\documentclass[11pt,a4paper,oneside]{article} \pagestyle{myheadings} \addtolength{\hoffset}{-0.5in}%{-0.3in} \addtolength{\voffset}{0.2in}%{0.2in} \setlength{\textwidth}{6in}%{5.4in} \setlength{\textheight}{8.in}%{8.in} \usepackage[english]{babel} \usepackage{amsmath,amssymb,amsfonts,amsthm,mathrsfs} \usepackage{yfonts} \usepackage{graphicx,color} \usepackage{epsfig} \usepackage{multirow} \usepackage{float} \usepackage{hyperref} \usepackage{enumitem} \usepackage{caption} \usepackage{subcaption} \captionsetup{compatibility=false} %\usepackage{tikz} %\usepackage[active,tightpage]{preview} \usepackage{pb-diagram} \usepackage[all]{xy} \selectlanguage{english} \usepackage[latin1]{inputenc} \usepackage{amsmath,amsthm} \usepackage[english]{babel} \usepackage{latexsym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{euscript} \usepackage{color} \usepackage{longtable} \usepackage{tabularx} \usepackage{pdfsync} \usepackage{pstricks,pst-plot,pst-node,epsfig} \usepackage{hyperref} \usepackage{pgfplots} \usepackage{multicol} %\usepackage{tikz} %\usepackage[active,tightpage]{preview} \usepackage{pb-diagram} \usepackage[all]{xy} %\usepackage{tikz} %\usepackage{tkz-graph} %\usetikzlibrary{arrows,automata,positioning,calc} \selectlanguage{english} %\usepackage{showkeys} %\usepackage{showlabels} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Special defintions used for this article %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\a{\alpha} \def\b{\beta} \def\t{\theta} \def\d{\delta} \def\D{\Delta} \def\r{\varrho} \def\g{\gamma} \def\s{\sigma} \def\t{\theta} \def\l{\lambda} \def\p{\partial} \def\O{\Omega} \def\e{\varepsilon} \def\v{\varphi} \def\G{\Gamma} \def\k{\kappa} \def\o{\omega} \newcommand{\biindice}[3]% { \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} #1\\ {\scriptstyle #2}\\ {\scriptstyle #3} \end{array} \renewcommand{\arraystretch}{1} } %%%%%%%%%%%%%%%%%%%%%% \arraycolsep1.5pt \def\a{\alpha} \def\b{\beta} \def\t{\theta} \def\d{\delta} \def\D{\Delta} \def\r{\varrho} \def\g{\gamma} \def\s{\sigma} \def\t{\theta} \def\l{\lambda} \def\p{\partial} \def\O{\Omega} \def\e{\varepsilon} \def\v{\varphi} \def\G{\Gamma} \def\k{\kappa} \def\o{\omega} \def\mc{\mathcal} \def\mf{\mathfrak} \def\ua{\uparrow} \def\da{\downarrow} \def\un{\underline} \newcommand{\R}{\mathbb R} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\sgn}{{ \rm sign }} \newcommand{\esssup}{{\rm ess \;sup\,}} \newcommand{\essinf}{{\rm ess \;inf\,}} \newcommand{\overbar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu} \def\div{\mbox{\rm div}} \def\supp{\mbox{\rm supp\,}} \numberwithin{equation}{section} \theoremstyle{definition} \newtheorem{definition}{Definition}[section] \theoremstyle{plain} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{remark}{Remark}[section] \newtheorem{example}{Example}[section] \renewcommand{\proofname}{\bf Proof} \renewcommand{\deg}{{o}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% definition used in the article \def\stretchx{\Bumpeq{\!\!\!\!\!\!\!\!{\longrightarrow}}} \def\qed{\hfill$\square$} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \makeatletter\def\theequation{\arabic{section}.\arabic{equation}}\makeatother \title{\vskip-2.5cm {Rich dynamics in planar systems with heterogeneous nonnegative weights} \thanks{This paper has been written under the auspices of the Ministry of Science, Technology and Universities of Spain, under Research Grants PGC2018-097104-B-I00 and PID2021-123343NB-I00, and of the IMI of Complutense University. } } \date{\today} \numberwithin{equation}{section} \begin{document} \maketitle { \begin{abstract} This paper studies the global structure of the set of nodal solutions of a generalized Sturm--Liouville boundary value problem associated to the quasilinear equation $$ -(\phi(u'))'= \lambda u + a(t)g(u), \quad \lambda\in {\mathbb R}, $$ where $a(t)$ is non-negative with some positive humps separated away by intervals of degeneracy where $a\equiv 0$. When $\phi(s)=s$ this equation includes a generalized prototype of a classical model going back to Moore and Nehari \cite{MN-1959}, 1959. This is the first paper where the general case when $\l\in\R$ has been addressed when $a\gneq 0$. The semilinear case with $a\lneq 0$ has been recently treated by L\'{o}pez-G\'{o}mez and Rabinowitz \cite{LGR-2015,LGR-2017,LGR-2020}. \\ \\ {\it 2010 Mathematics Subject Classification:} 34B08, 34B24, 35C15. \\ \\ {\it Keywords and Phrases}. Nonlinear differential equations, planar systems, degenerate weights, Moore--Nehari equation, nodal solutions, global bifurcation theory, a priori bounds, Poincar\'{e} maps. \end{abstract} } This \end{document}