Index: java/awt/Polygon.java =================================================================== RCS file: /cvsroot/classpath/classpath/java/awt/Polygon.java,v retrieving revision 1.10 diff -u -r1.10 Polygon.java --- java/awt/Polygon.java 8 Sep 2004 20:10:52 -0000 1.10 +++ java/awt/Polygon.java 8 Nov 2004 16:12:15 -0000 @@ -1,5 +1,5 @@ /* Polygon.java -- class representing a polygon - Copyright (C) 1999, 2002 Free Software Foundation, Inc. + Copyright (C) 1999, 2002, 2004 Free Software Foundation, Inc. This file is part of GNU Classpath. @@ -39,6 +39,7 @@ package java.awt; import java.awt.geom.AffineTransform; +import java.awt.geom.Line2D; import java.awt.geom.PathIterator; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; @@ -100,17 +101,8 @@ */ protected Rectangle bounds; - /** - * Cached flattened version - condense points and parallel lines, so the - * result has area if there are >= 3 condensed vertices. flat[0] is the - * number of condensed points, and (flat[odd], flat[odd+1]) form the - * condensed points. - * - * @see #condense() - * @see #contains(double, double) - * @see #contains(double, double, double, double) - */ - private transient int[] condensed; + /** A big number, but not so big it can't survive a few float operations */ + private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0; /** * Initializes an empty polygon. @@ -168,7 +160,6 @@ public void invalidate() { bounds = null; - condensed = null; } /** @@ -184,15 +175,14 @@ int i = npoints; while (--i >= 0) { - xpoints[i] += dx; - ypoints[i] += dy; + xpoints[i] += dx; + ypoints[i] += dy; } if (bounds != null) { - bounds.x += dx; - bounds.y += dy; + bounds.x += dx; + bounds.y += dy; } - condensed = null; } /** @@ -206,45 +196,44 @@ { if (npoints + 1 > xpoints.length) { - int[] newx = new int[npoints + 1]; - System.arraycopy(xpoints, 0, newx, 0, npoints); - xpoints = newx; + int[] newx = new int[npoints + 1]; + System.arraycopy(xpoints, 0, newx, 0, npoints); + xpoints = newx; } if (npoints + 1 > ypoints.length) { - int[] newy = new int[npoints + 1]; - System.arraycopy(ypoints, 0, newy, 0, npoints); - ypoints = newy; + int[] newy = new int[npoints + 1]; + System.arraycopy(ypoints, 0, newy, 0, npoints); + ypoints = newy; } xpoints[npoints] = x; ypoints[npoints] = y; npoints++; if (bounds != null) { - if (npoints == 1) - { - bounds.x = x; - bounds.y = y; - } - else - { - if (x < bounds.x) - { - bounds.width += bounds.x - x; - bounds.x = x; - } - else if (x > bounds.x + bounds.width) - bounds.width = x - bounds.x; - if (y < bounds.y) - { - bounds.height += bounds.y - y; - bounds.y = y; - } - else if (y > bounds.y + bounds.height) - bounds.height = y - bounds.y; - } + if (npoints == 1) + { + bounds.x = x; + bounds.y = y; + } + else + { + if (x < bounds.x) + { + bounds.width += bounds.x - x; + bounds.x = x; + } + else if (x > bounds.x + bounds.width) + bounds.width = x - bounds.x; + if (y < bounds.y) + { + bounds.height += bounds.y - y; + bounds.y = y; + } + else if (y > bounds.y + bounds.height) + bounds.height = y - bounds.y; + } } - condensed = null; } /** @@ -258,7 +247,7 @@ */ public Rectangle getBounds() { - return getBoundingBox (); + return getBoundingBox(); } /** @@ -274,27 +263,27 @@ { if (bounds == null) { - if (npoints == 0) - return bounds = new Rectangle (); - int i = npoints - 1; - int minx = xpoints[i]; - int maxx = minx; - int miny = ypoints[i]; - int maxy = miny; - while (--i >= 0) - { - int x = xpoints[i]; - int y = ypoints[i]; - if (x < minx) - minx = x; - else if (x > maxx) - maxx = x; - if (y < miny) - miny = y; - else if (y > maxy) - maxy = y; - } - bounds = new Rectangle (minx, miny, maxx - minx, maxy - miny); + if (npoints == 0) + return bounds = new Rectangle(); + int i = npoints - 1; + int minx = xpoints[i]; + int maxx = minx; + int miny = ypoints[i]; + int maxy = miny; + while (--i >= 0) + { + int x = xpoints[i]; + int y = ypoints[i]; + if (x < minx) + minx = x; + else if (x > maxx) + maxx = x; + if (y < miny) + miny = y; + else if (y > maxy) + maxy = y; + } + bounds = new Rectangle(minx, miny, maxx - minx, maxy - miny); } return bounds; } @@ -365,64 +354,7 @@ */ public boolean contains(double x, double y) { - // First, the obvious bounds checks. - if (! condense() || ! getBounds().contains(x, y)) - return false; - // A point is contained if a ray to (-inf, y) crosses an odd number - // of segments. This must obey the semantics of Shape when the point is - // exactly on a segment or vertex: a point is inside only if the adjacent - // point in the increasing x or y direction is also inside. Note that we - // are guaranteed that the condensed polygon has area, and no consecutive - // segments with identical slope. - boolean inside = false; - int limit = condensed[0]; - int curx = condensed[(limit << 1) - 1]; - int cury = condensed[limit << 1]; - for (int i = 1; i <= limit; i++) - { - int priorx = curx; - int priory = cury; - curx = condensed[(i << 1) - 1]; - cury = condensed[i << 1]; - if ((priorx > x && curx > x) // Left of segment, or NaN. - || (priory > y && cury > y) // Below segment, or NaN. - || (priory < y && cury < y)) // Above segment. - continue; - if (priory == cury) // Horizontal segment, y == cury == priory - { - if (priorx < x && curx < x) // Right of segment. - { - inside = ! inside; - continue; - } - // Did we approach this segment from above or below? - // This mess is necessary to obey rules of Shape. - priory = condensed[((limit + i - 2) % limit) << 1]; - boolean above = priory > cury; - if ((curx == x && (curx > priorx || above)) - || (priorx == x && (curx < priorx || ! above)) - || (curx > priorx && ! above) || above) - inside = ! inside; - continue; - } - if (priorx == x && priory == y) // On prior vertex. - continue; - if (priorx == curx // Vertical segment. - || (priorx < x && curx < x)) // Right of segment. - { - inside = ! inside; - continue; - } - // The point is inside the segment's bounding box, compare slopes. - double leftx = curx > priorx ? priorx : curx; - double lefty = curx > priorx ? priory : cury; - double slopeseg = (double) (cury - priory) / (curx - priorx); - double slopepoint = (double) (y - lefty) / (x - leftx); - if ((slopeseg > 0 && slopeseg > slopepoint) - || slopeseg < slopepoint) - inside = ! inside; - } - return inside; + return ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0); } /** @@ -453,67 +385,17 @@ */ public boolean intersects(double x, double y, double w, double h) { - // First, the obvious bounds checks. - if (w <= 0 || h <= 0 || npoints == 0 || - ! getBounds().intersects(x, y, w, h)) - return false; // Disjoint bounds. - if ((x <= bounds.x && x + w >= bounds.x + bounds.width - && y <= bounds.y && y + h >= bounds.y + bounds.height) - || contains(x, y)) - return true; // Rectangle contains the polygon, or one point matches. - // If any vertex is in the rectangle, the two might intersect. - int curx = 0; - int cury = 0; - for (int i = 0; i < npoints; i++) - { - curx = xpoints[i]; - cury = ypoints[i]; - if (curx >= x && curx < x + w && cury >= y && cury < y + h - && contains(curx, cury)) // Boundary check necessary. - return true; - } - // Finally, if at least one of the four bounding lines intersect any - // segment of the polygon, return true. Be careful of the semantics of - // Shape; coinciding lines do not necessarily return true. - for (int i = 0; i < npoints; i++) - { - int priorx = curx; - int priory = cury; - curx = xpoints[i]; - cury = ypoints[i]; - if (priorx == curx) // Vertical segment. - { - if (curx < x || curx >= x + w) // Outside rectangle. - continue; - if ((cury >= y + h && priory <= y) - || (cury <= y && priory >= y + h)) - return true; // Bisects rectangle. - continue; - } - if (priory == cury) // Horizontal segment. - { - if (cury < y || cury >= y + h) // Outside rectangle. - continue; - if ((curx >= x + w && priorx <= x) - || (curx <= x && priorx >= x + w)) - return true; // Bisects rectangle. - continue; - } - // Slanted segment. - double slope = (double) (cury - priory) / (curx - priorx); - double intersect = slope * (x - curx) + cury; - if (intersect > y && intersect < y + h) // Intersects left edge. - return true; - intersect = slope * (x + w - curx) + cury; - if (intersect > y && intersect < y + h) // Intersects right edge. - return true; - intersect = (y - cury) / slope + curx; - if (intersect > x && intersect < x + w) // Intersects bottom edge. - return true; - intersect = (y + h - cury) / slope + cury; - if (intersect > x && intersect < x + w) // Intersects top edge. - return true; - } + /* Does any edge intersect? */ + if (evaluateCrossings(x, y, false, w) != 0 /* top */ + || evaluateCrossings(x, y + h, false, w) != 0 /* bottom */ + || evaluateCrossings(x + w, y, true, h) != 0 /* right */ + || evaluateCrossings(x, y, true, h) != 0) /* left */ + return true; + + /* No intersections, is any point inside? */ + if ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0) + return true; + return false; } @@ -547,59 +429,21 @@ */ public boolean contains(double x, double y, double w, double h) { - // First, the obvious bounds checks. - if (w <= 0 || h <= 0 || ! contains(x, y) - || ! bounds.contains(x, y, w, h)) + if (! getBounds2D().intersects(x, y, w, h)) return false; - // Now, if any of the four bounding lines intersects a polygon segment, - // return false. The previous check had the side effect of setting - // the condensed array, which we use. Be careful of the semantics of - // Shape; coinciding lines do not necessarily return false. - int limit = condensed[0]; - int curx = condensed[(limit << 1) - 1]; - int cury = condensed[limit << 1]; - for (int i = 1; i <= limit; i++) - { - int priorx = curx; - int priory = cury; - curx = condensed[(i << 1) - 1]; - cury = condensed[i << 1]; - if (curx > x && curx < x + w && cury > y && cury < y + h) - return false; // Vertex is in rectangle. - if (priorx == curx) // Vertical segment. - { - if (curx < x || curx > x + w) // Outside rectangle. - continue; - if ((cury >= y + h && priory <= y) - || (cury <= y && priory >= y + h)) - return false; // Bisects rectangle. - continue; - } - if (priory == cury) // Horizontal segment. - { - if (cury < y || cury > y + h) // Outside rectangle. - continue; - if ((curx >= x + w && priorx <= x) - || (curx <= x && priorx >= x + w)) - return false; // Bisects rectangle. - continue; - } - // Slanted segment. - double slope = (double) (cury - priory) / (curx - priorx); - double intersect = slope * (x - curx) + cury; - if (intersect > y && intersect < y + h) // Intersects left edge. - return false; - intersect = slope * (x + w - curx) + cury; - if (intersect > y && intersect < y + h) // Intersects right edge. - return false; - intersect = (y - cury) / slope + curx; - if (intersect > x && intersect < x + w) // Intersects bottom edge. - return false; - intersect = (y + h - cury) / slope + cury; - if (intersect > x && intersect < x + w) // Intersects top edge. - return false; - } - return true; + + /* Does any edge intersect? */ + if (evaluateCrossings(x, y, false, w) != 0 /* top */ + || evaluateCrossings(x, y + h, false, w) != 0 /* bottom */ + || evaluateCrossings(x + w, y, true, h) != 0 /* right */ + || evaluateCrossings(x, y, true, h) != 0) /* left */ + return false; + + /* No intersections, is any point inside? */ + if ((evaluateCrossings(x, y, false, BIG_VALUE) & 1) != 0) + return true; + + return false; } /** @@ -631,47 +475,47 @@ public PathIterator getPathIterator(final AffineTransform transform) { return new PathIterator() - { - /** The current vertex of iteration. */ - private int vertex; - - public int getWindingRule() - { - return WIND_EVEN_ODD; - } - - public boolean isDone() { - return vertex > npoints; - } + /** The current vertex of iteration. */ + private int vertex; - public void next() - { - vertex++; - } - - public