
groff
The GNU implementation of troff

Edition 1.23.0
Autumn 2020

by Trent A. Fisher
and Werner Lemberg

This manual documents GNU troff version 1.23.0.

Copyright c© 1994–2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover texts
being “A GNU Manual,” and with the Back-Cover Texts as in (a)
below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy
and modify this GNU manual. Buying copies from the FSF sup-
ports it in developing GNU and promoting software freedom.”

i

Table of Contents

1 Introduction . 1
1.1 What Is groff? . 1
1.2 History . 1
1.3 groff Capabilities . 3
1.4 Macro Packages . 4
1.5 Preprocessors . 4
1.6 Output Devices . 5
1.7 Credits . 5

2 Invoking groff . 7
2.1 Options . 7
2.2 Environment . 12
2.3 Macro Directories . 13
2.4 Font Directories . 14
2.5 Paper Size . 14
2.6 Invocation Examples . 15

2.6.1 grog . 15

3 Tutorial for Macro Users . 17
3.1 Basics . 17
3.2 Common Features . 19

3.2.1 Paragraphs . 19
3.2.2 Sections and Chapters . 20
3.2.3 Headers and Footers . 20
3.2.4 Page Layout . 20
3.2.5 Displays . 20
3.2.6 Footnotes and Annotations . 20
3.2.7 Table of Contents . 21
3.2.8 Indices . 21
3.2.9 Paper Formats . 21
3.2.10 Multiple Columns . 21
3.2.11 Font and Size Changes . 21
3.2.12 Predefined Strings . 21
3.2.13 Preprocessor Support . 21
3.2.14 Configuration and Customization . 22

4 Macro Packages . 23
4.1 man . 23

4.1.1 Optional man extensions . 23
Custom headers and footers . 23

ii

Ultrix-specific man macros . 23
Simple example . 25

4.2 mdoc . 25
4.3 me . 25
4.4 mm . 26
4.5 mom . 26
4.6 ms . 26

4.6.1 Introduction to ms . 26
4.6.2 General structure of an ms document . 27
4.6.3 Document control settings . 28

Margin Settings . 29
Text Settings . 29
Paragraph Settings . 30
Footnote Settings . 31
Miscellaneous Registers . 32

4.6.4 Cover page macros . 32
4.6.5 Body text . 34

4.6.5.1 Paragraphs . 34
4.6.5.2 Headings . 36
4.6.5.3 Highlighting . 37
4.6.5.4 Lists . 38
4.6.5.5 Indentation values . 41
4.6.5.6 Tab Stops . 41
4.6.5.7 Displays and keeps . 42
4.6.5.8 Tables, figures, equations, and references 43
4.6.5.9 An example multi-page table . 44
4.6.5.10 Footnotes . 44

4.6.6 Page layout . 45
4.6.6.1 Headers and footers . 45
4.6.6.2 Margins . 46
4.6.6.3 Multiple columns . 46
4.6.6.4 Creating a table of contents . 46
4.6.6.5 Strings and Special Characters . 48

4.6.7 Differences from AT&T ms . 50
4.6.7.1 troff macros not appearing in groff 51
4.6.7.2 groff macros not appearing in AT&T troff 52

4.6.8 ms Naming Conventions . 52

5 gtroff Reference . 55
5.1 Text . 55

5.1.1 Filling . 55
5.1.2 Sentences . 56
5.1.3 Hyphenation . 57
5.1.4 Breaking . 58
5.1.5 Adjustment . 58
5.1.6 Tab Stops . 59

iii

5.1.7 Requests and Macros . 59
5.1.8 Input Encodings . 62
5.1.9 Input Conventions . 63

5.2 Measurements . 66
5.2.1 Default Units . 67

5.3 Expressions . 67
5.4 Identifiers . 69
5.5 Embedded Commands . 70

5.5.1 Requests . 71
5.5.1.1 Request and Macro Arguments . 72

5.5.2 Macros . 73
5.5.3 Escapes . 73

5.5.3.1 Comments . 75
5.6 Registers . 76

5.6.1 Setting Registers . 76
5.6.2 Interpolating Registers . 79
5.6.3 Auto-increment . 79
5.6.4 Assigning Formats . 80
5.6.5 Built-in Registers . 81

5.7 Manipulating Filling and Adjustment . 83
5.8 Manipulating Hyphenation . 88
5.9 Manipulating Spacing . 95
5.10 Tabs and Fields . 97

5.10.1 Leaders . 100
5.10.2 Fields . 101

5.11 Character Translations . 101
5.12 Troff and Nroff Mode . 106
5.13 Line Layout . 107
5.14 Line Control . 109
5.15 Page Layout . 111
5.16 Page Control . 112
5.17 Fonts and Symbols . 114

5.17.1 Changing Fonts . 114
5.17.2 Font Families . 116
5.17.3 Font Positions . 118
5.17.4 Using Symbols . 119
5.17.5 Character Classes . 126
5.17.6 Special Fonts . 127
5.17.7 Artificial Fonts . 128
5.17.8 Ligatures and Kerning . 130

5.18 Sizes . 133
5.18.1 Changing Type Sizes . 133
5.18.2 Fractional Type Sizes . 136

5.19 Strings . 137
5.20 Conditionals and Loops . 143

5.20.1 Operators in Conditionals . 143

iv

5.20.2 if-then . 145
5.20.3 if-else . 146
5.20.4 Conditional Blocks . 146
5.20.5 while . 147

5.21 Writing Macros . 148
5.21.1 Copy Mode . 151
5.21.2 Parameters . 152

5.22 Page Motions . 154
5.23 Drawing Requests . 159
5.24 Traps . 163

5.24.1 Page Location Traps . 163
5.24.2 Diversion Traps . 166
5.24.3 Input Line Traps . 167
5.24.4 Blank Line Traps . 167
5.24.5 Leading Spaces Traps . 167
5.24.6 End-of-input Traps . 168

5.25 Diversions . 170
5.26 Environments . 174
5.27 Suppressing output . 176
5.28 Colors . 177
5.29 I/O . 178
5.30 Postprocessor Access . 183
5.31 Miscellaneous . 184
5.32 gtroff Internals . 186
5.33 Debugging . 188

5.33.1 Warnings . 191
5.34 Implementation Differences . 193

6 Preprocessors . 199
6.1 geqn . 199

6.1.1 Invoking geqn . 199
6.2 gtbl . 199

6.2.1 Invoking gtbl . 199
6.3 gpic . 199

6.3.1 Invoking gpic . 199
6.4 ggrn . 199

6.4.1 Invoking ggrn . 199
6.5 grap . 199
6.6 gchem . 199

6.6.1 Invoking gchem . 199
6.7 grefer . 199

6.7.1 Invoking grefer . 199
6.8 gsoelim . 199

6.8.1 Invoking gsoelim . 199
6.9 preconv . 200

6.9.1 Invoking preconv . 200

v

7 Output Devices . 201
7.1 Special Characters . 201
7.2 grotty . 201

7.2.1 Invoking grotty . 201
7.3 grops . 202

7.3.1 Invoking grops . 202
7.3.2 Embedding PostScript . 203

7.4 gropdf . 203
7.4.1 Invoking gropdf . 203
7.4.2 Embedding PDF . 204

7.5 grodvi . 204
7.5.1 Invoking grodvi . 204

7.6 grolj4 . 205
7.6.1 Invoking grolj4 . 205

7.7 grolbp . 205
7.7.1 Invoking grolbp . 205

7.8 grohtml . 206
7.8.1 Invoking grohtml . 206
7.8.2 grohtml specific registers and strings . 207

7.9 gxditview . 208
7.9.1 Invoking gxditview . 208

8 File formats . 209
8.1 gtroff Output . 209

8.1.1 Language Concepts . 209
8.1.1.1 Separation . 210
8.1.1.2 Argument Units . 210
8.1.1.3 Document Parts . 211

8.1.2 Command Reference . 211
8.1.2.1 Comment Command . 211
8.1.2.2 Simple Commands . 211
8.1.2.3 Graphics Commands . 214
8.1.2.4 Device Control Commands . 217
8.1.2.5 Obsolete Command . 219

8.1.3 Intermediate Output Examples . 219
8.1.4 Output Language Compatibility . 221

8.2 Device and Font Files . 222
8.2.1 DESC File Format . 222
8.2.2 Font File Format . 225

9 Installation . 229

A Copying This Manual . 231

vi

B Request Index . 241

C Escape Index . 245

D Operator Index . 247

E Register Index . 249

F Macro Index . 253

G String Index . 255

H Glyph Name Index . 257

I Font File Keyword Index . 259

J Program and File Index . 261

K Concept Index . 263

1

1 Introduction

GNU troff (or groff) is a system for typesetting documents. troff is
very flexible and has been used extensively for some thirty years. It is well
entrenched in the Unix community.

1.1 What Is groff?
groff belongs to an older generation of document preparation systems,
which operate more like compilers than the more recent interactive
WYSIWYG1 systems. groff and its contemporary counterpart, TEX, both
work using a batch paradigm: The input (or source) files are normal
text files with embedded formatting commands. These files can then be
processed by groff to produce a typeset document on a variety of devices.

groff should not be confused with a word processor, an integrated sys-
tem of editor and text formatter. Also, many word processors follow the
WYSIWYG paradigm discussed earlier.

Although WYSIWYG systems may be easier to use, they have a number
of disadvantages compared to troff:

• They must be used on a graphics display to work on a document.

• Most of the WYSIWYG systems are either non-free or are not very
portable.

• troff is firmly entrenched in all Unix systems.

• It is difficult to have a wide range of capabilities within the confines of
a GUI/window system.

• It is more difficult to make global changes to a document.

“GUIs normally make it simple to accomplish simple actions
and impossible to accomplish complex actions.” –Doug Gwyn
(22/Jun/91 in comp.unix.wizards)

1.2 History
troff can trace its origins back to a formatting program called RUNOFF,
written by Jerry Saltzer, which ran on the CTSS (Compatible Time Shar-
ing System, a project of MIT, the Massachusetts Institute of Technology)
in the mid-sixties.2 The name came from the use of the phrase “run off a
document”, meaning to print it out. Bob Morris ported it to the 635 archi-
tecture and called the program roff (an abbreviation of runoff). It was
rewritten as rf for the PDP-7 (before having Unix), and at the same time

1 What You See Is What You Get
2 Jerome H. Saltzer, a grad student then, later a Professor of Electrical Engineering,

now retired. Saltzer’s PhD thesis was the first application for RUNOFF and is available
from the MIT Libraries.

2 The GNU Troff Manual

(1969), Doug McIlroy rewrote an extended and simplified version of roff in
the BCPL programming language.

In 1971, the Unix developers wanted to get a PDP-11, and to justify the
cost, proposed the development of a document formatting system for the
AT&T patents division. This first formatting program was a reimplementa-
tion of McIlroy’s roff, written by J. F. Ossanna.

When they needed a more flexible language, a new version of roff called
nroff (after “new roff”, pronounced “en-roff”) was written. It had a much
more complicated syntax, but provided the basis for all future versions.
When they got a Graphic Systems CAT Phototypesetter, Ossanna wrote a
version of nroff that would drive it. It was dubbed troff, for “typesetter
roff”, although many people have speculated that it actually means “Times
roff” because of the use of the Times font family in troff by default. As
such, the name troff is pronounced “tee-roff” rather than “trough”.

With troff came nroff (by 1974, they were actually the same program
except for some ‘#ifdef’s), which was for producing output for line printers
and character terminals. It understood everything troff did, and ignored
the commands that were not applicable (e.g., font changes).

Since there are several things that cannot be done easily in troff, work
on several preprocessors began. These programs would transform certain
parts of a document into troff, which made a very natural use of pipes in
Unix.

The eqn preprocessor allowed mathematical formulae to be specified in
a much simpler and more intuitive manner. tbl is a preprocessor for for-
matting tables. The refer preprocessor (and the similar program, bib)
processes citations in a document according to a bibliographic database.

Unfortunately, Ossanna’s troff was written in PDP-11 assembly lan-
guage and produced output specifically for the CAT phototypesetter. He
rewrote it in C, although it was now 7000 lines of uncommented code and
still dependent on the CAT. As the CAT became less common, and was no
longer supported by the manufacturer, the need to make it support other
devices became a priority. However, before this could be done, Ossanna died
from a severe heart attack in a hospital while recovering from a previous one.

Brian Kernighan took on the task of rewriting troff. The result pro-
duced device-independent code that was easy for postprocessors to read and
translate to appropriate printer commands. This new “device-independent
troff”, called ditroff by some, had several extensions, including drawing
commands for lines, circles, ellipses, arcs, and B-splines3.

Due to the additional abilities of the new version of troff, several new
preprocessors appeared. The pic preprocessor provides a wide range of
drawing functions. Likewise the ideal preprocessor did the same, although

3 Short for “basis splines”; ask your local numerical analyst. The rest of us can just
think of them as “curves”.

Chapter 1: Introduction 3

via a much different paradigm. The grap preprocessor took specifications
for graphs, but, unlike other preprocessors, produced pic code.

James Clark began work on a GNU implementation of device-independent
troff in early 1989. The first version, groff 0.3.1, was released June 1990.
groff included:

• A replacement for AT&T device-independent troff with many exten-
sions.

• The soelim, pic, tbl, and eqn preprocessors.

• Postprocessors for character devices, PostScript, TEX’s device-
independent format (DVI), and the X Window System (X11). GNU
troff also eliminated the need for a separate nroff program with a
postprocessor to produce output for ASCII terminals.

• A version of the me macros and an implementation of the man macros.

Also, a front end was included that could construct the—sometimes
painfully long—pipelines required for all the pre- and postprocessors.

Development of GNU troff progressed rapidly, and saw the additions of
a replacement for refer, an implementation of the ms and mm macros, and
a program to deduce how to format a document (grog).

It was declared a stable (i.e. non-beta) package with the release of ver-
sion 1.04 around November 1991.

Beginning in 1999, groff has new maintainers (the package was an or-
phan for a few years). As a result, new features and programs like grn, a
preprocessor for gremlin images, and an output device to produce HTML
and XHTML have been added.

1.3 groff Capabilities
So what exactly is groff capable of doing? groff provides a wide range of
low-level text formatting operations. Using these, it is possible to perform a
wide range of formatting tasks, such as footnotes, table of contents, multiple
columns, etc. Here’s a list of the most important operations supported by
groff:

• text filling, adjusting, and centering

• hyphenation

• page control

• font and glyph size control

• vertical spacing (e.g. double-spacing)

• line length and indenting

• macros, strings, diversions, and traps

• number registers

• tabs, leaders, and fields

• input and output conventions and character translation

4 The GNU Troff Manual

• overstrike, bracket, line drawing, and zero-width functions

• local horizontal and vertical motions and the width function

• three-part titles

• output line numbering

• conditional acceptance of input

• environment switching

• insertions from the standard input

• input/output file switching

• output and error messages

1.4 Macro Packages
Since groff provides such low-level facilities, it can be quite difficult to use
by itself. However, groff provides a macro facility to specify how certain
routine operations (e.g. starting paragraphs, printing headers and footers,
etc.) should be done. These macros can be collected together into a macro
package. There are a number of macro packages available; the most common
(and the ones described in this manual) are man, mdoc, me, ms, and mm.

1.5 Preprocessors
Although groff provides most functions needed to format a document, some
operations would be unwieldy (e.g. to draw pictures). Therefore, programs
called preprocessors were written that understand their own language and
produce the necessary groff operations. These preprocessors are able to
differentiate their own input from the rest of the document via markers.

To use a preprocessor, Unix pipes are used to feed the output from the
preprocessor into groff. Any number of preprocessors may be used on a
given document; in this case, the preprocessors are linked together into one
pipeline. However, with groff, the user does not need to construct the pipe,
but only tell groff what preprocessors to use.

groff currently has preprocessors for producing tables (tbl), typesetting
equations (eqn), drawing pictures (pic and grn), processing bibliographies
(refer), and drawing chemical structures (chem). An associated program
that is useful when dealing with preprocessors is soelim.

A free implementation of grap, a preprocessor for drawing graphs, can
be obtained as an extra package; groff can use grap also.

Unique to groff is the preconv preprocessor that enables groff to han-
dle documents in various input encodings.

Other preprocessors exist, but, unfortunately, no free implementations
are available. Among them is a preprocessor for drawing mathematical pic-
tures (ideal).

Chapter 1: Introduction 5

1.6 Output Devices
groff produces device-independent code that may be fed into a postproces-
sor to produce output for a particular device. Currently, groff has postpro-
cessors for PostScript devices, character terminals, X11 (for previewing),
DVI, HP LaserJet 4 and Canon LBP printers (which use CAPSL), HTML,
XHTML, and PDF.

1.7 Credits
Large portions of this manual were taken from existing documents, most
notably, the manual pages for the groff package by James Clark, and Eric
Allman’s papers on the me macro package.

Larry Kollar contributed the section on the ms macro package.

7

2 Invoking groff

This section focuses on how to invoke the groff front end. This front end
takes care of the details of constructing the pipeline among the preprocessors,
gtroff and the postprocessor.

It has become a tradition that GNU programs get the prefix ‘g’ to dis-
tinguish them from their original counterparts provided by the host (see
Section 2.2 [Environment], page 12). Thus, for example, geqn is GNU eqn.
On operating systems like GNU/Linux or the Hurd, which don’t contain
proprietary versions of troff, and on MS-DOS/MS-Windows, where troff
and associated programs are not available at all, this prefix is omitted since
GNU troff is the only incarnation of troff used. Exception: ‘groff’ is
never replaced by ‘roff’.

In this document, we consequently say ‘gtroff’ when talking about the
GNU troff program. All other implementations of troff are called AT&T
troff, which is the common origin of almost all troff implementations1

(with more or less compatible changes). Similarly, we say ‘gpic’, ‘geqn’,
and so on.

2.1 Options
groff normally runs the gtroff program and a postprocessor appropriate
for the selected device. The default device is ‘ps’ (but it can be changed
when groff is configured and built). It can optionally preprocess with any
of gpic, geqn, gtbl, ggrn, grap, gchem, grefer, gsoelim, or preconv.

This section only documents options to the groff front end. Many
of the arguments to groff are passed on to gtroff, therefore those
are also included. Arguments to pre- or postprocessors can be found
in Section 6.3.1 [Invoking gpic], page 199, Section 6.1.1 [Invoking geqn],
page 199, Section 6.2.1 [Invoking gtbl], page 199, Section 6.4.1 [Invoking
ggrn], page 199, Section 6.7.1 [Invoking grefer], page 199, Section 6.6.1
[Invoking gchem], page 199, Section 6.8.1 [Invoking gsoelim], page 199,
Section 6.9.1 [Invoking preconv], page 200, Section 7.2.1 [Invoking grotty],
page 201, Section 7.3.1 [Invoking grops], page 202, Section 7.4.1 [Invoking
gropdf], page 203, Section 7.8.1 [Invoking grohtml], page 206, Section 7.5.1
[Invoking grodvi], page 204, Section 7.6.1 [Invoking grolj4], page 205,
Section 7.7.1 [Invoking grolbp], page 205, and Section 7.9.1 [Invoking
gxditview], page 208.

The command-line format for groff is:

groff [-abceghijklpstvzCEGNRSUVXZ] [-dcs] [-Darg]
[-ffam] [-Fdir] [-Idir] [-Karg]
[-Larg] [-mname] [-Mdir] [-nnum]
[-olist] [-Parg] [-rcn] [-Tdev]
[-wname] [-Wname] [files...]

