. 

Grammatical evolution has been described by O'Neill 
and Ryan (2001, 2003) as a variation on genetic 
programming. Here, a grammar is specified that allows a 
computer program or model to be constructed by a simple 
genetic algorithm operating on an array of numbers called 
“codons.” The evolved codons select grammar elements in 
the derivation of a valid sentence in the language specified 
by the grammar. For our purposes the language L is all 
valid ABS configurations. This approach is appealing 
because only a text file specifying the grammar needs to be 
altered for different simulations, that is, as long as the 
grammar specifies valid sentences of the language L(G). 
There is no need to modify and recompile source code 
during development once the fitness function is specified. 
The end result is a decrease in development time and an 
increase in computational flexibility. 

A Grammar for Agent Based Simulation Models 
in Backus-Naur Form 
Backus-Naur Form (BNF) is a formal notation for 
describing the syntax of a context-free grammar as a set of 
production rules that consist of terminals and nonterminals 
(Hopcroft and Ulman 1979). Nonterminals form the left-
hand side of production rules while both terminals and 
nonterminals form the right-hand side. A terminal is a 
simulation/model element or parameter, and a nonterminal 
is the name of a production rule. Use of nonterminals in 
the right-hand side of production rules allows for 
recursion, deriving more complex sentences, thus 

simulations, by expanding these nonterminals recursively. 
For the ABS models, the terminal set includes, for 
example, the basic building blocks of an ABS: agents and 
their movement and collision behavior rules. The 
nonterminal set includes the names of production rules that 
construct the ABS. For example, a nonterminal might 
name a production rule for determining whether an agent 
has movement and collision behavior that is fixed or 
genotype-dependent. We show in (1) below the production 
rule that is the start symbol to begin the derivation and thus 
the ABS configuration. In the grammar rules, variables 
shown in all capital letters represent terminals and 
variables contained within angle brackets represent 
nonterminals. 
 

<simulation> ::= NUM_TIMESTEPS = 
<constant > 
GRID_SIZE = 
<constant> <constant> 
<statement_list> 

(1) 

 
The <simulation> production rule specifies that a valid 
simulation configuration must have a number of timesteps, 
a grid/world size (fixed here to 12 by 12) and a statement 
list. The nonterminal <statement_list> is a production rule 
that allows the ABS to grow. The production rule for 
<statement_list> is shown below in (2).  
 

<statement_list> ::= <statement> | 
<statement> 
<statement_list>  

(2) 

 
Here, the BNF symbol “|” separates choices in the 
substitution for <statement_list> in the derivation of valid 
ABS configurations. The specific choice is determined by 
applying the modulus operator to the current genetic 
algorithm codon.  In the case of <statement_list>, the 
genetic algorithm codon would be applied modulo two, 
making the choice equally probable. If the second of the 
alternatives is chosen, the derived configuration is 
extended by substituting an instance of the 
<statement_list> nonterminal itself. This process can 
repeat recursively until the first alternative is chosen and a 
<statement> nonterminal ends the recursion. 

A <statement>, shown in (3) below, defines an agent in 
the ABS; therefore, rule (2) above allows the simulation to 
have one or more agents.  
 

<statement> ::= AGENT MOVE 
<move_rule> 
COLLIDE 
<collision_rule> 

(3) 

 
Agent move and collision behavior is then defined by the 
grammar to allow for many types of movement and 
interaction, including becoming stuck, that is, an agent can 
become an obstacle. The grammar for all behaviors is too 



large to reproduce here. A full grammar can be obtained 
from the authors upon request. 

