
Scaling the Gillespie Stochastic

Simulation Algorithm Using

Data-Parallel Architectures

Jose-Juan Tapia-Valenzuela and Roshan M. D’Souza
Dept. of Mechanical Engineering-Engineering Mechanics

Michigan Technological University

Houghton, MI, 49931

Email: jjtapiav@mtu.edu, rmjdsouza@gmail.com

May 8, 2009

Abstract

The Gillespie Stochastic Simulation Algorithm (SSA) is a stochastic
equation simulation technique that generates a statistically correct solu-
tion of chemical reaction networks. Traditional coupled ordinary differ-
ential equation approaches to model reaction networks rely on bulk prop-
erties and assume interaction of millions of molecules. Therefore, they
cannot predict the trajectory of reactants when the number of molecules
is so low that the continuum assumption does not hold. The Gillespie
SSA allows the explicit simulation of every reaction in the network and
therefore can correctly handle systems with low molecule count.

In [1], Dan Gillespie introduced two implementations of this algorithm,
the Direct Method (DM) and the First Reaction Method (FRM). The DM
works, in broad terms, by calculating the probability each reaction has of
occurring, and firing the one with the highest probability. The FRM works
by calculating the reaction time each reaction will take to fire, and firing
the one with the lowest waiting time.

Both the DM and the FRM are computationally very expensive. The
algorithm execution time possesses a very high correlation to the number
of reactions and reactants in the system. This is because most of the steps
of the Gillespie algorithm are centered around operations such as finding
the most probable reaction, or finding the reaction that will take place in
the least time.

A number of alternatives and improvements on the algorithm have
been proposed. One of such was presented by Dan Gillespie himself in
[2], in the form of an approximate equivalent of his model, the τ -leaping
method. This method sacrifices accuracy for performance by advancing
in ’leaps’ of time, which results in the firing of various reaction chan-
nels simultaneously. A certain amount of independence is assumed be-
tween different reaction channels even if they involve common reactants
or products. While each step becomes more computationally expensive,
this approach greatly reduces the number of steps that are necessary for
a given simulation when compared with the exact implementations, the
overall balance being greatly advantageous for the approximate method.

1



However, even these improvements cannot beat the inevitable slow-
down the algorithm faces when dealing with large simulations with 10e5
to 10e6 reaction channels. An approach that solves or at least diminishes
the influence the number of reactions and reactants have on the compu-
tational complexity of the algorithm is essential.

Stream computing presents a paradigm that can address many of these
problems. Most of the Gillespie algorithm can be understood as an ex-
tension of the scan and reduction problem, which is one of the corner-
stone operations of stream computing. As such, reworking the algorithm
into this architecture presents a great opportunity for improvement and
speedup.

To the best of our knowledge, there is one previous effort at using data-
parallel computing for computing the Gillespie SSA by Li and Petzold in
[3]. Their approach consisted on running many simultaneous, independent
simulations of the same problem. While this certainly helped in speeding
up statistical benchmarks of the algorithm, this does not constitute a true
parallelization of the problem, and as such they are not really exploiting
the full potential of the architecture.

We have implemented the three versions of the Gillespie algorithm de-
scribed earlier on a stream computing platform, the Graphics Processing
Unit (GPU). The implementation was done in such a way that every step
of the algorithm was performed in a fully parallel way, either through the
utilization of hierarchical scans, parallel sort and reductions, or through
some specialized operation such as the implementation of a parallel Pois-
son random number generator. Preliminary results show a significant
speedup of the parallel versions when compared to their serial counter-
parts when the simulation starts growing and including a larger number
of reaction channels. First benchmarks demonstrate that the algorithm
can easily deal with as many as 100,000 reactions in a single system, out-
performing its serial equivalent by a complete order of magnitude.

References

[1] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[2] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. The Journal of Chemical Physics, 115(4):1716–1733, 2001.

[3] H. Li and L. Petzold. Efficient stochastic simulation of biochemical systems
on the graphics processing unit. In Proceedings of the 13th SIAM Conference
on Parallel Processing for Scientific Computing, 2007.

2