1 Besides groff, neatroff is an exception.

8 The GNU Troff Manual

The command-line format for gtroff is as follows.

gtroff [-abcivzCERU] [-dcs] [-ffam] [-Fdir]
[-mname] [-Mdir] [-nnum] [-olist]
[-rcn] [-Tname] [-wname] [-Wname]
[files...]

Obviously, many of the options to groff are actually passed on to gtroff.

Options without an argument can be grouped behind a single -. A file-
name of - denotes the standard input. Whitespace is permitted between an
option and its argument.

The grog command can be used to guess the correct groff command to
format a file.

Here’s the description of the command-line options:

‘-a’ Generate an ASCII (Unicode basic Latin) approximation of the
typeset output. The read-only register .A is set to 1. See
Section 5.6.5 [Built-in Registers], page 81. On a system using
the man-db manual page formatter and that installs man pages
compressed with gzip, one might use the shell command

zcat $(man -w troff) | groff -a -t -man -Tdvi \
| less

to observe how lines are broken for the DVI device.

‘-b’ Print a backtrace with each warning or error message. This
backtrace should help track down the cause of the error. The
line numbers given in the backtrace may not always be correct:
gtroff can get confused by as or am requests while counting
line numbers.

‘-c’ Suppress color output.

‘-C’ Enable compatibility mode. See Section 5.34 [Implementation
Differences], page 193, for the list of incompatibilities between
groff and AT&T troff.

‘-dcs’
‘-dname=s’

Define c or name to be a string s. c must be a one-letter name;
name can be of arbitrary length. All string assignments happen
before loading any macro file (including the start-up file).

‘-Darg’ Set default input encoding used by preconv to arg. Implies -k.

‘-e’ Preprocess with geqn.

‘-E’ Inhibit all error messages.

‘-ffam’ Use fam as the default font family. See Section 5.17.2 [Font
Families], page 116.

Chapter 2: Invoking groff 9

‘-Fdir’ Search dir for subdirectories devname (name is the name of
the device), for the DESC file, and for font files before looking
in the standard directories (see Section 2.4 [Font Directories],
page 14). This option is passed to all pre- and postprocessors
using the GROFF_FONT_PATH environment variable.

‘-g’ Preprocess with ggrn.

‘-G’ Preprocess with grap. Implies -p.

‘-h’ Print a help message.

‘-i’ Read the standard input after all the named input files have
been processed.

‘-Idir’ This option may be used to specify a directory to search for files.
It is passed to the following programs:

• gsoelim (see Section 6.8 [gsoelim], page 199, for more de-
tails); it also implies groff’s -s option.

• gtroff; it is used to search files named in the psbb and so
requests.

• grops; it is used to search files named in the ‘\X’ps:
import’ and ‘\X’ps: file’ escapes.

The current directory is always searched first. This option may
be specified more than once; the directories are searched in the
order specified. No directory search is performed for files speci-
fied using an absolute path.

‘-j’ Preprocess with gchem. Implies -p.

‘-k’ Preprocess with preconv. This is run before any other prepro-
cessor. Please refer to preconv’s manual page for its behaviour
if no -K (or -D) option is specified.

‘-Karg’ Set input encoding used by preconv to arg. Implies -k.

‘-l’ Send the output to a spooler for printing. The command used for
this is specified by the print command in the device description
file (see Section 8.2 [Device and Font Files], page 222). If not
present, -l is ignored.

‘-Larg’ Pass arg to the spooler. Each argument should be passed with a
separate -L option. groff does not prepend a ‘-’ to arg before
passing it to the postprocessor. If the print keyword in the
device description file is missing, -L is ignored.

‘-mname’ Read in the file name.tmac. Normally groff searches for this
in its macro directories. If it isn’t found, it tries tmac.name
(searching in the same directories).

‘-Mdir’ Search directory dir for macro files before the standard direc-
tories (see Section 2.3 [Macro Directories], page 13).

10 The GNU Troff Manual

‘-nnum’ Number the first page num.

‘-N’ Don’t allow newlines with eqn delimiters. This is the same as
the -N option in geqn.

‘-olist’ Output only pages in list, which is a comma-separated list of
page ranges; ‘n’ means print page n, ‘m-n’ means print every
page between m and n, ‘-n’ means print every page up to n, ‘n-’
means print every page beginning with n. gtroff exits after
printing the last page in the list. All the ranges are inclusive on
both ends.

Within gtroff, this information can be extracted with the ‘.P’
register. See Section 5.6.5 [Built-in Registers], page 81.

If your document restarts page numbering at the beginning of
each chapter, then gtroff prints the specified page range for
each chapter.

‘-p’ Preprocess with gpic.

‘-Parg’ Pass arg to the postprocessor. Each argument should be passed
with a separate -P option. Note that groff does not prepend
‘-’ to arg before passing it to the postprocessor.

‘-rcn’
‘-rname=n’

Set number register c or name to the value n. c must be a
one-letter name; name can be of arbitrary length. n can be any
gtroff numeric expression. All register assignments happen
before loading any macro file (including the start-up file).

‘-R’ Preprocess with grefer. No mechanism is provided for passing
arguments to grefer because most grefer options have equiv-
alent commands that can be included in the file. See Section 6.7
[grefer], page 199, for more details.

gtroff also accepts a -R option, which is not accessible via
groff. This option prevents the loading of the troffrc and
troffrc-end files.

‘-s’ Preprocess with gsoelim.

‘-S’ Safer mode. Pass the -S option to gpic and disable the open,
opena, pso, sy, and pi requests. For security reasons, this is
enabled by default.

‘-t’ Preprocess with gtbl.

‘-Tdev’ Prepare output for device dev. The default device is ‘ps’, unless
changed when groff was configured and built. The following
are the output devices currently available:

ps For PostScript printers and previewers.

Chapter 2: Invoking groff 11

pdf For PDF viewers or printers.

dvi For TEX DVI format.

X75 For a 75 dpi X11 previewer.

X75-12 For a 75 dpi X11 previewer with a 12 pt base font in
the document.

X100 For a 100 dpi X11 previewer.

X100-12 For a 100 dpi X11 previewer with a 12 pt base font
in the document.

ascii For typewriter-like devices using the (7-bit) ASCII
(ISO 646) character set.

latin1 For typewriter-like devices that support the Latin-1
(ISO 8859-1) character set.

utf8 For typewriter-like devices that use the Unicode
(ISO 10646) character set with UTF-8 encoding.

cp1047 For typewriter-like devices that use the EBCDIC en-
coding IBM code page 1047.

lj4 For HP LaserJet4-compatible (or other PCL5-
compatible) printers.

lbp For Canon CAPSL printers (LBP-4 and LBP-8 series
laser printers).

html
xhtml To produce HTML and XHTML output, re-

spectively. This driver consists of two parts, a
preprocessor (pre-grohtml) and a postprocessor
(post-grohtml).

The predefined gtroff string register .T contains the current
output device; the read-only number register .T is set to 1 if
this option is used (which is always true if groff is used to call
gtroff). See Section 5.6.5 [Built-in Registers], page 81.

The postprocessor to be used for a device is specified by the
postpro command in the device description file. (See Section 8.2
[Device and Font Files], page 222.) This can be overridden with
the -X option.

‘-U’ Unsafe mode. This enables the open, opena, pso, sy, and pi
requests.

‘-wname’ Enable warning name. Available warnings are described in
Section 5.33 [Debugging], page 188. Multiple -w options are
allowed.

12 The GNU Troff Manual

‘-Wname’ Inhibit warning name. Multiple -W options are allowed.

‘-v’ Make programs run by groff print out their version number.

‘-V’ Print the pipeline on stdout instead of executing it. If specified
more than once, print the pipeline on stderr and execute it.

‘-X’ Preview with gxditview instead of using the usual postproces-
sor. This is unlikely to produce good results except with -Tps.

This is not the same as using -TX75 or -TX100 to view a docu-
ment with gxditview: the former uses the metrics of the speci-
fied device, whereas the latter uses X-specific fonts and metrics.

‘-z’ Suppress output from gtroff. Only error messages are printed.

‘-Z’ Do not postprocess the output of gtroff. Normally groff au-
tomatically runs the appropriate postprocessor.

2.2 Environment
There are also several environment variables (of the operating system, not
within gtroff) that can modify the behavior of groff.

GROFF_BIN_PATH
This search path, followed by PATH, is used for commands exe-
cuted by groff.

GROFF_COMMAND_PREFIX
If this is set to X, then groff runs Xtroff instead of
gtroff. This also applies to tbl, pic, eqn, grn, chem, refer,
and soelim. It does not apply to grops, grodvi, grotty,
pre-grohtml, post-grohtml, preconv, grolj4, gropdf, and
gxditview.

The default command prefix is determined during the installa-
tion process. If a non-GNU troff system is found, prefix ‘g’ is
used, none otherwise.

GROFF_ENCODING
The value of this environment value is passed to the preconv pre-
processor to select the encoding of input files. Setting this option
implies groff’s command-line option -k (that is, groff always
calls preconv). If set without a value, groff calls preconv with-
out arguments. An explicit -K command-line option overrides
the value of GROFF_ENCODING. See the preconv(7) manual page;
type man preconv at the command line to view it.

GROFF_FONT_PATH
A colon-separated list of directories in which to search for the
devname directory (before the default directories are tried). See
Section 2.4 [Font Directories], page 14.

Chapter 2: Invoking groff 13

GROFF_TMAC_PATH
A colon-separated list of directories in which to search for macro
files (before the default directories are tried). See Section 2.3
[Macro Directories], page 13.

GROFF_TMPDIR
The directory in which groff creates temporary files. If this
is not set and TMPDIR is set, temporary files are created in
that directory. Otherwise temporary files are created in a
system-dependent default directory (on Unix and GNU/Linux
systems, this is usually /tmp). grops, grefer, pre-grohtml,
and post-grohtml can create temporary files in this directory.

GROFF_TYPESETTER
The default output device.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use
in place of the current time when initializing time-based built-in
registers such as \n[seconds].

MS-DOS and MS-Windows ports of groff use semicolons, rather than
colons, to separate the directories in the lists described above.

2.3 Macro Directories
All macro file names must be named name.tmac or tmac.name to make
the -mname command-line option work. The mso request doesn’t have this
restriction; any file name can be used, and gtroff won’t try to append or
prepend the ‘tmac’ string.

Macro files are kept in the tmac directories, all of which constitute the
tmac path. The elements of the search path for macro files are (in that
order):

• The directories specified with gtroff’s or groff’s -M command-line
option.

• The directories given in the GROFF_TMAC_PATH environment variable.

• The current directory (only if in unsafe mode using the -U command-line
switch).

• The home directory.

• A platform-dependent directory, a site-specific (platform-independent)
directory, and the main tmac directory; the default locations are

/usr/local/lib/groff/site-tmac
/usr/local/share/groff/site-tmac
/usr/local/share/groff/1.23.0/tmac

assuming that the version of groff is 1.23.0, and the installation prefix
was /usr/local. It is possible to fine-tune those directories during the
installation process.

14 The GNU Troff Manual

2.4 Font Directories
Basically, there is no restriction how font files for groff are named and how
long font names are; however, to make the font family mechanism work (see
Section 5.17.2 [Font Families], page 116), fonts within a family should start
with the family name, followed by the shape. For example, the Times family
uses ‘T’ for the family name and ‘R’, ‘B’, ‘I’, and ‘BI’ to indicate the shapes
‘roman’, ‘bold’, ‘italic’, and ‘bold italic’, respectively. Thus the final font
names are ‘TR’, ‘TB’, ‘TI’, and ‘TBI’.

All font files are kept in the font directories, which constitute the font
path. The file search functions always append the directory devname,
where name is the name of the output device. Assuming, say, DVI out-
put, and /foo/bar as a font directory, the font files for grodvi must be in
/foo/bar/devdvi.

The elements of the search path for font files are (in that order):

• The directories specified with gtroff’s or groff’s -F command-line
option. All device drivers and some preprocessors also have this option.

• The directories given in the GROFF_FONT_PATH environment variable.

• A site-specific directory and the main font directory; the default loca-
tions are

/usr/local/share/groff/site-font
/usr/local/share/groff/1.23.0/font

assuming that the version of groff is 1.23.0, and the installation prefix
was /usr/local. It is possible to fine-tune those directories during the
installation process.

2.5 Paper Size
In groff, the page size for gtroff and for output devices are handled sepa-
rately. See Section 5.15 [Page Layout], page 111, for vertical manipulation
of the page size. See Section 5.13 [Line Layout], page 107, for horizontal
changes.

A default paper size can be set in the device’s DESC file. Most output
devices also have a command-line option -p to override the default paper
size and option -l to use landscape orientation. See Section 8.2.1 [DESC
File Format], page 222, for a description of the papersize keyword, which
takes the same argument as -p.

A convenient shorthand to set a particular paper size for gtroff is
command-line option -dpaper=size. This defines string paper, which is
processed in file papersize.tmac (loaded in the start-up file troffrc by
default). Possible values for size are the same as the predefined values for
the papersize keyword (but only in lowercase) except a7–d7. An appended
‘l’ (ell) character denotes landscape orientation.

For example, use the following for PS output on A4 paper in landscape
orientation:

Chapter 2: Invoking groff 15

groff -Tps -dpaper=a4l -P-pa4 -P-l -ms foo.ms > foo.ps

It is up to the particular macro package to respect default page dimensions
set in this way (most do).

2.6 Invocation Examples
This section lists several common uses of groff and the corresponding com-
mand lines.

groff file

This command processes file without a macro package or a preprocessor.
The output device is the default, ‘ps’, and the output is sent to stdout.

groff -t -mandoc -Tascii file | less

This is basically what a call to the man program does. gtroff processes the
manual page file with the mandoc macro file (which in turn either calls the
man or the mdoc macro package), using the tbl preprocessor and the ASCII
output device. Finally, the less pager displays the result.

groff -X -m me file

Preview file with gxditview, using the me macro package. Since no -T
option is specified, use the default device (‘ps’). You can say either ‘-m me’
or ‘-me’; the latter is an anachronism from the early days of Unix.2

groff -man -rD1 -z file

Check file with the man macro package, forcing double-sided printing—
don’t produce any output.

2.6.1 grog

grog reads files, guesses which of the groff preprocessors and/or macro
packages are required for formatting them, and prints the groff command
including those options on the standard output. It generates one or more of
the options -e, -man, -me, -mm, -mom, -ms, -mdoc, -mdoc-old, -p, -R, -g,
-G, -s, and -t.

A special file name - refers to the standard input. Specifying no files
also means to read the standard input. Any specified options are included
in the printed command. No space is allowed between options and their
arguments. The only options recognized are -C (which is also passed on) to
enable compatibility mode, and -v to print the version number and exit.

For example,

grog -Tdvi paper.ms

guesses the appropriate command to print paper.ms and then prints it to the
command line after adding the -Tdvi option. For direct execution, enclose
the call to grog in backquotes at the Unix shell prompt:

2 The same is true for the other main macro packages that come with groff: man, mdoc,
ms, mm, and mandoc. This won’t work in general; for example, to load trace.tmac,
either ‘-mtrace’ or ‘-m trace’ must be used.

16 The GNU Troff Manual

‘grog -Tdvi paper.ms‘ > paper.dvi

As this example shows, it is still necessary to redirect the output to some-
thing meaningful (i.e. either a file or a pager program like less).

17

3 Tutorial for Macro Users

Most users tend to use a macro package to format their papers. This means
that the whole breadth of groff is not necessary for most people. This
chapter covers the material needed to efficiently use a macro package.

3.1 Basics
This section covers some of the basic concepts necessary to understand how
to use a macro package.1 References are made throughout to more detailed
information, if desired.

gtroff reads an input file prepared by the user and outputs a formatted
document suitable for publication or framing. The input consists of text,
or words to be printed, and embedded commands (requests and escapes),
which tell gtroff how to format the output. For more detail on this, see
Section 5.5 [Embedded Commands], page 70.

The word argument is used in this chapter to mean a word or number
that appears on the same line as a request, and which modifies the meaning
of that request. For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the sp request, which
says to space four lines instead of one. Arguments are separated from the
request and from each other by spaces (no tabs). More details on this can
be found in Section 5.5.1.1 [Request and Macro Arguments], page 72.

The primary function of gtroff is to collect words from input lines, fill
output lines with those words, justify the right-hand margin by inserting
extra spaces in the line, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, etc.

is read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party.
Four score and seven years ago, etc.

Sometimes a new output line should be started even though the current
line is not yet full; for example, at the end of a paragraph. To do this it
is possible to cause a break, which starts a new output line. Some requests

1 This section is derived from Writing Papers with nroff using -me by Eric P. Allman.

18 The GNU Troff Manual

cause a break automatically, as normally do blank input lines and input lines
beginning with a space.

Not all input lines are text to be formatted. Some input lines are requests
that describe how to format the text. Requests always have a period (‘.’)
or an apostrophe (‘’’) as the first character of the input line.

The text formatter also does more complex things, such as automatically
numbering pages, skipping over page boundaries, putting footnotes in the
correct place, and so forth.

Here are a few hints for preparing text for input to gtroff.

• First, keep the input lines short. Short input lines are easier to edit,
and gtroff packs words onto longer lines anyhow.

• In keeping with this, it is helpful to begin a new line after every comma
or phrase, since common corrections are to add or delete sentences or
phrases.

• End each sentence with two spaces—or better, start each sentence on
a new line. gtroff recognizes characters that usually end a sentence,
and inserts sentence space accordingly.

• Do not hyphenate words at the end of lines—gtroff is smart enough
to hyphenate words as needed, but is not smart enough to take hyphens
out and join a word back together. Also, words such as “mother-in-law”
should not be broken over a line, since then a space can occur where
not wanted, such as “mother- in-law”.

gtroff double-spaces output text automatically if you use the request
‘.ls 2’. Reactivate single-spaced mode by typing ‘.ls 1’.2

A number of requests allow you to change the way the output is arranged
on the page, sometimes called the layout of the output page.

The bp request starts a new page, causing a line break.

The request ‘.sp N’ leaves N lines of blank space. N can be omitted
(meaning skip a single line) or can be of the form N i (for N inches) or Nc
(for N centimeters). For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line “My thoughts on
the subject”, followed by a single blank line (more measurement units are
available, see Section 5.2 [Measurements], page 66).

Text lines can be centered by using the ce request. The line after ce
is centered (horizontally) on the page. To center more than one line, use
‘.ce N’ (where N is the number of lines to center), followed by the N lines.
To center many lines without counting them, type:

2 If you need finer granularity of the vertical space, use the pvs request (see Section 5.18.1
[Changing Type Sizes], page 133).

Chapter 3: Tutorial for Macro Users 19

.ce 1000
lines to center
.ce 0

The ‘.ce 0’ request tells groff to center zero more lines, in other words,
stop centering.

All of these requests cause a break; that is, they always start a new line.
To start a new line without performing any other action, use br.

3.2 Common Features
gtroff provides very low-level operations for formatting a document. There
are many common routine operations that are done in all documents. These
common operations are written into macros and collected into a macro pack-
age.

All macro packages provide certain common capabilities that fall into the
following categories.