The Fitness Function 
Once an ABS model is constructed using the BNF 
grammar, as dictated by the genetic algorithm chromosome 
(vector of codons), the model fitness is determined. Similar 
to the Petri net approach described by Moore and Hahn 
(2003a, 2003b, 2004a, 2004b), this is carried out by 
executing the ABS model for each combination of 
genotypes in the genetic model and comparing the final 
agent counts at a defined quadrant of the grid world to a 
threshold constant to determine the risk assignment. Let G 
be the set of i = 1 to n possible genotype combinations 
where n = 9 when there are two DNA sequence variations, 
each with three genotypes. Let Zi be the final number of 
agents from the designated ABS quadrant for the ith 
genotype combination and let c be the threshold constant. 
Let d(Gi) be the risk assignment for the ith genotype 
combination in the genetic model and let f(Gi) be the risk 
assignment made by the ABS. If Zi ≥ c then f(Gi) = "high 
risk" else if Zi < c then f(Gi) = "low risk". The dichotomous 
risk assignment is consistent with epidemiological study 
designs in which subjects with the disease (cases) and 
subjects without the disease (controls) are used to identify 
genetic risk factors.  Genotypes more common in cases 
than controls can be thought of as high risk. Fitness (E) of 
the ABS model is determined by comparing the high risk 
and low risk assignments made by the ABS to those from 
the given nonlinear gene-gene interaction model. 
Calculation of the fitness value, E, is given by the 
classification error function E shown in (4) below. In the 
present study, max(E) = 9 and min(E) = 0.  The goal is to 
minimize E. 

∑
=

=
G

i
ieE

1

 ei = 0  if f(Gi) = d(Gi)  

 ei = 1  if f(Gi) ≠ d(Gi)   (4) 

Genetic Algorithm Parameters 
Grammatical evolution works by decoding genetic 
algorithm chromosomes. Our GA chromosome consisted 
of 250 integer codons. In implementing the grammar, it is 
possible to reach the end of a chromosome with an 
incomplete instantiation of the grammar. To complete the 
instance, chromosome wraparound was used (O'Neill and 
Ryan 2001, 2003). In other words, the instance of the 
grammar was completed be reusing the chromosome. 
Wraparound imperfectly solves this problem by simply 
returning to the beginning of the chromosome to acquire 
more codons to expand the production rules. The solution 
is imperfect because there is no guarantee that the grammar 
is finite; therefore, it is possible for the derivation to 
recurse endlessly, so there must be a stopping point.  In the 
present study, we used a stopping point of 10 wraparounds. 

Genetic algorithms require the setting of many 
parameters. Table 1 below summarizes the genetic 
algorithm parameter settings used in this study. These 
initial settings were selected based on Goldberg’s simple 
GA (Goldberg 1989) and our previous experience in this 
domain (Moore and Hahn 2003a, 2003b, 2004a, 2004b).  
We ran the genetic algorithm a total of 100 times with 
different random seeds for each gene-gene interaction 
model. The genetic algorithm was stopped when a model 
with a classification error of zero was discovered (i.e. E = 
0) or when 90% of the population converged, where 
convergence was measured by the genetic algorithm 
library used, GAlib (Wall 2003). We used a parallel search 
strategy (Cantu-Paz 2000) of ten demes, each with a 
population size of 500, for a total population size of 5000. 
A best chromosome migrated from each deme to all other 
demes every 25 generations. 
 

Number of runs 100 
Stopping criteria Classification error = 0 or 

population convergence at 
90% as defined by GAlib 

Population size 5000 
Number of demes 10 
Generations (max.) n/a 
Selection Roulette wheel 
Crossover Single point 
Crossover probability 0.90 
Mutation probability 0.01 

 
Table 1: Summary of the genetic algorithm parameters 
used. 

