

SHASUB

PROTOTYPE: Passphrase Secured SHAsum SUBset

Author: Horvath, Attila

Version: 0.1

Date: 2022 / 06 / 16

The topic of this paper is a mechanism for embedding a functional equivalent SHASUM value in target

file(s), termed SHASUB. This mechanism renders the contents of target file(s) to be reliably verifiable –

comparable to current typical usage of SHASUM. SHASUB is as an alternate methodology of validating

source files’ contents.

NB: SHASUB, as described herein, is an embedded ‘in-band’ mechanism as opposed to SHASUM’s out-of-

band mechanism. As such the applicability of this prototype is limited to ASCII (textual) files whose

content may be altered without affecting the significance and relevance of its payload content.

1 Introduction
The SHASUM mechanism is a common and ubiquitous methodology by which to reliably validate and

confirm the ‘finger prints’ of the data contents of any file1,2 – meaning the SHASUM of a file’s contents

can be used to determine whether the contents of a file has changed, or not3, since the SHASUM was

originally calculated.

SHASUB, as it relates to ASCII data files, addresses following drawbacks with the ubiquitous SHASUM

usage for a subset of data types:

1. version control

2. discrete ‘file pairing’

3. perpetual/recursive paradox. SHASUB addresses both of these issues.

1.1 Version Control
By way of example, Subversion [SVN] offers a feature termed ‘keyword(s) substitution’ – particularly

useful in configuration management environments, typically software development, whereby the tool’s

feature permits versioning information to be automatically imprinted inside select files in user selected

locations within respective files. This ‘keyword(s) substitution’ feature takes effect automatically when

files enabled with this property are committed into the versioning repository/database.

As useful as SVN’s ‘keyword(s) substitution’ feature is, due to SHASUM’s inherent behavior it follows

that the SHASUM value of a file cannot be calculated before files are committed into the versioning

repository because the files are modified during the commit procedure rendering a pre-calculated

SHASUM value moot. Therefore the SHASUM value of a committed file is required to be generated post-

commit which means the SHASUM of a file inherently cannot be committed with the file – the SHASUM

is required to be committed subsequently at a version greater/beyond that of the file itself.

SHASUB addresses this dilemma permitting the functional equivalent of SHASUM to be generated pre-

commit.

1.2 Discrete ‘File-Pairing’
When used as a coupled ‘file pair’ information construct, a file’s contents and the corresponding

calculated SHASUM must be kept as a ‘file pair’ – i.e. two discrete files (see section 1.4)4. If the ‘file pair’

is conveyed to a remote destination and the SHASUM is lost inadvertently, there may not be a reliable

way of reconstituting the file’s original SHASUM because the contents of the file may have changed

subsequent to the loss of the SHASUM.

1.3 The Paradox
A practical way around the discrete ‘file pair’ mechanism is to merge the information by embedding the

SHASUM of a file’s contents within the file itself5 alongside a file’s contents without affecting the

1 To include files with binary content.
2 https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
3 In the event that SHASUM fails validation, it neither provides a mechanism with which to determine what has
changed; nor does it provide a mechanism to revert to a SHASUM validated state.
4 It is recognized that the ‘file pair’ may be packaged in archive file format.
5 This instantiation of SHASUB works only for textual ASCII files and not for binary files.

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

significance of files’ payload contents. Embedding a typical SHASUM, however, presents a

perpetual/recursive paradox owing to the fact that once a file’s SHASUM, when calculated in the usual

manner across files’ entire contents, is embedded within the file, it explicitly changes the file’s content

rendering the embedded SHASUM moot as it no longer can be used to validate the file’s original payload

contents because it includes itself.

1.4 Modus Operandi
Typical Sender/Receiver ‘modus operandi’ is for a sender to convey the validity of files’ contents to a

receiver as a ‘file pair’ comprised of the original file itself as well as its corresponding SHASUM value.

The sender conveys this file pair to a receiver to validate on receipt to ensure the contents of the source

file has not been compromised either inadvertently |OR| intentionally:

Fig. 1: Sender ‘Modus Operandi’

Fig. 2: File Pair In Transit

Fig. 3: Receiver ‘Modus Operandi’

It is intuitively obvious from the Sender/Receiver ‘modus operandi’ depicted above, if a file encounters

MIM [man in the middle] attack or a receiver corrupts or loses the SHASUM and/or corrupts a

corresponding file’s payload data, only the sender at the originating end can reliably re-instantiate the

file-pair.