3.2.1 Paragraphs

One of the most common and most used capability is starting a paragraph.
There are a number of different types of paragraphs, any of which can be
initiated with macros supplied by the macro package. Normally, paragraphs
start with a blank line and the first line indented, like the text in this manual.
There are also block style paragraphs, which omit the indentation:

Some men look at constitutions with sanctimonious
reverence, and deem them like the ark of the covenant, too
sacred to be touched.

And there are also indented paragraphs, which begin with a tag or label at
the margin and the remaining text indented.

one This is the first paragraph. Notice how the first
line of the resulting paragraph lines up with the
other lines in the paragraph.

longlabel
This paragraph had a long label. The first
character of text on the first line does not line up
with the text on second and subsequent lines,
although they line up with each other.

A variation of this is a bulleted list.

. Bulleted lists start with a bullet. It is possible
to use other glyphs instead of the bullet. In nroff
mode using the ASCII character set for output, a dot
is used instead of a real bullet.

20 The GNU Troff Manual

3.2.2 Sections and Chapters

Most macro packages supply some form of section headers. The simplest
kind is simply the heading on a line by itself in bold type. Others supply
automatically numbered section heading or different heading styles at dif-
ferent levels. Some, more sophisticated, macro packages supply macros for
starting chapters and appendices.

3.2.3 Headers and Footers

Every macro package gives some way to manipulate the headers and footers
(also called titles) on each page. This is text put at the top and bottom of
each page, respectively, which contain data like the current page number,
the current chapter title, and so on. Its appearance is not affected by the
running text. Some packages allow for different ones on the even and odd
pages (for material printed in a book form).

The titles are called three-part titles, that is, there is a left-justified
part, a centered part, and a right-justified part. An automatically gener-
ated page number may be put in any of these fields with the ‘%’ character
(see Section 5.15 [Page Layout], page 111, for more details).

3.2.4 Page Layout

Most macro packages let the user specify top and bottom margins and other
details about the appearance of the printed pages.

3.2.5 Displays

Displays are sections of text to be set off from the body of the paper. Major
quotes, tables, and figures are types of displays, as are all the examples used
in this document.

Major quotes are quotes that are several lines long, and hence are set in
from the rest of the text without quote marks around them.

A list is an indented, single-spaced, unfilled display. Lists should be used
when the material to be printed should not be filled and justified like normal
text, such as columns of figures or the examples used in this paper.

A keep is a display of lines that are kept on a single page if possible. An
example for a keep might be a diagram. Keeps differ from lists in that lists
may be broken over a page boundary whereas keeps are not.

Floating keeps move relative to the text. Hence, they are good for things
that are referred to by name, such as “See figure 3”. A floating keep appears
at the bottom of the current page if it fits; otherwise, it appears at the top
of the next page. Meanwhile, the surrounding text ‘flows’ around the keep,
thus leaving no blank areas.

3.2.6 Footnotes and Annotations

There are a number of requests to save text for later printing.

Chapter 3: Tutorial for Macro Users 21

Footnotes are printed at the bottom of the current page.

Delayed text is very similar to a footnote except that it is printed when
called for explicitly. This allows a list of references to appear (for example)
at the end of each chapter, as is the convention in some disciplines.

Most macro packages that supply this functionality also supply a means
of automatically numbering either type of annotation.

3.2.7 Table of Contents

Tables of contents are a type of delayed text having a tag (usually the page
number) attached to each entry after a row of dots. The table accumulates
throughout the paper until printed, usually after the paper has ended. Many
macro packages provide the ability to have several tables of contents (e.g. a
standard table of contents, a list of tables, etc).

3.2.8 Indices

While some macro packages use the term index, none actually provide that
functionality. The facilities they call indices are actually more appropriate
for tables of contents.

To produce a real index in a document, external tools like the makeindex
program are necessary.

3.2.9 Paper Formats

Some macro packages provide stock formats for various kinds of documents.
Many of them provide a common format for the title and opening pages of
a technical paper. The mm macros in particular provide formats for letters
and memoranda.

3.2.10 Multiple Columns

Some macro packages (but not man) provide the ability to have two or more
columns on a page.

3.2.11 Font and Size Changes

The built-in font and size functions are not always intuitive, so all macro
packages provide macros to make these operations simpler.

3.2.12 Predefined Strings

Most macro packages provide various predefined strings for a variety of uses;
examples are sub- and superscripts, printable dates, quotes and various spe-
cial characters.

3.2.13 Preprocessor Support

All macro packages provide support for various preprocessors and may ex-
tend their functionality.

22 The GNU Troff Manual

For example, all macro packages mark tables (which are processed with
gtbl) by placing them between TS and TE macros. The ms macro package
has an option, ‘.TS H’, that prints a caption at the top of a new page (when
the table is too long to fit on a single page).

3.2.14 Configuration and Customization

Some macro packages provide means of customizing many of the details of
how the package behaves. This ranges from setting the default type size to
changing the appearance of section headers.

23

4 Macro Packages

This chapter documents the main macro packages that come with groff.

Different main macro packages can’t be used at the same time; for exam-
ple

groff -m man foo.man -m ms bar.doc

doesn’t work. Option arguments are processed before non-option arguments;
the above (failing) sample is thus reordered to

groff -m man -m ms foo.man bar.doc

4.1 man

The man macro package is the most widely-used and probably the most
important ever developed for troff. It is easy to use, and a vast majority
of manual pages (“man pages”) are written in it.

groff’s implementation is documented in the groff man(7) man page.
Type man groff_man at the command line to view it.

4.1.1 Optional man extensions

Use the file man.local for local extensions to the man macros or for style
changes.

Custom headers and footers

In groff versions 1.18.2 and later, you can specify custom headers and footers
by redefining the following macros in man.local.

[Macro].PT
Control the content of the headers. Normally, the header prints the com-
mand name and section number on either side, and the optional fifth
argument to TH in the center.

[Macro].BT
Control the content of the footers. Normally, the footer prints the page
number and the third and fourth arguments to TH.

Use the FT number register to specify the footer position. The default is
−0.5 i.

Ultrix-specific man macros

The groff source distribution includes a file named man.ultrix, contain-
ing macros compatible with the Ultrix variant of man. Copy this file into
man.local (or use the mso request to load it) to enable the following macros.

[Macro].CT key
Print ‘<CTRL/key>’.

24 The GNU Troff Manual

[Macro].CW
Print subsequent text using the constant-width typeface (Courier).

[Macro].Ds
Begin a non-filled display.

[Macro].De
End a non-filled display started with Ds.

[Macro].EX [indent]
Begin a non-filled display using the constant-width typeface (Courier).
Use the optional indent argument to indent the display.

[Macro].EE
End a non-filled display started with EX.

[Macro].G [text]
Set text in Helvetica. If no text is present on the line where the macro is
called, then the text of the next line appears in Helvetica.

[Macro].GL [text]
Set text in Helvetica oblique. If no text is present on the line where
the macro is called, then the text of the next line appears in Helvetica
Oblique.

[Macro].HB [text]
Set text in Helvetica bold. If no text is present on the line where the
macro is called, then all text up to the next HB appears in Helvetica bold.

[Macro].TB [text]
Identical to HB.

[Macro].MS title sect [punct]
Set a man page reference in Ultrix format. The title is in Courier instead
of italic. Optional punctuation follows the section number without an
intervening space.

[Macro].NT [C] [title]
Begin a note. Print the optional title, or the word “Note”, centered on
the page. Text following the macro makes up the body of the note, and
is indented on both sides. If the first argument is C, the body of the
note is printed centered (the second argument replaces the word “Note”
if specified).

[Macro].NE
End a note begun with NT.

[Macro].PN path [punct]
Set the path name in a constant-width typeface (Courier), followed by
optional punctuation.

Chapter 4: Macro Packages 25

[Macro].Pn [punct] path [punct]
If called with two arguments, identical to PN. If called with three argu-
ments, set the second argument in a constant-width typeface (Courier),
bracketed by the first and third arguments in the current font.

[Macro].R
Switch to roman font and turn off any underlining in effect.

[Macro].RN
Print the string ‘<RETURN>’.

[Macro].VS [4]
Start printing a change bar in the margin if the number 4 is specified.
Otherwise, this macro does nothing.

[Macro].VE
End printing the change bar begun by VS.

Simple example

The following example man.local file alters the SH macro to add some extra
vertical space before printing the heading. Headings are printed in Helvetica
bold.

.\" Make the heading fonts Helvetica

.ds HF HB

.

.\" Put more space in front of headings.

.rn SH SH-orig

.de SH

. if t .sp (u;\\n[PD]*2)

. SH-orig \\$*

..

4.2 mdoc

groff’s implementation of the BSD doc package for man pages is docu-
mented in the groff mdoc(7) man page. Type man groff_mdoc at the com-
mand line to view it.

4.3 me

groff’s implementation of the BSD me macro package is documented using
itself. A tutorial, meintro.me, and reference, meref.me, are available in
groff’s documentation directory. A groff me(7) man page is also available
and identifies the installation path for these documents. Type man groff_me
at the command line to view it.

A French translation of the tutorial is available as meintro_fr.me and
installed parallel to the English version.

26 The GNU Troff Manual

4.4 mm

groff’s implementation of the AT&T memorandum macro package is docu-
mented in the groff mm(7) man page. Type man groff_mm at the command
line) to view it.

A Swedish localization of mm is also available; see groff mmse(7).

4.5 mom

The main documentation files for the mom macros are in HTML format. Ad-
ditional, useful documentation is in PDF format. See the groff(1) man page,
section “Installation Directories”, for their location.

• toc.html Entry point to the full mom manual.

• macrolist.html Hyperlinked index of macros with brief descriptions,
arranged by category.

• mom-pdf.pdf PDF features and usage.

The mom macros are in active development between groff releases. The
most recent version, along with up-to-date documentation, is available at
http://www.schaffter.ca/mom/mom-05.html.

The groff mom(7) man page (type man groff_mom at the command line)
contains a partial list of available macros, however their usage is best under-
stood by consulting the HTML documentation.

4.6 ms

The ms (“manuscript”) macros are suitable for reports, letters, memoranda,
books, user manuals, and so forth. The package provides macros for cover
page and table of contents generation, section headings, multiple paragraph
styles, text styling (including font changes), lists, footnotes, pagination, and
indexing.

ms supports the tbl, eqn, pic, and refer preprocessors for inclusion of
tables, mathematical equations, diagrams, and standardized bibliographic
citations.

4.6.1 Introduction to ms

The ms macros are the oldest surviving macro package for roff systems.1

While the man package was intended for brief documents to be perused at
a terminal, the ms macros are suitable for longer documents intended for
printing and possible publication.

The ms macro package included with groff is a complete re-
implementation. Some macros specific to AT&T or Berkeley are not

1 Although man pages are even older, the man macro language dates back only to Sev-
enth Edition Unix (1979). ms was documented by Mike Lesk in an article for the
Communications of the ACM in 1974.

http://www.schaffter.ca/mom/mom-05.html

Chapter 4: Macro Packages 27

included, while several new commands been introduced. See Section 4.6.7
[Differences from AT&T ms], page 50.

If you’re in a hurry to get started, you need only know that ms needs one
of its macros called at the beginning of a document so that it can initialize.
A paragraph macro like PP (if you want your paragraph to have a first-line
indent) or LP (if you don’t) suffices.

After that, start typing normally. You can separate paragraphs with
further paragraph macros, or with blank lines, and you can indent with
tabs. When you need one of the features mentioned earlier (see Section 4.6
[ms], page 26), return to this manual.� �

.LP
Radical novelties are so disturbing that they tend to be
suppressed or ignored, to the extent that even the
possibility of their existence in general is more often
denied than admitted.

→That's what Dijkstra said, anyway.
 	
We have used an arrow → in the above to indicate a tab character.

4.6.2 General structure of an ms document

The ms macro package expects a certain amount of structure, but not as
much as packages such as man or mdoc. The simplest documents can begin
with a paragraph macro (such as LP or PP), and consist of text separated by
paragraph macros or even blank lines. Longer documents have a structure
as follows.

Document type
If you invoke the RP (report) macro on the first line of the doc-
ument, ms prints the cover page information on its own page;
otherwise it prints the information (if any) on the first page
with your document text immediately following. Some docu-
ment types found in AT&T troff are specific to AT&T or Berke-
ley, and are not supported in groff.

Format and layout
By setting registers (and one string), you can change your docu-
ment’s type (font and point size), margins, spacing, headers and
footers, and footnotes. See Section 4.6.3 [ms Document Control
Settings], page 28.

28 The GNU Troff Manual

Cover page
A cover page consists of a title, the author’s name and institu-
tion, an abstract, and the date.2 See Section 4.6.4 [ms Cover
Page Macros], page 32.

Body Following the cover page is your document. ms supports highly
structured documents consisting of paragraphs interspersed with
multi-level headings (chapters, sections, subsections, and so
forth) and augmented by lists, footnotes, tables, diagrams, and
similar. See Section 4.6.5 [ms Body Text], page 34.

Table of contents
Longer documents usually include a table of contents, which
you can produce by placing the TC macro at the end of your
document. Printing the table of contents at the end is necessary
since GNU troff, like its AT&T ancestor, is a single-pass text
formatter; it thus cannot determine the page number of each
section until that section has been set and output. Since ms
output is designed for hard copy, you can manually relocate the
pages containing the table of contents between the cover page
and the body text after printing.3

4.6.3 Document control settings

ms exposes many aspects of document layout to user control via groff re-
quests. To use them, you must understand how to define registers and
strings.

[Request].nr reg value
Set register reg to value. If reg doesn’t exist, GNU troff creates it.

[Request].ds name contents
Set string name to contents. If name exists, it is removed first.

For consistency, set registers related to margins at the beginning of your
document, or just after the RP macro. You can set other registers later in
your document, but you should keep them together at the beginning to make
them easy to find and edit as necessary.

A list of document control registers (and one string) follows. They are
presented in the syntax used to interpolate them.

2 Actually, only the title is required.
3 This limitation could also be overcome by using PostScript or PDF file manipula-

tion utilities to resequence pages in the document, facilitated by specially-formatted
comments (“device tags”) placed in the output by by ms.

Chapter 4: Macro Packages 29

Margin Settings

[Register]\n[PO]
Defines the page offset (i.e., the left margin). There is no explicit right
margin setting; the combination of the PO and LL registers implicitly
define the right margin width.

Effective: next page.

Default value: 1 i.

[Register]\n[LL]
Defines the line length (i.e., the width of the body text).

Effective: next paragraph.

Default: 6 i.

[Register]\n[LT]
Defines the title length (i.e., the header and footer width). This is usually
the same as LL, but not necessarily.

Effective: next paragraph.

Default: 6 i.

[Register]\n[HM]
Defines the header margin height at the top of the page.

Effective: next page.

Default: 1 i.

[Register]\n[FM]
Defines the footer margin height at the bottom of the page.

Effective: next page.

Default: 1 i.

Text Settings

[Register]\n[PS]
Defines the point size of the body text. If the value is larger than or equal
to 1000, divide it by 1000 to get a fractional point size. For example, ‘.nr
PS 10250’ sets the document’s point size to 10.25 p.

Effective: next paragraph.

Default: 10 p.

[Register]\n[VS]
Defines the space between lines (line height plus leading). If the value is
larger than or equal to 1000, divide it by 1000 to get a fractional point
size.

Effective: next paragraph.

Default: 12 p.

30 The GNU Troff Manual

[Register]\n[PSINCR]
Defines an increment in point size, which is applied to section headings at
nesting levels below the value specified in GROWPS. The value of PSINCR
should be specified in points, with the p scaling factor, and may include
a fractional component; for example, ‘.nr PSINCR 1.5p’ sets a point size
increment of 1.5 p.

Effective: next section heading.

Default: 1 p.

[Register]\n[GROWPS]
Defines the heading level below which the point size increment set by
PSINCR becomes effective. Section headings at and above the level spec-
ified by GROWPS are printed at the point size set by PS; for each level
below the value of GROWPS, the point size is increased in steps equal to
the value of PSINCR. Setting GROWPS to any value less than 2 disables the
incremental heading size feature.

Effective: next section heading.

Default: 0.

[Register]\n[HY]
Defines the hyphenation mode. HY safely sets the value of the low-level
hy register. Setting HY to 0 is equivalent to using the nh request.

Effective: next paragraph.

Default: 6.

[String]*[FAM]
Defines the font family used to typeset the document.

Unlike the other document control settings, FAM is a string, not a register.
You must therefore set it with the ds request instead of nr.

Effective: next paragraph.

Default: as defined in the output device.

Paragraph Settings

[Register]\n[PI]
Defines the initial indentation of a (PP macro) paragraph.

Effective: next paragraph.

Default: 5 n.

[Register]\n[PD]
Defines the space between paragraphs.

Effective: next paragraph.

Default: 0.3 v.

Chapter 4: Macro Packages 31

[Register]\n[QI]
Defines the indentation on both sides of a quoted (QP, QS, and QE macros)
paragraph.

Effective: next paragraph.

Default: 5 n.

[Register]\n[PORPHANS]
Defines the minimum number of initial lines of any paragraph that should
be kept together, to avoid orphan lines at the bottom of a page. If a new
paragraph is started close to the bottom of a page, and there is insufficient
space to accommodate PORPHANS lines before an automatic page break,
then the page break is forced, before the start of the paragraph.

Effective: next paragraph.

Default: 1.

[Register]\n[HORPHANS]
Defines the minimum number of lines of the following paragraph that
should be kept together with any section heading introduced by the NH or
SH macros. If a section heading is placed close to the bottom of a page,
and there is insufficient space to accommodate both the heading and at
least HORPHANS lines of the following paragraph, before an automatic page
break, then the page break is forced before the heading.

Effective: next paragraph.

Default: 1.

Footnote Settings

[Register]\n[FL]
Defines the length of a footnote.

Effective: next footnote.

Default: \n[LL] ∗ 5/6.

[Register]\n[FI]
Defines the footnote indentation.

Effective: next footnote.

Default: 2 n.

[Register]\n[FF]
The footnote format:

0 Print the footnote number as a superscript; indent the foot-
note (default).

1 Print the number followed by a period (like 1.) and indent
the footnote.

2 Like 1, without an indentation.

32 The GNU Troff Manual

3 Like 1, but print the footnote number as a hanging paragraph.

Effective: next footnote.

Default: 0.

[Register]\n[FPS]
Defines the footnote point size. If the value is larger than or equal to
1000, divide it by 1000 to get a fractional point size.

Effective: next footnote.

Default: \n[PS]− 2.

[Register]\n[FVS]
Defines the footnote vertical spacing. If the value is larger than or equal
to 1000, divide it by 1000 to get a fractional point size.

Effective: next footnote.

Default: \n[FPS] + 2.

[Register]\n[FPD]
Defines the footnote paragraph spacing.

Effective: next footnote.

Default: \n[PD]/2.

Miscellaneous Registers

[Register]\n[MINGW]
Defines the minimum width between columns in a multi-column docu-
ment.

Effective: next page.

Default: 2 n.

[Register]\n[DD]
Sets the vertical spacing before and after a display, a tbl table, an eqn
equation, or a pic image.

Effective: next paragraph.

Default: 0.5 v.

4.6.4 Cover page macros

Use the following macros to create a cover page for your document in the
order shown.

[Macro].RP [no]
Specifies the report format for your document. The report format creates
a separate cover page. The default action (no RP macro) is to print a
subset of the cover page on page 1 of your document.