Results 
The grammatical evolution algorithm was run a total of 
100 times for each of the two nonlinear gene-gene 
interaction models. For both Model 1 and Model 2 (see 
Figure 1), the grammatical evolution strategy yielded an 
ABS model that was perfectly consistent with the high-risk 
and low-risk assignments for each combination of 
genotypes. Thus, the ABS model discovery method 
routinely found perfect models.  
 Figure 2 below illustrates the starting and ending 
configurations for an ABS that is consistent with genetic 
Model 2.  Note that the ABS for genotypes AAbb, AaBb, 
and aaBB all have at least three agents in the upper left 
quadrant while there are less than three agents in the 
upperleft quadrant for all the other genotype combinations.  
This pattern of high-risk and low-risk agent counts is 
perfectly consistent with the high-risk and low-risk 
genotype combinations in genetic Model 2 and thus has a 
maximum fitness.  This ABS was executed for 91 
timesteps and had nine total agents.  Six agents had 
movements that were dependent on genotype while five 
had collisions that were genotype-dependent.  The agents 



that finished in the upper left quadrant were all dependent 
on genotype. 
 Tables 2 and 3 below summarize the mode (i.e. most 
common) and range of the number of agents, collisions and 
types of moves and collision behaviors that define the 
genotype-dependencies of the elements in the best ABS 
models found across the 100 runs for each model. Agents 
are broken into categories according to their movement and 
collision behaviors. Locus independent (LI) and locus 
dependent (LD) move (M) and collision (C) behaviors are 
shown. As expected, every ABS had at least two agents 
that had moves or collisions that were locus dependent.  
For Model 1 and Model 2, the most frequent numbers of 
agents were six and five, respectively. 
 

 Agents LIM LDM LIC LDC C 
Avg 4.5 1.3 3.2 2.3 2.2 49.3 
Min 2 0 1 0 0 2 
Max 12 5 9 9 6 533 

Mode 6 0 2 2 2 2 
 
Table 2: Summary of results from 100 runs for Model 1. 
 
 

 Agents LIM LDM LIC LDC C 
Avg 5.1 1.3 3.7 2.5 2.5 67.3 
Min 2 0 2 0 0 4 
Max 13 5 8 8 7 521 

Mode 5 0 2 3 3 6 
 
Table 3: Summary of results from 100 runs for Model 2. 

Discussion 
The primary conclusion of this study is that it is possible to 
use artificial life in the form of agent-based simulation 
(ABS) to generate hypothetical systems biology models 
that are consistent with genetic models of disease 
susceptibility.  This study represent the first step towards 
the use of artificial life to carry out thought experiments 
about the nature of the genotype to phenotype mapping 
relationship in the context of human health and disease.  
We anticipate a combined computational approach to both 
systems biology and human genetics will lead to a better 
understanding of human health which in turn will lead to 
better disease diagnosis, prevention, and treatment 
strategies. 
 We acknowledge that the approach presented here is 
only the first step and that additional changes to the overall 
modeling strategy will be needed before this prototype will 
be useful for routine thought experiments.  For example, it 
will be important to incorporate measures of agent 
dynamics into the system.  The current approach measures 
a static agent endpoint.  It will also be important to 
incorporate measures of systems complexity such as 

entropy (reviewed by Adami 1998).  A wider range of 
agent behaviors such as birth and death will need to be 
explored in addition to optimization of the grammatical 
evolution strategy for higher-order genetic models as has 
been done for the Petri net approach (Moore and Hahn 
2004b).  Further, higher-level measures of the system will 
need to be implemented to capture more interesting 
patterns of behavior such as dynamical hierarchies (e.g. 
Dorin and McCormack 2003).  Finally, interpretation of 
ABS models will be necessary if useful biological 
hypotheses are to be generated from these thought 
experiments.  We anticipate that this study will provide a 
useful starting point for those hoping to use artificial life 
models as hypothesis-generating thought experiments. 
 

 
Figure 2: Starting (top) and ending (bottom) configurations 
for an ABS that is consistent with Model 2.  In this ABS, 
each square in the 12x12 grid is occupied by either zero 
(white), one (grey), two (checkerboard), or three (black) 
agents.  For simplicity, the types of agents are not 
illustrated.  The upper left quadrant of the grid outlined in 
black is used to determine risk. 
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