2 SHASUB
The term “SHASUB” means the “SHAsum of a data SUBset”. Its usage is both a placeholder as well as a

mechanism6 for eliminating the ‘file pair’ and ‘paradox’ issues discussed above.

2.1 SHASUB Mechanism

2.1.1 SHASUB Placeholder
The term “SHASUB” when used as a placeholder is an unspecified arbitrary location in a file’s content

that identifies the location where a calculated ‘partial SHASUM’ value is manually stored so as not to

corrupt the file’s payload information7 as illustrated below:

Fig. 4: SHASUB Placeholder

6 Incorporates accompanying generation/validation tools.
7 Normally located within in a comment field, print statement, initialization field of a string variable, etc.

As indicated in RED above, the SHASUB value itself, indicated in YELLOW above, is delimited by the

string ‘$SHASUB:ƀ‘ at the beginning and the string ‘ƀ$’ at the end where the symbol ‘ƀ’ is used to

represent a blank/space character8. The delimiter enclosed SHASUB value itself is a 128 character

SHASUM hexadecimal numerical value instantiated by the ‘shasubgen’ utility – see section 2.1.2 below

‘SHASUB Instantiation/Generation’.

The SHASUB placeholder may appear anywhere in an ASCII file as long as [1]it is appropriately delimited

and [2]it does not adversely alter the file’s payload content. When encountered however, the content

contained within delimiters is excluded from the SHASUB calculations – this is true for both generation

and validation operations.

NB: SHASUB similarly addresses issues with Subversion keyword substitution feature per lines #28 thru

#33 in Fig. 4: above. Files enabled for Subversion’s keyword substitution feature require their SHASUM

to be calculated after commits, not before – see 2.2.1 below for full discussion and 2.3 below for related

recommendation.

2.1.1.1 Examples: Locating SHASUB Placeholders

Fig. 5: Program File – Printf() Format Statement

Fig. 6: Program File – Comment Block

Fig. 7: BASH Script – Echo Block

8 This presupposes that the SHASUB value’s delimiters are unique character strings not otherwise found in files’
payload contents.

2.1.2 SHASUB Instantiation/Generation
The instantiation of a file content’s SHASUB entails the usage of the ‘shasubgen’ utility:

Fig. 8: ‘shasubgen’ Usage

Initial incorporation of SHASUB is a three step process. Subsequently however, only steps 2 and 3 below

are required where an old/obsolete SHASUB value is replaced with a new/current SHASUB value:

1. Establishing the SHASUB placeholder

2. Instantiation of SHASUB value via ‘shasubgen’ utility

3. Embedding (incorporating) the SHASUB value in the SHASUB placeholder9

Fig. 9: SHASUB Incorporation

NOTE: The SHASUM value ‘ ’ of a file’s whole content calculated prior to embedding a SHASUB

value will not match the SHASUM value ‘ ’ of the same file’s whole content after the embedding

procedure as depicted in Fig. 9: above.

Case in point, embedding ‘shasubgen’ utility’s SHASUB value into the utility is as follows – see Fig. 10:

through Fig. 12: below:

Fig. 10: Establishing SHASUB placeholder

Fig. 11: Instantiate SHASUB value

9 Embedding SHASUB is a manual procedure because it requires owner’s knowledge of content to determine
appropriate location that does not negatively impact the significance of the file’s payload.

Fig. 12: Embed SHASUB value

2.1.3 SHASUB Validation
The validation of a file content via embedded SHASUB value entails the usage of the ‘shasubchk’ utility:

Validating the SHASUB of a file’s contents is a one step process:

1. Validate the SHASUB value via ‘shasubchk’ utility

Case in point, invoking ‘shasubchk’ utility referencing {filename} locates the embedded SHASUB

placeholder per specified delimiters (see 2.1.1 above ‘SHASUB Placeholder’) and validates the file’s

corresponding SHASUB value:

Fig. 13: Validate File Contents Per SHASUB value

NOTE: In the event that a file’s content is modified and/or corrupted, subsequent attempts to validate

the file’s contents per embedded SHASUB value will fail – see Fig. 14: through Fig. 15: below.

/ OR /

Fig. 14: File Payload Contents Corrupted

Fig. 15: SHASUB Validation Failure Per Embedded SHASUB Value

2.1.4 SHASUB: Use Cases

2.1.4.1 hello1.c

Fig. 16: ‘hello1.c’

Fig. 16: above illustrates SHASUB unintrusively embedded in printf() statement.

2.1.4.2 hello2.c

Fig. 17: ‘hell02.c’

Fig. 17: above illustrates SHASUB unintrusively embedded in comment block

2.1.4.3 hello3.sh

Fig. 18: ‘hello3.sh’

Fig. 18: above illustrates SHASUB unintrusively embedded in ‘echo’ command.