If you use the word no as an optional argument, groff prints a title
page but does not repeat any of the title page information (title, author,
abstract, etc.) on page 1 of the document.

Chapter 4: Macro Packages 33

[Macro].P1
(P-one) Prints the header on page 1. The default is to suppress the
header.

[Macro].DA [. . .]
(optional) Prints the current date, or the arguments to the macro if any,
on the title page (if specified) and in the footers. This is the default for
nroff.

[Macro].ND [. . .]
(optional) Prints the current date, or the arguments to the macro if any,
on the title page (if specified) but not in the footers. This is the default
for troff.

[Macro].TL
Specifies the document title. groff collects text following the TL macro
into the title, until reaching the author name or abstract.

[Macro].AU
Specifies the author’s name, which appears on the line (or lines) immedi-
ately following. You can specify multiple authors as follows:

.AU
John Doe
.AI
University of West Bumblefuzz
.AU
Martha Buck
.AI
Monolithic Corporation

...

[Macro].AI
Specifies the author’s institution. You can specify multiple institutions
in the same way that you specify multiple authors.

[Macro].AB [no]
Begins the abstract. The default is to print the word ABSTRACT, cen-
tered and in italics, above the text of the abstract. The word no as an
optional argument suppresses this heading.

[Macro].AE
Ends the abstract.

The following is example mark-up for a title page.

34 The GNU Troff Manual� �
.RP
.TL
The Inevitability of Code Bloat
in Commercial and Free Software
.AU
J. Random Luser
.AI
University of West Bumblefuzz
.AB
This report examines the long-term growth
of the code bases in two large, popular software
packages; the free Emacs and the commercial
Microsoft Word.
While differences appear in the type or order
of features added, due to the different
methodologies used, the results are the same
in the end.
.PP
The free software approach is shown to be
superior in that while free software can
become as bloated as commercial offerings,
free software tends to have fewer serious
bugs and the added features are in line with
user demand.
.AE

... the rest of the paper follows ...
 	
4.6.5 Body text

This section describes macros used to mark up the body of your document.
Examples include paragraphs, sections, and other groups.

4.6.5.1 Paragraphs

The following paragraph types are available.

[Macro].PP
Sets a paragraph with an initial indentation.

[Macro].LP
Sets a paragraph without an initial indentation.

[Macro].QP
Sets a paragraph that is indented at both left and right margins by the
amount of the register QI. The next paragraph or heading returns margins

Chapter 4: Macro Packages 35

to normal. QP inserts vertical space of amount set by register PD before
the paragraph.

[Macro].QS
[Macro].QE

These macros begin and end a quoted section. The QI register controls
the amount of indentation. Both QS and QE insert inter-paragraph vertical
space set by register PD. The text between QS and QE can be structured
further by use of the macros LP or PP.

[Macro].XP
Sets a paragraph whose lines are indented, except for the first line. This
is a Berkeley extension.

The following markup uses all four paragraph macros.� �
.NH 2
Cases used in the study
.LP
The following software and versions were
considered for this report.
.PP
For commercial software, we chose
.B "Microsoft Word for Windows" ,
starting with version 1.0 through the
current version (Word 2000).
.PP
For free software, we chose
.B Emacs ,
from its first appearance as a standalone
editor through the current version (v20).
See [Bloggs 2002] for details.
.QP
Franklin's Law applied to software:
software expands to outgrow both
RAM and disk space over time.
.LP
Bibliography:
.XP
Bloggs, Joseph R.,
.I "Everyone's a Critic" ,
Underground Press, March 2002.
A definitive work that answers all questions
and criticisms about the quality and usability of
free software.
 	

36 The GNU Troff Manual

The PORPHANS register (see Section 4.6.3 [ms Document Control Settings],
page 28) operates in conjunction with each of these macros, to inhibit the
printing of orphan lines at the bottom of any page.

4.6.5.2 Headings

Use headings to create a hierarchical structure for your document. The ms
macros print headings in bold, using the same font family and point size as
the body text.

The following describes the heading macros:

[Macro].NH curr-level
[Macro].NH S level0 . . .

Numbered heading. The argument is either a numeric argument to indi-
cate the level of the heading, or the letter S followed by numeric arguments
to set the heading level explicitly.

If you specify heading levels out of sequence, such as invoking ‘.NH 3’
after ‘.NH 1’, groff ms prints a warning on the standard error stream.

[String]*[SN]
[String]*[SN-DOT]
[String]*[SN-NO-DOT]

After invocation of NH, the assigned section number is made available in
the strings SN-DOT (as it appears in a printed section heading with default
formatting, followed by a terminating period), and SN-NO-DOT (with the
terminating period omitted). The string SN is also defined, as an alias for
SN-DOT; if preferred, you may redefine it as an alias for SN-NO-DOT, by
including the initialization

.als SN SN-NO-DOT

at any time before you would like the change to take effect.

[String]*[SN-STYLE]
You may control the style used to print section numbers, within numbered
section headings, by defining an appropriate alias for the string SN-STYLE.
The default style, in which the printed section number is followed by a
terminating period, is obtained by defining the alias

.als SN-STYLE SN-DOT

If you prefer to omit the terminating period, from section numbers ap-
pearing in numbered section headings, you may define the alias

.als SN-STYLE SN-NO-DOT

Any such change in section numbering style becomes effective from the
next use of NH, following redefinition of the alias for SN-STYLE.

[Macro].SH [match-level]
Unnumbered subheading.

Chapter 4: Macro Packages 37

The optional match-level argument is a GNU extension. It is a number
indicating the level of the heading, in a manner analogous to the curr-
level argument to NH. Its purpose is to match the point size, at which the
heading is printed, to the size of a numbered heading at the same level,
when the GROWPS and PSINCR heading size adjustment mechanism is in
effect. See Section 4.6.3 [ms Document Control Settings], page 28.

The HORPHANS register (see Section 4.6.3 [ms Document Control Settings],
page 28) operates in conjunction with the NH and SH macros, to inhibit the
printing of orphaned section headings at the bottom of any page.

4.6.5.3 Highlighting

The ms macros provide a variety of methods to highlight or emphasize text.

[Macro].B [txt [post [pre]]]
Sets its first argument in bold type. If you specify a second argument,
groff ms prints it in the previous font after the bold text, with no in-
tervening space (this allows you to set punctuation after the highlighted
text without highlighting the punctuation). Similarly, it prints the third
argument (if any) in the previous font before the first argument. For
example,

.B foo) (

prints ‘(foo)’.

If you give this macro no arguments, groff ms prints all text following in
bold until the next highlighting, paragraph, or heading macro.

[Macro].R [txt [post [pre]]]
Sets its first argument in roman (or regular) type. It operates similarly
to the B macro otherwise.

[Macro].I [txt [post [pre]]]
Sets its first argument in italic type. It operates similarly to the B macro
otherwise.

[Macro].BI [txt [post [pre]]]
Sets its first argument in bold italic type. It operates similarly to the
B macro otherwise.

[Macro].CW [txt [post [pre]]]
Sets its first argument in a constant-width typeface. It operates simi-
larly to the B macro otherwise. This is a Berkeley extension.

In groff ms you might prefer to change the font family to Courier—a
constant-width typeface—by setting the FAM string to ‘C’. You can then
use all four style macros above, returning to the default family (Times)
with ‘.ds FAM T’.

38 The GNU Troff Manual

[Macro].BX [txt]
Prints its argument and draws a box around it. If you want to box a
string that contains spaces, use a digit-width space (\0).

[Macro].UL [txt [post]]
Prints its first argument with an underline. If you specify a second argu-
ment, groff prints it in the previous font after the underlined text, with
no intervening space.

[Macro].LG
Prints all text following in larger type (two points larger than the current
point size) until the next font size, highlighting, paragraph, or heading
macro. You can specify this macro multiple times to enlarge the point
size as needed.

[Macro].SM
Prints all text following in smaller type (two points smaller than the
current point size) until the next type size, highlighting, paragraph, or
heading macro. You can specify this macro multiple times to reduce the
point size as needed.

[Macro].NL
Prints all text following in the normal point size (that is, the value of the
PS register).

[String]*[{]
[String]*[}]

Text enclosed with *{ and *} is printed as a superscript.

[String]*[<]
[String]*[>]

Text enclosed with *< and *> is printed as a subscript.

4.6.5.4 Lists

The IP macro handles duties for all lists.

[Macro].IP [marker [width]]
Themarker is usually a bullet glyph (\[bu]) for unordered lists, a number
(or auto-incrementing register) for numbered lists, or a word or phrase
for indented (glossary-style) lists.

The width specifies the indentation for the body of each list item; its
default unit is ‘n’. Once specified, the indentation remains the same for
all list items in the document until specified again.

The PORPHANS register (see Section 4.6.3 [ms Document Control Settings],
page 28) operates in conjunction with the IPmacro, to inhibit the printing
of orphaned list markers at the bottom of any page.

Chapter 4: Macro Packages 39

The following is an example of a bulleted list.

A bulleted list:
.IP \[bu] 2
lawyers
.IP \[bu]
guns
.IP \[bu]
money

Produces:

A bulleted list:

o lawyers

o guns

o money

The following is an example of a numbered list.

.nr step 1 1
A numbered list:
.IP \n[step] 3
lawyers
.IP \n+[step]
guns
.IP \n+[step]
money

Produces:

A numbered list:

1. lawyers

2. guns

3. money

Note the use of the auto-incrementing register in this example.

The following is an example of a glossary-style list.

A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
Firearms, preferably
large-caliber.
.IP money
Gotta pay for those
lawyers and guns!

40 The GNU Troff Manual

Produces:

A glossary-style list:

lawyers
Two or more attorneys.

guns Firearms, preferably large-caliber.

money
Gotta pay for those lawyers and guns!

In the last example, the IP macro places the definition on the same line
as the term if it has enough space; otherwise, it breaks to the next line and
starts the definition below the term. This may or may not be the effect
you want, especially if some of the definitions break and some do not. The
following examples show two possible ways to force a break.

The first workaround uses the br request to force a break after printing
the term or label.� �

A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
.br
Firearms, preferably large-caliber.
.IP money
Gotta pay for those lawyers and guns!
 	

The second workaround uses the \p escape to force the break. Note the
space following the escape; this is important. If you omit the space, groff
prints the first word on the same line as the term or label (if it fits) then
breaks the line.� �

A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
\p Firearms, preferably large-caliber.
.IP money
Gotta pay for those lawyers and guns!
 	

To set nested lists, use the RS and RE macros. See Section 4.6.5.5 [Inden-
tation values in ms], page 41.

For example:

Chapter 4: Macro Packages 41� �
.IP \[bu] 2
Lawyers:
.RS
.IP \[bu]
Dewey,
.IP \[bu]
Cheatham,
.IP \[bu]
and Howe.
.RE
.IP \[bu]
Guns
 	

Produces:

o Lawyers:

o Dewey,

o Cheatham,

o and Howe.

o Guns

4.6.5.5 Indentation values

In many situations, you may need to indentation a section of text while
still wrapping and filling. See Section 4.6.5.4 [Lists in ms], page 38, for an
example of nested lists.

[Macro].RS
[Macro].RE

These macros begin and end an indented section. The PI register controls
the amount of indentation, allowing the indented text to line up under
hanging and indented paragraphs.

See Section 4.6.5.7 [ms Displays and Keeps], page 42, for macros to in-
dentation and turn off filling.

4.6.5.6 Tab Stops

Use the ta request to define tab stops as needed. See Section 5.10 [Tabs and
Fields], page 97.

[Macro].TA
Use this macro to reset the tab stops to the default for ms (every 5n). You
can redefine the TA macro to create a different set of default tab stops.

42 The GNU Troff Manual

4.6.5.7 Displays and keeps

Use displays to show text-based examples or figures (such as code listings).

Displays turn off filling, so lines of code are displayed as-is without in-
serting br requests in between each line. Displays can be kept on a single
page, or allowed to break across pages.

[Macro].DS L
[Macro].LD
[Macro].DE

Left-justified display. The ‘.DS L’ call generates a page break, if necessary,
to keep the entire display on one page. The LD macro allows the display
to break across pages. The DE macro ends the display.

[Macro].DS I
[Macro].ID
[Macro].DE

Indents the display as defined by the DI register. The ‘.DS I’ call gen-
erates a page break, if necessary, to keep the entire display on one page.
The ID macro allows the display to break across pages. The DE macro
ends the display.

[Macro].DS B
[Macro].BD
[Macro].DE

Sets a block-centered display: the entire display is left-justified, but in-
dented so that the longest line in the display is centered on the page. The
‘.DS B’ call generates a page break, if necessary, to keep the entire display
on one page. The BD macro allows the display to break across pages. The
DE macro ends the display.

[Macro].DS C
[Macro].CD
[Macro].DE

Sets a centered display: each line in the display is centered. The ‘.DS C’
call generates a page break, if necessary, to keep the entire display on one
page. The CD macro allows the display to break across pages. The DE
macro ends the display.

[Macro].DS R
[Macro].RD
[Macro].DE

Right-justifies each line in the display. The ‘.DS R’ call generates a page
break, if necessary, to keep the entire display on one page. The RD macro
allows the display to break across pages. The DE macro ends the display.

On occasion, you may want to keep other text together on a page. For
example, you may want to keep two paragraphs together, or a paragraph

Chapter 4: Macro Packages 43

that refers to a table (or list, or other item) immediately following. The ms
macros provide the KS and KE macros for this purpose.

[Macro].KS
[Macro].KE

The KS macro begins a block of text to be kept on a single page, and the
KE macro ends the block.

[Macro].KF
[Macro].KE

Specifies a floating keep; if the keep cannot fit on the current page, groff
holds the contents of the keep and allows text following the keep (in the
source file) to fill in the remainder of the current page. When the page
breaks, whether by an explicit bp request or by reaching the end of the
page, groff prints the floating keep at the top of the new page. This
is useful for printing large graphics or tables that do not need to appear
exactly where specified.

You can also use the ne request to force a page break if there is not
enough vertical space remaining on the page.

Use the following macros to draw a box around a section of text (such as
a display).

[Macro].B1
[Macro].B2

Marks the beginning and ending of text that is to have a box drawn
around it. The B1 macro begins the box; the B2 macro ends it. Text in
the box is automatically placed in a diversion (keep).

4.6.5.8 Tables, figures, equations, and references

The ms macros support the standard groff preprocessors: tbl, pic, eqn,
and refer. You mark text meant for preprocessors by enclosing it in pairs
of tags as follows.

[Macro].TS [H]
[Macro].TE

Denotes a table, to be processed by the tbl preprocessor. The optional
argument H to TS instructs groff to create a running header with the
information up to the TH macro. groff prints the header at the beginning
of the table; if the table runs onto another page, groff prints the header
on the next page as well.

[Macro].PS
[Macro].PE

Denotes a graphic, to be processed by the pic preprocessor. You can
create a pic file by hand, using the AT&T pic manual available on the
Web as a reference, or by using a graphics program such as xfig.

44 The GNU Troff Manual

[Macro].EQ [align]
[Macro].EN

Denotes an equation, to be processed by the eqn preprocessor. The op-
tional align argument can be C, L, or I to center (the default), left-justify,
or indent the equation.

[Macro].[
[Macro].]

Denotes a reference, to be processed by the refer preprocessor. The GNU
refer(1) man page provides a comprehensive reference to the preprocessor
and the format of the bibliographic database.

4.6.5.9 An example multi-page table

The following is an example of how to set up a table that may print across
two or more pages.� �

.TS H
allbox expand;
cb | cb .
Text ...of heading...
_
.TH
.T&
l | l .
... the rest of the table follows...
.CW
.TE
 	

4.6.5.10 Footnotes

The ms macro package has a flexible footnote system. You can specify either
numbered footnotes or symbolic footnotes (that is, using a marker such as a
dagger symbol).

[String]*[*]
Specifies the location of a numbered footnote marker in the text.

[Macro].FS
[Macro].FE

Specifies the text of the footnote. The default action is to create a num-
bered footnote; you can create a symbolic footnote by specifying a mark
glyph (such as \[dg] for the dagger glyph) in the body text and as an
argument to the FS macro, followed by the text of the footnote and the
FE macro.

Chapter 4: Macro Packages 45

You can control how groff prints footnote numbers by changing the
value of the FF register. See Section 4.6.3 [ms Document Control Settings],
page 28.

Footnotes can be safely used within keeps and displays, but you should
avoid using numbered footnotes within floating keeps. You can set a second
** marker between a ** and its corresponding FS entry; as long as each
FS macro occurs after the corresponding ** and the occurrences of FS are
in the same order as the corresponding occurrences of **.

4.6.6 Page layout

The default output from the ms macros provides a minimalist page layout:
it prints a single column, with the page number centered at the top of each
page. It prints no footers.

You can change the layout by setting the proper registers and strings.

4.6.6.1 Headers and footers

For documents that do not distinguish between odd and even pages, set the
following strings:

[String]*[LH]
[String]*[CH]
[String]*[RH]

Sets the left, center, and right headers.

[String]*[LF]
[String]*[CF]
[String]*[RF]

Sets the left, center, and right footers.

For documents that need different information printed in the even and
odd pages, use the following macros:

[Macro].OH 'left'center'right'
[Macro].EH 'left'center'right'
[Macro].OF 'left'center'right'
[Macro].EF 'left'center'right'

The OH and EH macros define headers for the odd and even pages; the OF
and EF macros define footers for the odd and even pages. This is more
flexible than defining the individual strings.

You can replace the quote (') marks with any character not appearing in
the header or footer text.

To specify custom header and footer processing, redefine the following
macros:

[Macro].PT
[Macro].HD

46 The GNU Troff Manual

[Macro].BT
The PT macro defines a custom header; the BT macro defines a custom
footer. These macros must handle odd/even/first page differences if nec-
essary.

The HD macro defines additional header processing to take place after
executing the PT macro.

4.6.6.2 Margins

You control margins using a set of registers. See Section 4.6.3 [ms Document
Control Settings], page 28, for details.

4.6.6.3 Multiple columns

The ms macros can set text in as many columns as do reasonably fit on the
page. The following macros are available; all of them force a page break if
a multi-column mode is already set. However, if the current mode is single-
column, starting a multi-column mode does not force a page break.

[Macro].1C
Single-column mode.

[Macro].2C
Two-column mode.

[Macro].MC [width [gutter]]
Multi-column mode. If you specify no arguments, it is equivalent to the
2C macro. Otherwise, width is the width of each column and gutter is the
space between columns. The MINGW number register controls the default
gutter width.

4.6.6.4 Creating a table of contents

The facilities in the ms macro package for creating a table of contents are
semi-automated at best. Assuming that you want the table of contents
to consist of the document’s headings, you need to repeat those headings
wrapped in XS and XE macros.

[Macro].XS [page]
[Macro].XA [page]
[Macro].XE

These macros define a table of contents or an individual entry in the
table of contents, depending on their use. The macros are very simple;
they cannot indent a heading based on its level. The easiest way to work
around this is to add tabs to the table of contents string. The following
is an example:

Chapter 4: Macro Packages 47� �
.NH 1
Introduction
.XS
Introduction
.XE
.LP
...
.CW
.NH 2
Methodology
.XS
Methodology
.XE
.LP
...
 	