int currentSegment(float[] coords) - { - if (vertex >= npoints) - return SEG_CLOSE; - coords[0] = xpoints[vertex]; - coords[1] = ypoints[vertex]; - if (transform != null) - transform.transform(coords, 0, coords, 0, 1); - return vertex == 0 ? SEG_MOVETO : SEG_LINETO; - } - - public int currentSegment(double[] coords) - { - if (vertex >= npoints) - return SEG_CLOSE; - coords[0] = xpoints[vertex]; - coords[1] = ypoints[vertex]; - if (transform != null) - transform.transform(coords, 0, coords, 0, 1); - return vertex == 0 ? SEG_MOVETO : SEG_LINETO; - } - }; + public int getWindingRule() + { + return WIND_EVEN_ODD; + } + + public boolean isDone() + { + return vertex > npoints; + } + + public void next() + { + vertex++; + } + + public int currentSegment(float[] coords) + { + if (vertex >= npoints) + return SEG_CLOSE; + coords[0] = xpoints[vertex]; + coords[1] = ypoints[vertex]; + if (transform != null) + transform.transform(coords, 0, coords, 0, 1); + return vertex == 0 ? SEG_MOVETO : SEG_LINETO; + } + + public int currentSegment(double[] coords) + { + if (vertex >= npoints) + return SEG_CLOSE; + coords[0] = xpoints[vertex]; + coords[1] = ypoints[vertex]; + if (transform != null) + transform.transform(coords, 0, coords, 0, 1); + return vertex == 0 ? SEG_MOVETO : SEG_LINETO; + } + }; } /** @@ -695,57 +539,75 @@ } /** - * Helper for contains, which caches a condensed version of the polygon. - * This condenses all colinear points, so that consecutive segments in - * the condensed version always have different slope. + * Helper for contains, intersects, calculates the number of intersections + * between the polygon and a line extending from the point (x, y) along + * the positive X, or Y axis, within a given interval. * - * @return true if the condensed polygon has area + * @return the winding number. * @see #condensed * @see #contains(double, double) */ - private boolean condense() + private int evaluateCrossings(double x, double y, boolean useYaxis, + double distance) { - if (npoints <= 2) - return false; - if (condensed != null) - return condensed[0] > 2; - condensed = new int[npoints * 2 + 1]; - int curx = xpoints[npoints - 1]; - int cury = ypoints[npoints - 1]; - double curslope = Double.NaN; - int count = 0; - outer: - for (int i = 0; i < npoints; i++) - { - int priorx = curx; - int priory = cury; - double priorslope = curslope; - curx = xpoints[i]; - cury = ypoints[i]; - while (curx == priorx && cury == priory) - { - if (++i == npoints) - break outer; - curx = xpoints[i]; - cury = ypoints[i]; - } - curslope = (curx == priorx ? Double.POSITIVE_INFINITY - : (double) (cury - priory) / (curx - priorx)); - if (priorslope == curslope) - { - if (count > 1 && condensed[(count << 1) - 3] == curx - && condensed[(count << 1) - 2] == cury) - { - count--; - continue; - } - } - else - count++; - condensed[(count << 1) - 1] = curx; - condensed[count << 1] = cury; - } - condensed[0] = count; - return count > 2; + double x0; + double x1; + double y0; + double y1; + double epsilon = 0.0; + int crossings = 0; + int[] xp; + int[] yp; + + if (useYaxis) + { + xp = ypoints; + yp = xpoints; + double swap; + swap = y; + y = x; + x = swap; + } + else + { + xp = xpoints; + yp = ypoints; + } + + /* Get a value which is small but not insignificant relative the path. */ + epsilon = 1E-7; + + x0 = xp[0] - x; + y0 = yp[0] - y; + for (int i = 1; i < npoints; i++) + { + x1 = xp[i] - x; + y1 = yp[i] - y; + + if (y0 == 0.0) + y0 -= epsilon; + if (y1 == 0.0) + y1 -= epsilon; + if (y0 * y1 < 0) + if (Line2D.linesIntersect(x0, y0, x1, y1, epsilon, 0.0, distance, 0.0)) + ++crossings; + + x0 = xp[i] - x; + y0 = yp[i] - y; + } + + // end segment + x1 = xp[0] - x; + y1 = yp[0] - y; + if (y0 == 0.0) + y0 -= epsilon; + if (y1 == 0.0) + y1 -= epsilon; + if (y0 * y1 < 0) + if (Line2D.linesIntersect(x0, y0, x1, y1, epsilon, 0.0, distance, 0.0)) + ++crossings; + + return crossings; } } // class Polygon +