2.1.4.4 XML/XSD Sample Data

Fig. 19: XML/XSD Sample Data

Fig. 19: above illustrates SHASUB unintrusively embedded in XML/XSD file pair.

2.1.5 Secure SHASUB
The potential exists for the SHASUB mechanism is vulnerable to ‘tampering’. To address this valid

concern, an optional ‘passphrase’ parameter has been added to the supporting utilities in order to make

it ‘tamper-proof’.

Referring to Fig. 20: below:...

Fig. 20: Passphrase SHASUB Usage

 Line #1 invokes ‘shasubgen’ with provided ‘passphrase’;

 Resultant generated SHASUB value on line #2 embedded in target file per Fig. 21: below;

 Line #4 invokes ‘shasubchk’ with provided valid ‘passphrase’;

 Embedded SHASUB value located in target file identified on line #5;

 Line #6 displays successful validation of file’s contents;

 Line #8 invokes ‘shasubchk’ with provided invalid ‘failphrase’;

 Embedded SHASUB value located in target file identified on line #9;

 Line #10 displays unsuccessful validation of file’s contents;

 Line #13 invokes ‘shasubchk’ without a passphrase;

 Embedded SHASUB value located in target file identified on line #14;

 Line #16 displays unsuccessful validation of file’s contents;

Fig. 21: Passphrase SHASUB Value

NOTE: The user supplied ‘passphrase’ on the command lines are transient. They are not embedded in

the target file’s contents. If the ‘passphrase’ is lost/forgotten, it is irretrievable by design due to

SHASUB’s implementation. In such circumstances, while the file’s payload contents remain intact,

nevertheless the contents are rendered questionable and cannot be validated. It is comparable to losing

the SHASUM.

2.2 SubVersioN [SVN]
In addition to providing a mechanism for embedding a file’s ‘partial SHASUM', SHASUB also takes into

account Subversion [SVN] – a sophisticated mainstream centralized file versioning system.

2.2.1 Keyword Substitution
Amongst other features, SVN provides the capability to automatically embed file revisioning properties

[information] directly into benign section(S) of files’ contents every time files are committed to the

SVN’s version control repository:

Fig. 22: Revision Property Keywords

As lines #28 thru #33 illustrate in Fig. 22: above, files “propset” with specified revision property

keywords are automatically updated/modified during SVN’s commit by embedding revision information

:::

corresponding to latest commit. As stated earlier, in doing so the file’s SHASUM value before the

commit will not match the file’s SHASUM value after the commit procedure. Fig. 23: and Fig. 24: below

illustrates how SHASUB circumvents this issue.

Fig. 23: Pre-SVN Commit

Fig. 23: illustrates the SHASUM value calculated on lines #10 thru #11 of file ‘hello1.c’ [$Revision: 151]

before SVN commit.

Fig. 24: Post-SVN Commit

Fig. 24: illustrates the SHASUM value calculated on lines #17 thru #18 of file ‘hello1.c’ [$Revision: 152]

after SVN commit no longer matches. However, as seen on command line #12 thru #15, the file’s

SHASUB value still validates successfully.

2.3 SHASUB Constituents

Fig. 25: SHASUB Constituents

Fig. 25: above lists the constituents of SHASUB prototype. In its current rendition, it is implemented in

‘bash’ and ‘sed’ scripts.

If adopted for incorporation into ‘coreutils’, it is recommended to be implemented in a mainstream

programming language – eg: C/C++.

Also, if adopted for incorporation, it is recommended SHASUB utilities not support SVN ‘keyword

substitution’ feature. A recommendation to Apache® Subversion® support community should be

approached to implement a new keyword to support SHASUB in accordance with SVN’s ‘keyword

substitution’ feature during commits.

3 Caveats/Limitations
- discuss the applicability to binary files – not just ASCII files

- one SHASUB placeholder per file

Acronyms
ASCII American Standard Code for Information Interchange

SHA Secure Hash Algorithms
[https://en.wikipedia.org/wiki/Secure_Hash_Algorithms]

SHASUB SHAsum SUBset – an abbreviation

SHASUM Linux-based SHA sum utility with varying precision between 160
and 512 bits

SHAxSUM Instance of SHASUM with specific precision – eg: 256, 512, etc.

Subversion Apache Subversion
[https://en.wikipedia.org/wiki/Apache_Subversion]

SVN Subversion abbreviation

MIM Man in the middle attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