You can manually create a table of contents by beginning with the XS
macro for the first entry, specifying the page number for that entry as the
argument to XS. Add subsequent entries using the XA macro, specifying
the page number for that entry as the argument to XA. The following is
an example:� �

.XS 1
Introduction
.XA 2
A Brief History of the Universe
.XA 729
Details of Galactic Formation
...
.XE
 	

[Macro].TC [no]
Prints the table of contents on a new page, setting the page number to i
(Roman lowercase numeral one). You should usually place this macro at
the end of the file, since groff is a single-pass formatter and can only
print what has been collected up to the point that the TC macro appears.

The optional argument no suppresses printing the title specified by the
string register TOC.

[Macro].PX [no]
Prints the table of contents on a new page, using the current page num-
bering sequence. Use this macro to print a manually generated table of
contents at the beginning of your document.

48 The GNU Troff Manual

The optional argument no suppresses printing the title specified by the
string register TOC.

The Groff and Friends HOWTO includes a sed script that automatically
inserts XS and XE macro entries after each heading in a document.

Altering the NH macro to automatically build the table of contents is
perhaps initially more difficult, but would save a great deal of time in the
long run if you use ms regularly.

4.6.6.5 Strings and Special Characters

The ms macros provide the following predefined strings. You can change
the string definitions to help in creating documents in languages other than
English.

[String]*[REFERENCES]
Contains the string printed at the beginning of the references (bibliogra-
phy) page. The default is ‘References’.

[String]*[ABSTRACT]
Contains the string printed at the beginning of the abstract. The default
is ‘ABSTRACT’.

[String]*[TOC]
Contains the string printed at the beginning of the table of contents.

[String]*[MONTH1]
[String]*[MONTH2]
[String]*[MONTH3]
[String]*[MONTH4]
[String]*[MONTH5]
[String]*[MONTH6]
[String]*[MONTH7]
[String]*[MONTH8]
[String]*[MONTH9]
[String]*[MONTH10]
[String]*[MONTH11]
[String]*[MONTH12]

Prints the full name of the month in dates. The default is ‘January’,
‘February’, etc.

The following special characters are available4:

[String]*[-]
Prints an em dash.

4 For an explanation what special characters are see Section 7.1 [Special Characters],
page 201.

Chapter 4: Macro Packages 49

[String]*[Q]
[String]*[U]

Prints typographer’s quotes where available, and neutral quotes other-
wise. *Q is the left quote and *U is the right quote.

Improved accent marks are available in the ms macros.

[Macro].AM
Specify this macro at the beginning of your document to enable extended
accent marks and special characters. This is a Berkeley extension.

To use the accent marks, place them after the character being accented.

Note that groff’s native support for accents is superior to the following
definitions.

The following accent marks are available after invoking the AM macro:

[String]*[']
Acute accent.

[String]*[`]
Grave accent.

[String]*[^]
Circumflex.

[String]*[,]
Cedilla.

[String]*[~]
Tilde.

[String]*[:]
Umlaut.

[String]*[v]
Hacek.

[String]*[_]
Macron (overbar).

[String]*[.]
Underdot.

[String]*[o]
Ring above.

The following are standalone characters available after invoking the AM
macro:

[String]*[?]
Upside-down question mark.

50 The GNU Troff Manual

[String]*[!]
Upside-down exclamation point.

[String]*[8]
German ß ligature.

[String]*[3]
Yogh.

[String]*[Th]
Uppercase thorn.

[String]*[th]
Lowercase thorn.

[String]*[D-]
Uppercase eth.

[String]*[d-]
Lowercase eth.

[String]*[q]
Hooked o.

[String]*[ae]
Lowercase æ ligature.

[String]*[Ae]
Uppercase Æ ligature.

4.6.7 Differences from AT&T ms

This section lists the (minor) differences between the groff ms macros and
AT&T troff ms macros.

• The internals of groff ms differ from the internals of AT&T ‘troff -ms’.
Documents that depend upon implementation details of AT&T troff
ms may not format properly with groff ms.

• The general error-handling policy of groff ms is to detect and report
errors, rather than silently to ignore them.

• groff ms does not work in compatibility mode (that is, with the -C
option).

• There is no special support for terminal devices.

• groff ms does not provide cut marks.

• Multiple line spacing is not supported. Use a larger vertical spacing
instead.

• Some Unix ms documentation says that the CW and GW registers can be
used to control the column width and gutter width, respectively. These
registers are not used in groff ms.

Chapter 4: Macro Packages 51

• Macros that cause a reset (paragraphs, headings, etc.) may change the
indentation. Macros that change the indentation do not increment or
decrement the indentation, but rather set it absolutely. This can cause
problems for documents that define additional macros of their own. The
solution is to use not the in request but instead the RS and RE macros.

• To make groff ms use the default page offset (which also specifies the
left margin), the PO register must stay undefined until the first -ms
macro is evaluated. This implies that PO should not be used early in
the document, unless it is changed also: accessing an undefined register
automatically defines it.

• Displays are left-adjusted by default, not indented. In AT&T troff ms,
‘.DS’ is synonymous with ‘.DS I’; in groff ms, it is synonymous with
‘.DS L’.

• Right-adjusted displays are available. The AT&T troff ms manual ob-
serves that “it is tempting to assume that ‘.DS R’ will right adjust lines,
but it doesn’t work”.5 In groff ms, it does.

[Register]\n[GS]
This register is set to 1 by the groff ms macros, but it is not used by
the AT&T troff ms macros. Documents that need to determine whether
they are being formatted with AT&T ‘troff -ms’ or groff ms should use
this register.

Emulations of a few ancient Bell Labs macros can be re-enabled by calling
the otherwise undocumented SC section-header macro. Calling SC enables
UC for marking up a product or application name, and the pair P1/P2 for
surrounding code example displays.

These are not enabled by default because (a) they were not documented
in the original msmanual6 and (b) the P1 and UCmacros collide with different
macros with the same names in the Berkeley version of ms.

These groff emulations are sufficient to give back the 1976 Kernighan &
Cherry eqn manual Typesetting Mathematics—User’s Guide its section
headings, and restore some text that had gone missing as arguments of
undefined macros. No warranty express or implied is offered as to how well
the typographic details these produce match the original Bell Labs macros.

4.6.7.1 troff macros not appearing in groff

Macros missing from groff ms are specific to Bell Labs and Berkeley. The
macros known to be missing are:

.TM Technical memorandum; a cover sheet style

.IM Internal memorandum; a cover sheet style

5 “Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff”;
M. E. Lesk; Bell Laboratories; 1978.

6 Ibid.

52 The GNU Troff Manual

.MR Memo for record; a cover sheet style

.MF Memo for file; a cover sheet style

.EG Engineer’s notes; a cover sheet style

.TR Computing Science Technical Report; a cover sheet style

.OK Other keywords

.CS Cover sheet information

.MH Murray Hill Bell Laboratories postal address

4.6.7.2 groff macros not appearing in AT&T troff

The groff ms macros have a few minor extensions to the AT&T ‘troff -ms’
macros.

[Macro].AM
Use improved accent marks. See Section 4.6.6.5 [ms Strings and Special
Characters], page 48, for details. This is a Berkeley extension.

[Macro].CW
Set text in a constant-width font (Courier). This is a Berkeley exten-
sion.

[Macro].IX
Write an indexing term to the standard error stream. You can write a
script to capture and process an index generated in this manner.

The following additional registers appear in groff ms.

[Register]\n[MINGW]
Specifies a minimum space (“gutter width”) between columns (for multi-
column output); this takes the place of the GW register that was introduced
in the Seventh Edition Unix (1979) version of the AT&T ‘troff -ms’
macros.

Several new strings are available as well. You can change these to handle
(for example) the local language. See Section 4.6.6.5 [ms Strings and Special
Characters], page 48, for details.

4.6.8 ms Naming Conventions

The following conventions are used for names of macros, strings, and regis-
ters. External names available to documents that use the groff ms macros
contain only uppercase letters and digits.

Internally the macros are divided into modules. The naming conventions
are as follows.

• Names used only within one module are of the form module*name.

Chapter 4: Macro Packages 53

• Names used outside the module in which they are defined are of the
form module@name.

• Names associated with a particular environment are of the form envi-
ronment:name; these are used only within the par module.

• name does not have a module prefix.

• Constructed names used to implement arrays are of the form ar-
ray!index.

Thus the groff ms macros reserve the following names.

• Names containing the characters *, @, and :.

• Names containing only uppercase letters and digits.

55

5 gtroff Reference

This chapter covers all of the facilities of the GNU troff formatting engine.
Users of macro packages may skip it if not interested in details.

5.1 Text
AT&T troff was designed to take input as it would be composed on a
typewriter, including the teletypewriters used as early computer terminals,
and relieve the user of having to be concerned with the precise line length
that the final version of the document would use, where words should be
hyphenated, and how to achieve straight margins on both the left and right
sides of the page. Early in its development, the program gained the ability to
prepare output for a phototypesetter; a document could then be prepared for
output to either a teletypewriter, a phototypesetter, or both. GNU troff
continues this tradition of permitting an author to compose a single master
version of a document which can then be rendered for a variety of output
formats or devices.

GNU troff input files contain text with directives to control the type-
setter interspersed throughout. Even in the absence of such directives, GNU
troff still processes its input in several ways, by filling, hyphenating, break-
ing, and adjusting it.

5.1.1 Filling

When GNU troff starts up, it obtains information about the device for
which it is preparing output.1 A crucial example is the length of the output
line, such as “6.5 inches”.

GNU troff processes its input by reading words. To GNU troff, a
word is any sequence of one or more characters that aren’t spaces, tabs, or
newlines. They are separated by spaces, tabs, newlines, or file boundaries.2

GNU troff reads its input character by character, collecting words as it
goes, and fits as many of them together on one output line as it can—this
is known as filling.

It is a truth universally acknowledged
that a single man in possession of a
good fortune must be in want of a wife.

⇒ It is a truth universally acknowledged that a
⇒ single man in possession of a good fortune must
⇒ be in want of a wife.

1 Section 8.2 [Device and Font Files], page 222.
2 There are also escape sequences which can function as word characters, word-separating

space, or neither—the last simply have no effect on GNU troff’s idea of whether its
input is within a word or not.

56 The GNU Troff Manual

5.1.2 Sentences

A passionate debate has raged for decades among writers of the English lan-
guage over whether more space should appear between adjacent sentences
than between words within a sentence, and if so, how much, and what other
circumstances should influence this spacing.3 GNU troff follows the exam-
ple of AT&T troff, attempting to detect the boundaries between sentences,
and supplying additional inter-sentence space.

Hello, world!
Welcome to groff.

⇒ Hello, world! Welcome to groff.

GNU troff does this by flagging certain characters (normally ‘!’, ‘?’,
and ‘.’) as end-of-sentence characters; when GNU troff encounters one of
these characters at the end of a line, or one of them is followed by two or
more spaces on the same input line, it appends a normal space followed by
an inter-sentence space in the formatted output.

R. Harper subscribes to a maxim of P. T. Barnum.
⇒ R. Harper subscribes to a maxim of P. T. Barnum.

In the above example, inter-sentence space is not added after ‘P.’ or ‘T.’
because the periods do not occur at the end of an input line, nor are they
followed by two or more spaces. Let’s imagine that we’ve heard something
about defamation from Mr. Harper’s attorney, recast the sentence, and re-
flowed it in our text editor.

I submit that R. Harper subscribes to a maxim of P. T.
Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

“Barnum” doesn’t begin a sentence! What to do? Let us meet our first
escape sequence, a series of input characters that give special instructions to
GNU troff instead of being copied as-is to output device glyphs.4 An escape
sequence begins with the backslash character \ by default, an uncommon
character in natural language text, and is always followed by at least one
other character, hence the term “sequence”.

The non-printing input break escape sequence \& can be used after
an end-of-sentence character to defeat end-of-sentence detection on a per-
instance basis. We can therefore rewrite our input more defensively.

3 A well-researched jeremiad appreciated by groff contributors on both sides of the
sentence-spacing debate can be found at https://web.archive.org/web/

20171217060354/http://www.heracliteanriver.com/?p=324.
4 This statement oversimplifes; there are escape sequences whose purpose is precisely to

produce glyphs on the output device, and input characters that aren’t part of escape
sequences can undergo a great deal of processing before getting to the output.

https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324
https://web.archive.org/web/20171217060354/http://www.heracliteanriver.com/?p=324

Chapter 5: gtroff Reference 57

I submit that R. Harper subscribes to a maxim of P.\& T.\&
Barnum.

⇒ I submit that R. Harper subscribes to a maxim of
⇒ P. T. Barnum.

Was the additional \& after ‘P.’ necessary? No, but what if further editing
and reflowing places ‘P.’ at the end of an input line? Ensuring that sentence
boundaries are robust to editing activities and reliably understood both by
GNU troff and the document author is a goal of the advice presented in
Section 5.1.9 [Input Conventions], page 63.

Normally, the occurrence of a visible non-end-of-sentence character (as
opposed to a space or tab) after an end-of-sentence character cancels detec-
tion of the end of a sentence. For example, it would be incorrect for GNU
troff to infer the end of a sentence after the dot in ‘3.14159’. However,
several characters are treated transparently after the occurence of an end-of-
sentence character. That is, GNU troff does not cancel the end-of-sentence
detection process when it processes them. This is because such characters
are often used as footnote markers or to close quotations and parentheticals.
The default set is ‘"’, ‘'’, ‘)’, ‘]’, ‘*’, \[dg], \[dd], \[rq], and \[cq]. The
last four are examples of special characters, escape sequences whose purpose
is to obtain glyphs that are not easily typed at the keyboard, or which have
special meaning to GNU troff (like \ itself).

\[lq]The idea that the poor should have leisure has always
been shocking to the rich.\[rq]
(Bertrand Russell, 1935)

⇒ "The idea that the poor should have
⇒ leisure has always been shocking to
⇒ the rich." (Bertrand Russell, 1935)

The sets of characters that potentially end sentences or are transparent to
sentence endings are configurable. See the cflags request in Section 5.17.4
[Using Symbols], page 119. To change the additional inter-sentence spac-
ing amount—even to remove it entirely—see the ss request in Section 5.7
[Manipulating Filling and Adjustment], page 83.

5.1.3 Hyphenation

It is uncommon for the most recent word collected from the input to exactly
fill the output line. Typically, there is enough room left over for part of the
next word. The process of splitting a word so that it appears partially on one
line (with a hyphen to indicate to the reader that the word has been broken)
and the remainder of the word on the next is hyphenation. GNU troff uses
a hyphenation algorithm and language-specific pattern files (based on but
simplified from those used in TEX) to decide which words can be hyphenated
and where.

Hyphenation does not always occur even when the hyphenation rules for
a word allow it; it can be disabled, and when not disabled there are several

58 The GNU Troff Manual

parameters that can prevent it. See Section 5.8 [Manipulating Hyphenation],
page 88.

5.1.4 Breaking

Once an output line has been filled, whether or not hyphenation has occurred
on that line, the next word read from the input will be placed on a different
output line; this is called a break. In this manual and in roff discussions
generally, a “break” if not further qualified always refers to the termination
of an output line. After an automatic break, GNU troff adjusts the line
if applicable (see below), and then resumes collecting and filling text on the
next output line.

Sometimes, a line cannot be broken automatically. This typically does
not happen with natural language text unless the output line length has
been manipulated to be extremely short, but it can with specialized text
like program source code. We can use perl at the shell prompt to contrive
an example of failure to break the output line. The regular output is omitted
below.

$ perl -e 'print "\$" x 80, "\n";' | nroff
error troff: <standard input>:1: warning [p 1, 0.0i]:
error can't break line

The remedy for these cases is to tell GNU troff where the line may be
broken without hyphens. This is done with the non-printing break point
escape sequence; see Section 5.8 [Manipulating Hyphenation], page 88.

What if the document author wants to stop filling lines temporarily, for
instance to start a new paragraph? There are several solutions. A blank
line not only causes a break, but by default it also outputs a one-line ver-
tical space (effectively a blank line). This behavior can be modified with
the blank line macro request blm. See Section 5.24.4 [Blank Line Traps],
page 167. Macro packages may discourage or disable the blank line method
of paragraphing in favor of their own macros.

A line that begins with a space causes a break and the space is output at
the beginning of the next line. This space isn’t adjusted (see below); however,
this behavior can be modified with the leading spaces macro request lsm.
See Section 5.24.5 [Leading Spaces Traps], page 167. Again, macro packages
may provide other methods of producing indented paragraphs.

What if there is no next input word? Or the file ends before enough words
have been collected to fill an output line? The end of the file also causes
a break, resolving both of these cases. Certain requests also cause breaks,
implicitly or explicitly. This is discussed in Section 5.7 [Manipulating Filling
and Adjustment], page 83.

5.1.5 Adjustment

Once GNU troff has filled a line and performed an automatic break, it
tries to adjust that line; additional inter-sentence space is inserted (and, in

Chapter 5: gtroff Reference 59

the default adjustment mode, inter-word spaces are widened until the text
reaches the right margin). Extra spaces between words are preserved, but
trailing spaces on an input line are ignored. Leading spaces are handled
as noted above. Text can be adjusted to the left or right margins only
(instead of both), or centered; see Section 5.7 [Manipulating Filling and
Adjustment], page 83. As a rule, an output line that has not been filled will
not be adjusted.

5.1.6 Tab Stops

GNU troff translates horizontal tab characters, also called simply “tabs”,
in the input into movements to the next tab stop. These tab stops are by
default located every half inch across the page. With them, simple tables can
be made easily.5 However, this method can be deceptive as the appearance
(and width) of the text on a terminal and the results from GNU troff can
vary greatly, particularly when proportional typefaces are used.

A further possible difficulty is that lines beginning with tab characters
are still filled, possibly producing unexpected results.6

1 2 3
4 5

The above example produces the following output.

1 2 3 4 5

GNU troff provides sufficient facilities for sophisticated table compo-
sition; Section 5.10 [Tabs and Fields], page 97. There are many details to
track when using such low-level features, so most users turn to the tbl(1)
preprocessor (type man tbl at the command line) for table construction.

5.1.7 Requests and Macros

We have now encountered almost all of the syntax there is in roff languages,
with one conspicuous exception.

A request is an instruction to the formatter that occurs on a line by itself
after a control character.7 A control character must occur at the beginning
of an input line to be recognized. The regular control character has a coun-
terpart, the no-break control character, which suppresses the break that is
implied by some requests. The default control characters are the dot (.) and
the neutral apostrophe ('), the latter being the no-break control character.
These characters were chosen because it is uncommon for lines of text in
natural languages to begin with periods or apostrophes.

GNU troff requests, combined with its escape sequences, comprise the
control language of the formatter. Of key importance are the requests that

5 “Tab” is short for “tabulation”, revealing the term’s origin as a spacing mechanism for
table arrangement.

6 It works well, on the other hand, for a traditional practice of paragraph composition
wherein a tab is used to create a first-line indentation.

7 Or occasionally as part of another request, such as if or while.

60 The GNU Troff Manual

define macros. Macros are invoked like requests, enabling the request reper-
toire to be extended or overridden.8

A macro can be thought of as an abbreviation that is automatically re-
placed with what it stands for. In roff systems, the process of replacing a
macro is known as interpolation.9 Interpolations are handled as soon as they
are recognized, and once performed, a roff formatter scans the replacement
for further requests, macro calls, and escape sequences.

In roff systems, the de request defines a macro.10

.de DATE
2020-11-14
..

The foregoing input produces no output by itself; all we have done is store
some information. Observe the pair of dots that end the macro definition.
This is a default; you can specify your own terminator for the macro defini-
tion.

.de NAME ENDNAME
Heywood Jabuzzoff
.ENDNAME

In fact, the ending marker is no mere string, but can itself be a macro
that will be automatically called if it is defined at the time the enclosing
macro definition begins.

.de END
Big Rip
..
.de START END
Big Bang
.END
.START

⇒ Big Rip Big Bang

In the foregoing example, “Big Rip” printed before “Big Bang” because its
macro was called first. Consider what would happen if we dropped END from
the ‘.de START’ line and added .. after .END. Would the order change?

Macro definitions can be collected into macro packages, roff input files
designed to produce no output themselves but instead ease the preparation
of other roff documents. Macro packages can be loaded by supplying the
-m option to groff or troff. Alternatively, a groff document wishing to
use a macro package can load it with the mso (“macro source”) request.

8 Argument handling in macros is more flexible but also more complex. See
Section 5.5.1.1 [Request and Macro Arguments], page 72.

9 Some escape sequences undergo interpolation as well.
10 GNU troff offers several others. See Section 5.21 [Writing Macros], page 148.

Chapter 5: gtroff Reference 61

.de DATE
2020-10-05
..
.
.de BOSS
D.\& Kruger,
J.\& Peterman
..
.
.de NOTICE
Approved:
.DATE
by
.BOSS
..
.
Insert tedious regulatory compliance paragraph here.

.NOTICE

Insert tedious liability disclaimer paragraph here.

.NOTICE
⇒ Insert tedious regulatory compliance paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman
⇒
⇒ Insert tedious liability disclaimer paragraph here.
⇒
⇒ Approved: 2020-10-05 by D. Kruger, J. Peterman

The document started with a series of lines beginning with the control char-
acter. Three macros were defined, with a de request declaring the macro’s
name, and the “body” of the macro starting on the next line and continuing
until a line with two dots ‘..’ marked its end. The text proper began only
after the macros were defined; this is a common pattern. Only the NOTICE
macro was called “directly” by the document; DATE and BOSS were called
only by NOTICE itself. Escape sequences were used in BOSS, two levels of
macro interpolation deep.

The advantage in typing and maintenance economy may not be obvious
from such a short example, but imagine a much longer document with dozens
of such paragraphs, each requiring a notice of managerial approval. Consider
what must happen if you are in charge of generating a new version of such
a document with a different date, for a different boss. With well-chosen
macros, you only have to change each datum in one place.

62 The GNU Troff Manual

In practice, we would probably use strings (see Section 5.19 [Strings],
page 137) instead of macros for such simple interpolations; what is impor-
tant here is to glimpse the potential of macros and the power of recursive
interpolation.

We could have defined DATE and BOSS in the opposite order; perhaps less
obviously, we could also have defined them after NOTICE. “Forward refer-
ences” like this are acceptable because the body of a macro definition is
not (completely) interpreted, but stored instead (see Section 5.21.1 [Copy
Mode], page 151). While a macro is being defined, requests are not inter-
preted and macros not interpolated, whereas some commonly used escape
sequences are interpolated. roff systems also support mutually recursive
macros—as long as you have a way to break the recursion (see Section 5.20
[Conditionals and Loops], page 143). For maintainable roff documents, ar-
range your macro definitions so that they are most easily understood when
read from beginning to end.

5.1.8 Input Encodings

The groff front end calls the preconv preprocessor to handle most input
character encoding issues without troubling the user. Direct input to GNU
troff, on the other hand, must be in one of two encodings it can recognize.

cp1047 The code page 1047 input encoding works only on EBCDIC plat-
forms (and conversely, the other input encodings don’t work with
EBCDIC); the file cp1047.tmac is by default loaded at start-up.

latin1 ISO Latin-1, an encoding for Western European languages, is
the default input encoding on non-EBCDIC platforms; the file
latin1.tmac is loaded at start-up.

Any document that is encoded in ISO 646:1991 (a descendant of USAS
X3.4-1968 or “US-ASCII”), or, equivalently, uses only code points from the
“C0 Controls” and “Basic Latin” parts of the Unicode character set is also a
valid ISO Latin-1 document; the standards are interchangeable in their first
128 code points.11

The remaining encodings require support that is not built-in to the GNU
troff executable; instead, they use macro packages.

latin2 To use ISO Latin-2, an encoding for Central and Eastern Euro-
pean languages, either use ‘.mso latin2.tmac’ at the very be-
ginning of your document or use ‘-mlatin2’ as a command-line
argument to groff.

latin5 To use ISO Latin-5, an encoding for the Turkish language, either
use ‘.mso latin5.tmac’ at the very beginning of your document
or use ‘-mlatin5’ as a command-line argument to groff.

11 The semantics of certain punctuation code points have gotten stricter with the suc-
cessive standards, a cause of some frustration among man page writers; see the
groff char(7) man page.

Chapter 5: gtroff Reference 63

latin9 ISO Latin-9 is intended (at least in Europe) to replace Latin-1.
Its main difference from Latin-1 is that Latin-9 contains the Euro
character. To use this encoding, either use ‘.mso latin9.tmac’
at the very beginning of your document or use ‘-mlatin9’ as a
command-line argument to groff.

Some input encoding characters may not be available for a particular
output device.

groff -Tlatin1 -mlatin9 ...

The above command fails if you use the Euro character in the input. Usually,
this limitation is present only for devices that have a limited repertoire of
output glyphs (e.g., -Tascii and -Tlatin1); for other devices it is usually
sufficient to install proper fonts that contain the necessary glyphs.

Due to the importance of the Euro glyph in Europe, groff is distributed
with a PostScript font called freeeuro.pfa, which provides various glyph
shapes for the Euro. In other words, Latin-9 encoding is supported for the
-Tps device out of the box (Latin-2 isn’t).

The -Tutf8 device supports characters from all other input encodings.
-Tdvi has support for both Latin-2 and Latin-9 if the command-line -mec
is used also to load the file ec.tmac (which flips to the EC fonts).

5.1.9 Input Conventions

Since GNU troff fills text automatically, it is common practice in roff
languages to not attempt careful visual composition of text in input files: it
is the esthetic appeal of the formatted output that matters. Instead, troff
input should be arranged such that it is easy for authors and maintainers to
compose and develop the document, understand the syntax of roff requests,
macro calls, and preprocessor languages used, and predict the behavior of
the formatter. Several traditions have accrued in service of these goals.

• Break input lines after sentence-ending punctuation to ease their recog-
nition (see Section 5.1.2 [Sentences], page 56). It is frequently convenient
to break after colons and semicolons as well, as these typically precede
independent clauses. Consider breaking after commas; they often occur
in lists that become easy to scan when itemized by line, or constitute
supplements to the sentence that are added, deleted, or updated to clar-
ify it. Parenthetical and quoted phrases are also good candidates for
placement on input lines by themselves.

• Set your text editor’s line length to 72 characters or fewer.12 This limit,
combined with the previous advice regarding breaking around punctu-
ation, makes it less common that an input line will wrap in your text
editor, and thus will help you perceive excessively long constructions in
your text. Recall that natural languages originate in speech, not writ-

12 Emacs: fill-column: 72; Vim: textwidth=72

64 The GNU Troff Manual

ing, and that punctuation is correlated with pauses for breathing and
changes in prosody.

• Use \& after ‘!’, ‘?’, and ‘.’ if they are followed by space or tab characters
and don’t end a sentence.

• Do not attempt to format the input in a WYSIWYG manner (i.e., don’t
try using spaces to get proper indentation or align columns of a table).

• Comment your document. It is never too soon to apply comments
to record information of use to future document maintainers (including
your future self). We thus introduce another escape sequence, \", which
causes GNU troff to ignore the remainder of the input line.

• Use the empty request to visually manage separation of material in
input files. The groff project’s own documents use an empty request
between sentences and after macro definitions, and two empty requests
between paragraphs or other requests or macro calls that will introduce
vertical space into the document.

Combined with the comment escape, you can include whole-line com-
ments in your document, and even “comment out” sections of your
document by prefixing lines with empty requests and the comment es-
cape.

An example sufficiently long to illustrate the above suggestions in practice
follows. For the purpose of fitting the example in the margins of this manual
with the font used for its typeset version, we have shortened the input line
length to 58 columns. We have also used an arrow → to indicate a tab
character.

Chapter 5: gtroff Reference 65

.\" raw roff input example

.\" nroff this_file.roff | less

.\" groff this_file.roff > this_file.ps
→The theory of relativity is intimately connected with the
theory of space and time.
.
I shall therefore begin with a brief investigation of the
origin of our ideas of space and time,
although in doing so I know that I introduce a
controversial subject.
.
.\" remainder of paragraph elided
.
.

→The experiences of an individual appear to us arranged in
a series of events;
in this series the single events which we remember appear
to be ordered according to the criterion of
\[lq]earlier\[rq] and \[lq]later\[rq], \" punct swapped
which cannot be analysed further.
.
There exists,
therefore,
for the individual,
an I-time,
or subjective time.
.
This itself is not measurable.
.
I can,
indeed,
associate numbers with the events,
in such a way that the greater number is associated with
the later event than with an earlier one;
but the nature of this association may be quite arbitrary.
.
This association I can define by means of a clock by
comparing the order of events furnished by the clock with
the order of a given series of events.
.
We understand by a clock something which provides a series
of events which can be counted,
and which has other properties of which we shall speak
later.
.\" Albert Einstein, _The Meaning of Relativity_, 1922

66 The GNU Troff Manual

5.2 Measurements
gtroff (like many other programs) requires numeric parameters to specify
various measurements. Most numeric parameters13 may have ameasurement
unit attached. These units are specified as a single character that immedi-
ately follows the number or expression. Each of these units are understood,
by gtroff, to be a multiple of its basic unit. So, whenever a different mea-
surement unit is specified gtroff converts this into its basic units. This
basic unit, represented by a ‘u’, is a device dependent measurement, which
is quite small, ranging from 1/75 th to 1/72000 th of an inch. The values may
be given as fractional numbers; however, fractional basic units are always
rounded to integers.

Some of the measurement units are independent of any of the current
settings (e.g., type size) of GNU troff.

Although GNU troff’s basic unit is device-dependent, it may still be
smaller than the smallest unit the device is capable of producing. The reg-
ister .H specifies how many groff basic units constitute the current device’s
basic unit horizontally, and the register .V specifies this value vertically.

i Inches. An antiquated measurement unit still in use in certain
backwards countries with incredibly low-cost computer equip-
ment. One inch is defined to be 2.54 cm (worldwide since 1964).

c Centimeters. One centimeter is about 0.3937 in.

p Points. This is a typesetter’s measurement used for measure
type size. It is 72 points to an inch.

P Pica. Another typesetting measurement. 6 picas to an inch (and
12 points to a pica).

s
z See Section 5.18.2 [Fractional Type Sizes], page 136, for a dis-

cussion of these units.

f Fractions. Value is 65536. See Section 5.28 [Colors], page 177,
for usage.

The other measurements understood by gtroff depend on settings cur-
rently in effect in gtroff. These are very useful for specifying measurements
that should look proper with any size of text.

m Ems. This unit is equal to the current font size in points. So
called because it is approximately the width of the letter ‘m’ in
the current font.

n Ens. In groff, this is half of an em.

v Vertical space. This is equivalent to the current line spacing.
See Section 5.18 [Sizes], page 133.

M 100ths of an em.
13 those that specify vertical or horizontal motion or a type size

Chapter 5: gtroff Reference 67

5.2.1 Default Units

Many requests take a default unit. While this can be helpful at times, it
can cause strange errors in some expressions. For example, the line length
request expects em units. Here are several attempts to get a line length of
3.5 inches and their results:

3.5i ⇒ 3.5i
7/2 ⇒ 0i
7/2i ⇒ 0i
(7 / 2)u ⇒ 0i
7i/2 ⇒ 0.1i
7i/2u ⇒ 3.5i

Everything is converted to basic units first. In the above example it is
assumed that 1 i equals 240 u, and 1m equals 10 p (thus 1m equals 33 u).
The value 7 i/2 is first handled as 7 i/2m, then converted to 1680 u/66 u,
which is 25 u, and this is approximately 0.1 i. As can be seen, a scaling
indicator after a closing parenthesis is simply ignored.

Thus, the safest way to specify measurements is to always attach a scaling
indicator. If you want to multiply or divide by a certain scalar value, use ‘u’
as the unit for that value.

5.3 Expressions
gtroff has most arithmetic operators common to other languages:

• Arithmetic: ‘+’ (addition), ‘-’ (subtraction), ‘/’ (division), ‘*’ (multipli-
cation), ‘%’ (modulo).

gtroff only provides integer arithmetic. The internal type used for
computing results is ‘int’, which is usually a 32-bit signed integer.

• Comparison: ‘<’ (less than), ‘>’ (greater than), ‘<=’ (less than or equal),
‘>=’ (greater than or equal), ‘=’ (equal), ‘==’ (the same as ‘=’).

• Logical: ‘&’ (logical and), ‘:’ (logical or).

• Unary operators: ‘-’ (negating, i.e., changing the sign), ‘+’ (just for
completeness; does nothing in expressions), ‘!’ (logical not; this works
only within if and while requests).14 See below for the use of unary
operators in motion requests.

The logical not operator, as described above, works only within if and
while requests. Furthermore, it may appear only at the beginning of
an expression, and negates the entire expression. Attempting to insert
the ‘!’ operator within the expression results in a ‘numeric expression
expected’ warning. This maintains compatibility with AT&T troff.

Example:

14 For example, ‘!(-1)’ evaluates to ‘true’ because GNU troff treats both negative
numbers and zero as ‘false’.

68 The GNU Troff Manual

.nr X 1

.nr Y 0

.\" This does not work as expected.

.if (\n[X])&(!\n[Y]) .nop X only

.

.\" Use this construct instead.

.if (\n[X]=1)&(\n[Y]=0) .nop X only

• Extrema: ‘>?’ (maximum), ‘<?’ (minimum).

Example:

.nr x 5

.nr y 3

.nr z (\n[x] >? \n[y])

The register z now contains 5.

• Scaling: (c;e). Evaluate e using c as the default scaling indicator. If
c is missing, ignore scaling indicators in the evaluation of e.

Parentheses may be used as in any other language. However, in gtroff
they are necessary to ensure order of evaluation. gtroff has no operator
precedence; expressions are evaluated left to right. This means that gtroff
evaluates ‘3+5*4’ as if it were parenthesized like ‘(3+5)*4’, not as ‘3+(5*4)’,
as might be expected.

For many requests that cause a motion on the page, the unary operators
‘+’ and ‘-’ work differently if leading an expression. They then indicate a
motion relative to the current position (down or up, respectively).

Similarly, a leading ‘|’ operator indicates an absolute position. For ver-
tical movements, it specifies the distance from the top of the page; for hor-
izontal movements, it gives the distance from the beginning of the input
line.

‘+’ and ‘-’ are also treated differently by the following requests and es-
capes: bp, in, ll, lt, nm, nr, pl, pn, po, ps, pvs, rt, ti, \H, \R, and \s.
Here, leading plus and minus signs indicate increments and decrements.

See Section 5.6.1 [Setting Registers], page 76, for some examples.

[Escape]\B’anything’
Return 1 if anything is a valid numeric expression; or 0 if anything is
empty or not a valid numeric expression.

Due to the way arguments are parsed, spaces are not allowed in expres-
sions, unless the entire expression is surrounded by parentheses.

See Section 5.5.1.1 [Request and Macro Arguments], page 72, and
Section 5.20 [Conditionals and Loops], page 143.

Chapter 5: gtroff Reference 69

5.4 Identifiers
Like any other language, gtroff has rules for properly formed identifiers.
In gtroff, an identifier can be made up of almost any printable character,
with the exception of the following characters:

• Whitespace characters (spaces, tabs, and newlines).

• Backspace (ASCII 0x08 or EBCDIC 0x16) and character code 0x01.

• The following input characters are invalid and are ignored if groff runs
on a machine based on the ISO 646, 8859, or 10646 character encodings,
causing a warning message of type ‘input’ (see Section 5.33 [Debugging],
page 188, for more details): 0x00, 0x0B, 0x0D–0x1F, 0x80–0x9F.

And here are the invalid input characters if groff runs on an EBCDIC
host: 0x00, 0x08, 0x09, 0x0B, 0x0D–0x14, 0x17–0x1F, 0x30–0x3F.

Currently, some of these reserved codepoints are used internally, thus
making it non-trivial to extend GNU troff to cover Unicode or other
character sets and encodings that use characters of these ranges.15

Invalid characters are removed before parsing; an identifier foo, followed
by an invalid character, followed by bar is treated as foobar.

For example, any of the following is valid.

br
PP
(l
end-list
@_

An identifier longer than two characters with a closing bracket (‘]’) in its
name can’t be accessed with escape sequences that expect an identifier as a
parameter. For example, ‘\[foo]]’ accesses the glyph ‘foo’, followed by ‘]’,
whereas ‘\C’foo]’’ really asks for glyph ‘foo]’.

To avoid problems with the refer preprocessor, macro names should not
start with ‘[’ or ‘]’. Due to backwards compatibility, everything after ‘.[’
and ‘.]’ is handled as a special argument to refer. For example, ‘.[foo’
makes refer to start a reference, using ‘foo’ as a parameter.

[Escape]\A’ident’
Test whether an identifier ident is valid in gtroff. It expands to the
character 1 or 0 according to whether its argument (usually delimited by
quotes) is or is not acceptable as the name of a string, macro, diversion,
number register, environment, or font. It returns 0 if no argument is
given. This is useful for looking up user input in some sort of associative
table.

\A’end-list’
⇒ 1

15 Consider what happens when a C1 control 0x80–0x9F is necessary as a continuation
byte in a UTF-8 sequence.

70 The GNU Troff Manual

See Section 5.5.3 [Escapes], page 73, for details on parameter delimiting
characters.

Identifiers in gtroff can be any length, but, in some contexts, gtroff
needs to be told where identifiers end and text begins (and in different ways
depending on their length):

• Single character.

• Two characters. Must be prefixed with ‘(’ in some situations.

• Arbitrary length (gtroff only). Must be bracketed with ‘[’ and ‘]’ in
some situations. Any length identifier can be put in brackets.

Unlike many other programming languages, undefined identifiers are
silently ignored or expanded to nothing. When gtroff finds an undefined
identifier, it emits a warning, doing the following:

• If the identifier is a string, macro, or diversion, gtroff defines it as
empty.

• If the identifier is a number register, gtroff defines it with a value of 0.

See Section 5.33.1 [Warnings], page 191., Section 5.6.2 [Interpolating Reg-
isters], page 79, and Section 5.19 [Strings], page 137.

Macros, strings, and diversions (and boxes) share the same name space.

.de xxx

. nop foo

..

.

.di xxx
bar
.br
.di
.
.xxx

⇒ bar

As the previous example shows, GNU troff reuses the identifier ‘xxx’,
changing it from a macro to a diversion. No warning is emitted! The con-
tents of the first macro definition are lost.

See Section 5.6.2 [Interpolating Registers], page 79, and Section 5.19
[Strings], page 137.

5.5 Embedded Commands
Most documents need more functionality beyond filling, adjusting and im-
plicit line breaking. In order to gain further functionality, gtroff allows
commands to be embedded into the text, in two ways.

The first is a request that takes up an entire line, and does some large-
scale operation (e.g. break lines, start new pages).

Chapter 5: gtroff Reference 71

The other is an escape that can be usually embedded anywhere in the
text; most requests can accept it even as an argument. Escapes generally do
more minor operations like sub- and superscripts, print a symbol, etc.

5.5.1 Requests

A request line begins with a control character, which is either a single quote
(‘’’, the no-break control character) or a period (‘.’, the normal control
character). These can be changed; see Section 5.11 [Character Translations],
page 101, for details. After this there may be optional tabs or spaces followed
by an identifier, which is the name of the request. This may be followed by
any number of space-separated arguments (no tabs here).

Since spaces and tabs are ignored after a control character, it is common
practice to use them to structure the source of documents or macro files.

.de foo

. tm This is foo.

..

.

.

.de bar

. tm This is bar.

..

Another possibility is to use the blank line macro request blm by assigning
an empty macro to it.

.de do-nothing

..

.blm do-nothing \" activate blank line macro

.de foo

. tm This is foo.

..

.de bar

. tm This is bar.

..

.blm \" deactivate blank line macro

See Section 5.24.4 [Blank Line Traps], page 167.

To begin a line with a control character without it being interpreted,
precede it with \&. This represents a non-printing input break, which means
it does not affect the output.

In most cases the period is used as a control character. Several requests
cause a break implicitly; using the single quote control character prevents
this.

72 The GNU Troff Manual

[Register]\n[.br]
A read-only number register, which is set to 1 if a macro is called with
the normal control character (as defined with the cc request), and set
to 0 otherwise.

This allows reliable modification of requests.

.als bp*orig bp

.de bp

. tm before bp

. ie \\n[.br] .bp*orig

. el ’bp*orig

. tm after bp

..

Using this register outside of a macro makes no sense (it always returns
zero in such cases).

If a macro is called as a string (that is, using *), the value of the .br
register is inherited from the caller.

5.5.1.1 Request and Macro Arguments

Arguments to requests and macros are separated by space characters.16 Only
one space between arguments is necessary; additional ones are harmless and
ignored.

A macro argument that must contain space characters can either be en-
closed in double quotes—this is not true of requests—or one of several vari-
eties of escape with a spacing function can be used instead.

Consider calls to a hypothetical macro uh:

.uh The Mouse Problem

.uh "The Mouse Problem"

.uh The\~Mouse\~Problem

.uh The\ Mouse\ Problem

The first line is the uh macro being called with three arguments, ‘The’,
‘Mouse’, and ‘Problem’. The remainder call the uhmacro with one argument,
‘The Mouse Problem’. The last solution, using escaped spaces, is “classical”
in the sense that it can be found in documents prepared for AT&T troff.
Nevertheless, it is not optimal in most situations, since ‘\ ’ inserts a fixed-
width, non-breaking space character that can’t be adjusted. GNU troff
provides a different command \~ to insert a adjustable, non-breaking space.17

A double quote that isn’t preceded by a space doesn’t start a macro
argument. If not closing a string, it is printed literally.

16 Plan 9 troff also allows tabs for argument separation—GNU troff intentionally
doesn’t support this.

17 \~ is also supported by Heirloom Doctools troff 050915 (September 2005) and mandoc
1.14.5 (March 2019) but not by Plan 9 troff, Solaris troff, DWB troff or onroff,
or neatroff.

Chapter 5: gtroff Reference 73

For example,

.xxx a" "b c" "de"fg"

has the arguments ‘a"’, ‘b c’, ‘de’, and ‘fg"’. Don’t rely on this obscure
behaviour!

There are two possibilities to get a double quote reliably.

• Enclose the whole argument with double quotes and use two consecutive
double quotes to represent a single one. This traditional solution has
the disadvantage that double quotes don’t survive argument expansion
again if called in compatibility mode (using the -C option of groff):

.de xx

. tm xx: ‘\\$1’ ‘\\$2’ ‘\\$3’

.

. yy "\\$1" "\\$2" "\\$3"

..

.de yy

. tm yy: ‘\\$1’ ‘\\$2’ ‘\\$3’

..

.xx A "test with ""quotes""" .
⇒ xx: ‘A’ ‘test with "quotes"’ ‘.’
⇒ yy: ‘A’ ‘test with ’ ‘quotes""’

If not in compatibility mode, you get the expected result

xx: ‘A’ ‘test with "quotes"’ ‘.’
yy: ‘A’ ‘test with "quotes"’ ‘.’

since gtroff preserves the input level.

• Use the double-quote glyph \(dq. This works with and without com-
patibility mode enabled since GNU troff doesn’t convert \(dq back to
a double-quote input character.

This method won’t work with AT&T troff since it doesn’t define the
‘dq‘ special character.

Double quotes in the ds request are handled differently. See Section 5.19
[Strings], page 137, for more details.

5.5.2 Macros

gtroff has a macro facility for defining a series of lines that can be invoked
by name. They are called in the same manner as requests—arguments also
may be passed basically in the same manner.

See Section 5.21 [Writing Macros], page 148, and Section 5.5.1.1 [Request
and Macro Arguments], page 72.

5.5.3 Escapes

Escapes may occur anywhere in the input to gtroff. They usually begin
with a backslash and are followed by a single character, which indicates

74 The GNU Troff Manual

the function to be performed. The escape character can be changed; see
Section 5.11 [Character Translations], page 101.

Escape sequences that require an identifier as a parameter accept three
possible syntax forms.

• The next single character is the identifier.

• If this single character is an opening parenthesis, take the following two
characters as the identifier. There is no closing parenthesis after the
identifier.

• If this single character is an opening bracket, take all characters until a
closing bracket as the identifier.

Examples:

\fB
\n(XX
*[TeX]

Other escapes may require several arguments and/or some special format.
In such cases the argument is traditionally enclosed in single quotes (and
quotes are always used in this manual for the definitions of escape sequences).
The enclosed text is then processed according to what that escape expects.
Example:

\l’1.5i\(bu’

The quote character can be replaced with any other character that does
not occur in the argument (even a newline or a space character) in the
following escapes: \o, \b, and \X. This makes e.g.

A caf
\o
e\’

in Paris
⇒ A café in Paris

possible, but it is better not to use this feature to avoid confusion.

The following escape sequences (which are handled similarly to characters
since they don’t take a parameter) are also allowed as delimiters: \%, ‘\ ’,
\|, \^, \{, \}, \’, \‘, \-, _, \!, \?, \), \/, \,, \&, \:, \~, \0, \a, \c, \d,
\e, \E, \p, \r, \t, and \u. Again, don’t use these if possible.

No newline characters as delimiters are allowed in the following escapes:
\A, \B, \Z, \C, and \w.

Finally, the escapes \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and \x can’t
use the following characters as delimiters:

• The digits 0-9.

• The (single-character) operators ‘+-/*%<>=&:().’.

• The space, tab, and newline characters.

Chapter 5: gtroff Reference 75

• All escape sequences except \%, \:, \{, \}, \’, \‘, \-, _, \!, \/, \c,
\e, and \p.

To have a backslash (actually, the current escape character) appear in
the output several escapes are defined: \\, \e or \E. These are very similar,
and only differ with respect to being used in macros or diversions. See
Section 5.11 [Character Translations], page 101, for an exact description of
those escapes.

See Section 5.34 [Implementation Differences], page 193, Section 5.21.1
[Copy Mode], page 151, Section 5.25 [Diversions], page 170, and Section 5.4
[Identifiers], page 69.

5.5.3.1 Comments

Probably one of the most18 common forms of escapes is the comment.

[Escape]\"
Start a comment. Everything to the end of the input line is ignored.

This may sound simple, but it can be tricky to keep the comments from
interfering with the appearance of the final output.

If the escape is to the right of some text or a request, that portion of the
line is ignored, but the space leading up to it is noticed by gtroff. This
only affects the ds and as request and its variants.

One possibly irritating idiosyncrasy is that tabs must not be used to line
up comments. Tabs are not treated as whitespace between the request
and macro arguments.

A comment on a line by itself is treated as a blank line, because after
eliminating the comment, that is all that remains:

Test
\" comment
Test

produces

Test

Test

To avoid this, it is common to start the line with .\", which causes the
line to be treated as an undefined request and thus ignored completely.

Another commenting scheme seen sometimes is three consecutive single
quotes (’’’) at the beginning of a line. This works, but gtroff gives a
warning about an undefined macro (namely ’’), which is harmless, but
irritating.

18 Unfortunately, this is a lie. But hopefully future gtroff hackers will believe it :-)

76 The GNU Troff Manual

[Escape]\#
To avoid all this, gtroff has a new comment mechanism using the \#
escape. This escape works the same as \" except that the newline is also
ignored:

Test
\# comment
Test

produces

Test Test

as expected.

[Request].ig [end]
Ignore all input until gtroff encounters the macro named .end on a line
by itself (or .. if end is not specified). This is useful for commenting out
large blocks of text:

text text text...
.ig
This is part of a large block
of text that has been
temporarily(?) commented out.

We can restore it simply by removing
the .ig request and the ".." at the
end of the block.
..
More text text text...

produces

text text text... More text text text...

The commented-out block of text does not cause a break.

The input is read in copy-mode; auto-incremented registers are affected
(see Section 5.6.3 [Auto-increment], page 79).

5.6 Registers
Numeric variables in GNU troff are called registers. There are a number of
built-in registers, supplying anything from the date to details of formatting
parameters.

See Section 5.4 [Identifiers], page 69, for details on register identifiers.

5.6.1 Setting Registers

Define or set registers using the nr request or the \R escape.

Although the following requests and escapes can be used to create regis-
ters, simply using an undefined register will cause it to be set to zero.

Chapter 5: gtroff Reference 77

[Request].nr ident value
[Escape]\R'ident value'

Set number register ident to value. If ident doesn’t exist, GNU troff
creates it.

The argument to \R usually has to be enclosed in quotes. See Section 5.5.3
[Escapes], page 73, for details on parameter delimiting characters.

(Later, we will discuss additional forms of nr and \R that can change a
register’s value after it is dereferenced. Section 5.6.3 [Auto-increment],
page 79.)

The \R escape doesn’t produce an input token in GNU troff; in other
words, it vanishes completely after GNU troff has processed it.

For example, the following two lines are equivalent:

.nr a (((17 + (3 * 4))) % 4)
\R'a (((17 + (3 * 4))) % 4)'

⇒ 1

The complete transparency of \R can cause surprising effects if you use
number registers like .k, which get evaluated at the time they are ac-
cessed.

.ll 1.6i

.
aaa bbb ccc ddd eee fff ggg hhh\R':k \n[.k]'
.tm :k == \n[:k]

⇒ :k == 126950
.
.br
.
aaa bbb ccc ddd eee fff ggg hhh\h'0'\R':k \n[.k]'
.tm :k == \n[:k]

⇒ :k == 15000

If you process this with the PostScript device (-Tps), there will be
a line break eventually after ggg in both input lines. However, after
processing the space after ggg, the partially collected line is not overfull
yet, so GNU troff continues to collect input until it sees the space (or
in this case, the newline) after hhh. At this point, the line is longer than
the line length, and the line gets broken.

In the first input line, since the \R escape leaves no traces, the check for
the overfull line hasn’t been done yet at the point where \R gets handled,
and you get a value for the .k number register that is even greater than
the current line length.

In the second input line, the insertion of \h'0' to emit an invisible zero-
width space forces GNU troff to check the line length, which in turn
causes the start of a new output line. Now .k returns the expected value.

Both nr and \R have two additional special forms to increment or decre-
ment a register.

78 The GNU Troff Manual

[Request].nr ident +value
[Request].nr ident -value
[Escape]\R'ident +value'
[Escape]\R'ident -value'

Increment (decrement) register ident by value.

.nr a 1

.nr a +1
\na

⇒ 2

To assign the negated value of a register to another register, some care
must be taken to get the desired result:

.nr a 7

.nr b 3

.nr a -\nb
\na

⇒ 4
.nr a (-\nb)
\na

⇒ -3

The surrounding parentheses prevent the interpretation of the minus sign
as a decrementing operator. An alternative is to start the assignment
with a ‘0’:

.nr a 7

.nr b -3

.nr a \nb
\na

⇒ 4
.nr a 0\nb
\na

⇒ -3

[Request].rr ident
Remove number register ident. If ident doesn’t exist, the request is ig-
nored. Technically, only the name is removed; the register’s contents are
still accessible under aliases created with aln, if any.

[Request].rnn ident1 ident2
Rename number register ident1 to ident2. If either ident1 or ident2
doesn’t exist, the request is ignored.

[Request].aln new old
Create an alias new for an existing number register old, causing the names
to refer to the same stored object. If old is undefined, a warning of type
‘reg’ is generated and the request is ignored. See Section 5.33 [Debug-
ging], page 188, for information about warnings.

Chapter 5: gtroff Reference 79

To remove a number register alias, call rr on its name. A number regis-
ter’s contents do not become inaccessible until it has no more names.

5.6.2 Interpolating Registers

Numeric registers can be accessed via the \n escape.

[Escape]\ni
[Escape]\n(id
[Escape]\n[ident]

Interpolate number register with name ident (one-character name i, two-
character name id). This means that the value of the register is expanded
in-place while gtroff is parsing the input line. Nested assignments (also
called indirect assignments) are possible.

.nr a 5

.nr as \na+\na
\n(as

⇒ 10

.nr a1 5

.nr ab 6

.ds str b

.ds num 1
\n[a\n[num]]

⇒ 5
\n[a*[str]]

⇒ 6

5.6.3 Auto-increment

Number registers can also be auto-incremented and auto-decremented. The
increment or decrement value can be specified with a third argument to the
nr request or \R escape.

[Request].nr ident value incr
Set number register ident to value; the increment for auto-incrementing
is set to incr. The \R escape doesn’t support this notation.

To activate auto-incrementing, the escape \n has a special syntax form.

[Escape]\n+i
[Escape]\n-i
[Escape]\n+(id
[Escape]\n-(id
[Escape]\n+[ident]
[Escape]\n-[ident]

Before interpolating, increment or decrement ident (one-character name i,
two-character name id) by the auto-increment value as specified with
the nr request (or the \R escape). If no auto-increment value has been
specified, these syntax forms are identical to \n.

80 The GNU Troff Manual

For example,

.nr a 0 1

.nr xx 0 5

.nr foo 0 -2
\n+a, \n+a, \n+a, \n+a, \n+a
.br
\n-(xx, \n-(xx, \n-(xx, \n-(xx, \n-(xx
.br
\n+[foo], \n+[foo], \n+[foo], \n+[foo], \n+[foo]

produces

1, 2, 3, 4, 5
-5, -10, -15, -20, -25
-2, -4, -6, -8, -10

To change the increment value without changing the value of a register
(a in the example), the following can be used:

.nr a \na 10

5.6.4 Assigning Formats

When a register is used, it is always textually replaced (or interpolated) with
a representation of that number. This output format can be changed to a
variety of formats (numbers, Roman numerals, etc.). This is done using the
af request.

[Request].af ident format
Change the output format of a number register. The first argument
ident is the name of the number register to be changed, and the second
argument format is the output format. The following output formats are
available:

1 Decimal arabic numbers. This is the default format: 0, 1, 2,
3, . . .

0...0 Decimal numbers with as many digits as specified. So, ‘00’
would result in printing numbers as 01, 02, 03, . . .

In fact, any digit instead of zero does work; gtroff only
counts how many digits are specified. As a consequence, af’s
default format ‘1’ could be specified as ‘0’ also (and exactly
this is returned by the \g escape, see below).

I Upper-case Roman numerals: 0, I, II, III, IV, . . .

i Lower-case Roman numerals: 0, i, ii, iii, iv, . . .

A Upper-case letters: 0, A, B, C, . . . , Z, AA, AB, . . .

a Lower-case letters: 0, a, b, c, . . . , z, aa, ab, . . .

Chapter 5: gtroff Reference 81

Omitting the number register format causes a warning of type ‘missing’.
See Section 5.33 [Debugging], page 188, for more details. Specifying a
nonexistent format causes an error.

The following example produces ‘10, X, j, 010’:

.nr a 10

.af a 1 \" the default format
\na,
.af a I
\na,
.af a a
\na,
.af a 001
\na

The largest number representable for the ‘i’ and ‘I’ formats is 39999 (or
−39999); Unix troff uses ‘z’ and ‘w’ to represent 10000 and 5000 in
Roman numerals, and so does gtroff. Currently, the correct glyphs of
Roman numeral five thousand and Roman numeral ten thousand (Uni-
code code points U+2182 and U+2181, respectively) are not available.

If ident doesn’t exist, it is created.

Changing the output format of a read-only register causes an error. It
is necessary to first copy the register’s value to a writable register, then
apply the af request to this other register.

[Escape]\gi
[Escape]\g(id
[Escape]\g[ident]

Return the current format of the specified register ident (one-character
name i, two-character name id). For example, ‘\ga’ after the previous
example would produce the string ‘000’. If the register hasn’t been defined
yet, nothing is returned.

5.6.5 Built-in Registers

The following lists some built-in registers that are not described elsewhere
in this manual. Any register that begins with a ‘.’ is read-only. A complete
listing of all built-in registers can be found in tie E [Register Index], page 249.

\n[.F] This string-valued register returns the current input file name.

\n[.H] Number of basic units per horizontal unit of output device res-
olution. See Section 5.2 [Measurements], page 66.

\n[.R] The number of number registers available. This is always 10000
in GNU troff; it exists for backward compatibility.

\n[.U] If gtroff is called with the -U command-line option to activate
unsafe mode, the number register .U is set to 1, and to zero
otherwise. See Section 2.1 [Groff Options], page 7.

82 The GNU Troff Manual

\n[.V] Number of basic units per vertical unit of output device resolu-
tion. See Section 5.2 [Measurements], page 66.

\n[seconds]
The number of seconds after the minute, normally in the range 0
to 59, but can be up to 61 to allow for leap seconds. Initialized
at start-up of gtroff.

\n[minutes]
The number of minutes after the hour, in the range 0 to 59.
Initialized at start-up of gtroff.

\n[hours]
The number of hours past midnight, in the range 0 to 23. Ini-
tialized at start-up of gtroff.

\n[dw] Day of the week (1–7).

\n[dy] Day of the month (1–31).

\n[mo] Current month (1–12).

\n[year] The current year.

\n[yr] The current year minus 1900. Unfortunately, the documentation
of Unix Version 7’s troff had a year 2000 bug: It incorrectly
claimed that yr contains the last two digits of the year. That
claim has never been true of either AT&T troff or GNU troff.
Old troff input that looks like this:

’\" The following line stopped working after 1999
This document was formatted in 19\n(yr.

can be corrected as follows:

This document was formatted in \n[year].

or, to be portable to older troff versions, as follows:

.nr y4 1900+\n(yr
This document was formatted in \n(y4.

\n[.c]
\n[c.] The current input line number. Register ‘.c’ is read-only,

whereas ‘c.’ (a gtroff extension) is writable also, affecting both
‘.c’ and ‘c.’.

\n[ln] The current output line number after a call to the nm request to
activate line numbering.

See Section 5.31 [Miscellaneous], page 184, for more information
about line numbering.

\n[.x] The major version number. For example, if the version number
is 1.03 then .x contains ‘1’.

Chapter 5: gtroff Reference 83

\n[.y] The minor version number. For example, if the version number
is 1.03 then .y contains ‘03’.

\n[.Y] The revision number of groff.

\n[$$] The process ID of gtroff.

\n[.g] Always 1. Macros should use this to determine whether they are
running under GNU troff.

\n[.A] If the command-line option -a is used to produce an ASCII ap-
proximation of the output, this is set to 1, zero otherwise. See
Section 2.1 [Groff Options], page 7.

\n[.O] This read-only register is set to the suppression nesting level (see
escapes \O). See Section 5.27 [Suppressing output], page 176.

\n[.P] This register is set to 1 (and to 0 otherwise) if the current page is
actually being printed, i.e., if the -o option is being used to only
print selected pages. See Section 2.1 [Groff Options], page 7, for
more information.

\n[.T] If gtroff is called with the -T command-line option, the number
register .T is set to 1, and zero otherwise. See Section 2.1 [Groff
Options], page 7.

5.7 Manipulating Filling and Adjustment
Various ways of causing breaks were given in Section 5.1.4 [Breaking],
page 58. The br request likewise causes a break. Several other requests
also cause breaks, but implicitly. These are bp, ce, cf, fi, fl, in, nf, rj,
sp, ti, and trf.

[Request].br
Break the current line, i.e., the input collected so far is emitted without
adjustment.

If the no-break control character is used, gtroff suppresses the break:

a
’br
b

⇒ a b

Initially, gtroff fills and adjusts text to both margins. Filling can be
disabled via the nf request and re-enabled with the fi request.

[Request].fi
[Register]\n[.u]

Activate fill mode (which is the default). This request implicitly enables
adjusting; it also inserts a break in the text currently being filled. The
read-only number register .u is set to 1.

84 The GNU Troff Manual

The fill mode status is associated with the current environment (see
Section 5.26 [Environments], page 174).

See Section 5.14 [Line Control], page 109, for interaction with the \c
escape.

[Request].nf
Activate no-fill mode. Input lines are output as-is, retaining line breaks
and ignoring the current line length. This request implicitly disables
adjusting; it also causes a break. The number register .u is set to 0.

The fill mode status is associated with the current environment (see
Section 5.26 [Environments], page 174).

See Section 5.14 [Line Control], page 109, for interaction with the \c
escape.

[Request].ad [mode]
[Register]\n[.j]

Set adjusting mode.

Activation and deactivation of adjusting is done implicitly with calls to
the fi or nf requests.

mode can have one of the following values:

l Adjust text to the left margin. This produces what is tradi-
tionally called ragged-right text.

r Adjust text to the right margin, producing ragged-left text.

c Center filled text. This is different to the ce request, which
only centers text without filling.

b
n Justify to both margins. This is the default used by gtroff.

Finally, mode can be the numeric argument returned by the .j register.

Using ad without argument is the same as saying ‘.ad \n[.j]’. In par-
ticular, gtroff adjusts lines in the same way it did before adjusting was
deactivated (with a call to na, say). For example, this input code

Chapter 5: gtroff Reference 85

.de AD

. br

. ad \\$1

..

.

.de NA

. br

. na

..

.
textA
.AD r
.nr ad \n[.j]
textB
.AD c
textC
.NA
textD
.AD \" back to centering
textE
.AD \n[ad] \" back to right justifying
textF

produces the following output:

textA
textB

textC
textD

textE
textF

As just demonstrated, the current adjustment mode is available in the
read-only number register .j; it can be stored and subsequently used to
set adjustment.

The adjustment mode status is associated with the current environment
(see Section 5.26 [Environments], page 174).

[Request].na
Disable adjusting. This request won’t change the current adjustment
mode: A subsequent call to ad uses the previous adjustment setting.

The adjustment mode status is associated with the current environment
(see Section 5.26 [Environments], page 174).

[Request].brp
[Escape]\p

Break, adjusting the current line per the current adjustment mode.

With \p, this break will happen at the next word boundary. The \p itself
is removed entirely, adding neither a break nor a space where it appears

86 The GNU Troff Manual

in input; it can thus be placed in the middle of a word to cause a break
at the end of that word.

In most cases this produces very ugly results since gtroff doesn’t have
a sophisticated paragraph building algorithm (as TEX has, for example);
instead, gtroff fills and adjusts a paragraph line by line:

This is an uninteresting sentence.
This is an uninteresting sentence.\p
This is an uninteresting sentence.

is formatted as

This is an uninteresting sentence. This is an
uninteresting sentence.
This is an uninteresting sentence.

[Request].ss word-space-size [sentence-space-size]
[Register]\n[.ss]
[Register]\n[.sss]

Set the sizes of spaces between words and sentences. Their units are
twelfths of the space width parameter of the current font. Initially both
the word-space-size and sentence-space-size are 12. Negative values are
not permitted. The request is ignored if there are no arguments.

The first argument, the inter-word space size, is a minimum; if automat-
ically adjusted, it may increase.

The optional second argument sets the amount of additional space sep-
arating sentences on the same output line in fill mode. If the second
argument is omitted, sentence-space-size is set to word-space-size.

The read-only number registers .ss and .sss hold the values of minimal
inter-word space and additional inter-sentence space, respectively. These
parameters are associated with the current environment (see Section 5.26
[Environments], page 174), and rounded down to the nearest multiple
of 12 on terminal output devices.

Additional inter-sentence spacing is used only in fill mode, and only if the
output line is not full when the end of a sentence occurs in the input. If a
sentence ends at the end of an input line, then both an inter-word space
and an inter-sentence space are added to the output; if two spaces follow
the end of a sentence in the middle of an input line, then the second space
becomes an inter-sentence space in the output. Additional inter-sentence
space is not adjusted, but the inter-word space that always precedes it
may be. Further input spaces after the second, if present, are adjusted
as normal.

If a second argument is never given to the ss request, GNU troff sep-
arates sentences as AT&T troff does. In input to GNU troff, as with
AT&T troff, a sentence should always be followed by either a newline or
two spaces.

A related application of the ss request is to insert discardable horizontal
space; i.e., space that is discarded at a line break. For example, some

Chapter 5: gtroff Reference 87

footnote styles collect the notes into a single paragraph with large spaces
between each.

.ie n .ll 50n

.el .ll 2.75i

.ss 12 48
1. J. Fict. Ch. Soc. 6 (2020), 3\[en]14.
2. Better known for other work.

The result has obvious inter-sentence spacing.

1. J. Fict. Ch. Soc. 6 (2020), 3-14. 2. Better
known for other work.

If undiscardable space is required, use the \h escape.

[Request].ce [nnn]
[Register]\n[.ce]

Center text. While the ‘.ad c’ request also centers text, it fills the text
as well. ce does not fill the text it affects. This request causes a break.
The number of lines still to be centered is associated with the current
environment (see Section 5.26 [Environments], page 174).

The following example demonstrates the differences.

.ll 4i

.ce 1000
This is a small text fragment that shows the differences
between the ‘.ce’ and the ‘.ad c’ request.
.ce 0

.ad c
This is a small text fragment that shows the differences
between the ‘.ce’ and the ‘.ad c’ request.

⇒ This is a small text fragment that
⇒ shows the differences
⇒ between the ‘.ce’ and the ‘.ad c’ request.
⇒
⇒ This is a small text fragment that
⇒ shows the differences between the ‘.ce’
⇒ and the ‘.ad c’ request.

With no arguments, ce centers the next line of text. nnn specifies the
number of lines to be centered. If the argument is zero or negative,
centering is disabled.

The basic length for centering text is the line length (as set with the ll
request) minus the indentation (as set with the in request). Temporary
indentation is ignored.

The previous example shows the common idiom of turning on centering
for a large number of lines, and turning off centering after the text to be
centered. This is useful for any request that takes a number of lines as
an argument.

88 The GNU Troff Manual

The .ce read-only number register contains the number of lines remaining
to be centered, as set by the ce request.

[Request].rj [nnn]
[Register]\n[.rj]

Justify unfilled text to the right margin. Arguments are identical to the
ce request. The .rj read-only number register is the number of lines to
be right-justified as set by the rj request. This request causes a break.
The number of lines still to be right-justified is associated with the current
environment (see Section 5.26 [Environments], page 174).

5.8 Manipulating Hyphenation
GNU troff hyphenates words automatically by default. Automatic hy-
phenation of words in natural languages is a subject requiring algorithms
and data, and is susceptible to conventions and preferences. Before tackling
automatic hyphenation, let us consider how it can be done manually.

Explicitly hyphenated words such as “mother-in-law” are eligible for
breaking after each of their hyphens when GNU troff fills lines. Rela-
tively few words in a language offer such obvious break points, however, and
automatic hyphenation is not perfect, particularly for unusual words found
in domain-specific jargon. We may wish to explicitly instruct GNU troff
how to hyphenate words if the need arises.

[Request].hw word . . .
Define each hyphenation exception word with each hyphen ‘-’ in the word
indicating a hyphenation point. For example, the request

.hw in-sa-lub-rious alpha

marks potential hyphenation points in “insalubrious”, and prevents “al-
pha” from being hyphenated at all.

Besides the space character, any character whose hyphenation code is
zero can be used to separate the arguments of hw (see the hcode request
below). In addition, this request can be used more than once.

Hyphenation points specified with hw are not subject to the restrictions
given by the hy request (see below).

Hyphenation exceptions specified with the hw request are associated with
the hyphenation language (see below) and environment (see Section 5.26
[Environments], page 174); calling the hw request in the absence of a
hyphenation language is an error.

The request is ignored if there are no parameters.

These are known as hyphenation exceptions in the expectation that most
users will avail themselves of automatic hyphenation; these exceptions over-
ride any rules that would normally apply to a word matching a hyphenation
exception defined with hw.

Chapter 5: gtroff Reference 89

Situations also arise when only a specific occurrence of a word needs its
hyphenation altered or suppressed, or when something that is not a word in
a natural language, like a URL, needs to be broken in sensible places without
hyphens.

[Escape]\%
[Escape]\:

To tell GNU troff how to hyphenate words as they occur in input, use
the \% escape, also known as the hyphenation character. Preceding a word
with this escape prevents it from being automatically hyphenated; each
instance within a word indicates to GNU troff that the word may be
hyphenated at that point. This mechanism affects only that occurrence
of the word; to change the hyphenation of a word for the remainder of
the document, use the hw request.

GNU troff regards the escapes \X and \Y as starting a word; that is, the
\% escape in, say, ‘\X'...'\%foobar’ or ‘\Y'...'\%foobar’ no longer
prevents hyphenation of ‘foobar’ but inserts a hyphenation point just
prior to it; most likely this isn’t what you want. See Section 5.30 [Post-
processor Access], page 183.

The \: escape inserts a non-printing break point; that is, the word can
break there, but the soft hyphen glyph is not written to the output if it
does. Breaks are word boundaries, so if a break is inserted, the remainder
of the (input) word is subject to hyphenation as normal.

You can use \: and \% in combination to control breaking of a file name
or URL.

... check \%/var/log/\:\%httpd/\:\%access_log ...

[Request].hc [char]
Change the hyphenation character to char. This character then works as
the \% escape normally does, and thus no longer appears in the output.19

Without an argument, hc resets the hyphenation character to \% (the
default).

The hyphenation character is associated with the current environment
(see Section 5.26 [Environments], page 174).

[Request].shc [glyph]
Set the soft hyphen character to glyph.20 If the argument is omitted,
the soft hyphen character is set to the default, \[hy]. The soft hyphen
character is the glyph that is inserted when a word is automatically hy-
phenated at a line break.21 If the soft hyphen character does not exist in
the font of the character immediately preceding a potential break point,

19 \% itself stops marking hyphenation points but still produces no output glyph.
20 “Soft hyphen character” is a misnomer since it is an output glyph.
21 It is “soft” because it only appears in output where hyphenation is actually performed;

a “hard” hyphen, as in “long-term”, always appears.

90 The GNU Troff Manual

then the line is not broken at that point. Neither definitions (specified
with the char request) nor translations (specified with the tr request)
are considered when assigning the soft hyphen character.

Several requests influence automatic hyphenation. Because conventions
vary, a variety of hyphenation modes are available to the hy request; these
determine whether automatic hyphenation will apply to a word prior to
breaking a line at the end of a page (more or less; see below for details),
and at which positions within that word hyphenation is permissible. The
places within a word that are eligible for hyphenation are determined by
language-specific data and lettercase relationships. Furthermore, hyphen-
ation of a word might be suppressed because too many previous lines have
been hyphenated (hlm), the line has not reached a certain minimum length
(hym), or the line can instead be adjusted with up to a certain amount of
additional inter-word space (hys).

[Request].hy [mode]
[Register]\n[.hy]

Set hyphenation mode to mode. The optional numeric argument mode
encodes conditions for hyphenation.

Typesetting practice generally does not avail itself of every opportunity
for hyphenation, but the details differ by language and site mandates.
The hyphenation modes of AT&T troff were implemented with English-
language publishing practices of the 1970s in mind, not a scrupulous
enumeration of conceivable parameters. GNU troff extends those modes
such that finer-grained control is possible, retaining compatibility with
older implementations at the expense of a more intuitive arrangement.
The means of hyphenation mode control is a set of numbers that can be
added up to encode the behavior sought.22 The entries in the table below
are termed values, and the sum of the desired values is the mode.

0 disables hyphenation.

1 enables hyphenation except after the first and before the last
character of a word; this is the default if mode is omitted and
also the start-up value of GNU troff.

The remaining values “imply” 1; that is, they enable hyphenation under
the same conditions as ‘.hy 1’, and then apply or lift restrictions relative
to that basis.

2 disables hyphenation of the last word on a page.23

22 The mode is a vector of booleans encoded as an integer. To a programmer, this fact is
easily deduced from the exclusive use of powers of two for the configuration parameters;
they are computationally easy to “mask off” and compare to zero. To almost everyone
else, the arrangement seems recondite and unfriendly.

23 This value prevents hyphenation if the next page location trap is closer than the next
text baseline would be. GNU troff automatically inserts an implicit vertical position

Chapter 5: gtroff Reference 91

4 disables hyphenation before the last two characters of a word.

8 disables hyphenation after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

Any restrictions imposed by the hyphenation mode are not respected for
words whose hyphenations have been explicitly specified with the hyphen-
ation character (‘\%’ by default) or the hw request.

The nonzero values in the previous table are additive. For example,
value 12 causes GNU troff to hyphenate neither the last two nor the
first two characters of a word. Some values cannot be used together be-
cause they contradict; for instance, values 4 and 16, and values 8 and 32.
As noted, it is superfluous to add 1 to any other positive value.

The automatic placement of hyphens in words is determined by pattern
files, which are derived from TEX and available for several languages.
The number of characters at the beginning of a word after which the
first hyphenation point should be inserted is determined by the patterns
themselves; it can’t be reduced further without introducing additional,
invalid hyphenation points (unfortunately, this information is not part of
a pattern file—you have to know it in advance). The same is true for the
number of characters at the end of a word before the last hyphenation
point should be inserted. For example, you can supply the following input
to ‘echo $(nroff)’.

.ll 1

.hy 48
splitting

You will get

s- plit- t- in- g

instead of the correct ‘split- ting’. U.S. English patterns as distributed
with GNU troff need two characters at the beginning and three char-
acters at the end; this means that value 4 of hy is mandatory. Value 8
is possible as an additional restriction, but values 16 and 32 should be
avoided, as should mode 1 (the default!). Modes 4 and 6 are typical.

A table of left and right minimum character counts for hyphenation as
needed by the patterns distributed with GNU troff follows; see the
groff tmac(5) man page (type man groff_tmac at the command line) for
more information on GNU troff’s language macro files.

language pattern name left min right min
Czech cs 2 2

trap at the end of each page to cause a page transition. This value can be used in traps
planted by users or macro packages to prevent hyphenation of the last word in a column
in multi-column page layouts or before floating figures or tables. See Section 5.24.1
[Page Location Traps], page 163.

92 The GNU Troff Manual

U.S. English us 2 3
French fr 2 3
German traditional det 2 2
German reformed den 2 2
Swedish sv 1 2

Hyphenation exceptions within pattern files (i.e., the words within a TEX
\hyphenation group) also obey the hyphenation restrictions given by hy.
However, exceptions specified with hw do not.

The hyphenation mode is associated with the current environment (see
Section 5.26 [Environments], page 174).

The hyphenation mode can be found in the read-only number register
‘.hy’.

[Request].nh
Disable hyphenation; i.e., set the hyphenation mode to 0 (see above).
The hyphenation mode of the last call to hy is not remembered.

[Request].hpf pattern-file
[Request].hpfa pattern-file
[Request].hpfcode a b [c d] . . .

Read hyphenation patterns from pattern-file. This file is sought in
the same way that macro files are with the mso request or the -mname
command-line option to groff.

The pattern-file should have the same format as (simple) TEX pattern
files. More specifically, the following scanning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if
preceded by a backslash.

• “Digraphs” like \$ are not supported.

• ^^xx (where each x is 0–9 or a–f) and ^^c (character c in the code
point range 0–127 decimal) are recognized; other uses of ^ cause an
error.

• No macro expansion is performed.

• hpf checks for the expression \patterns{...} (possibly with white-
space before or after the braces). Everything between the braces
is taken as hyphenation patterns. Consequently, { and } are not
allowed in patterns.

• Similarly, \hyphenation{...} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is
treated as a list of hyphenation patterns (except that the % character
is recognized as the start of a comment).

The hpfa request appends a file of patterns to the current list.

The hpfcode request defines mapping values for character codes in pat-
tern files. It is an older mechanism no longer used by GNU troff’s own

Chapter 5: gtroff Reference 93

macro files; for its successor, see hcode below. hpf or hpfa apply the
mapping after reading the patterns but before replacing or appending to
the active list of patterns. Its arguments are pairs of character codes—
integers from 0 to 255. The request maps character code a to code b,
code c to code d, and so on. Character codes that would otherwise be
invalid in GNU troff can be used. By default, every code maps to itself
except those for letters ‘A’ to ‘Z’, which map to those for ‘a’ to ‘z’.

The set of hyphenation patterns is associated with the language set by
the hla request. The hpf request is usually invoked by the troffrc or
troffrc-end file; by default, troffrc loads hyphenation patterns and
exceptions for U.S. English (in files hyphen.us and hyphenex.us).

A second call to hpf (for the same language) replaces the hyphenation
patterns with the new ones.

Invoking hpf or hpfa causes an error if there is no hyphenation language.

If no hpf request is specified (either in the document, in a troffrc or
troffrc-end file, or in a macro package), GNU troff won’t automati-
cally hyphenate at all.

[Request].hcode c1 code1 [c2 code2] . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2,
and so on. A hyphenation code must be a single input character (not a
special character) other than a digit or a space. The request is ignored if
it has no parameters.

For hyphenation to work, hyphenation codes must be set up. At start-
up, GNU troff assigns hyphenation codes to the letters ‘a’–‘z’ (mapped
to themselves), to the letters ‘A’–‘Z’ (mapped to ‘a’–‘z’), and zero to all
other characters. Normally, hyphenation patterns contain only lowercase
letters which should be applied regardless of case. In other words, they
assume that the words ‘FOO’ and ‘Foo’ should be hyphenated exactly
as ‘foo’ is. The hcode request extends this principle to letters outside
the Unicode basic Latin alphabet; without it, words containing such let-
ters won’t be hyphenated properly even if the corresponding hyphenation
patterns contain them. For example, the following hcode requests are
necessary to assign hyphenation codes to the letters ‘ÄäÖöÜüß’ (needed
for German):

.hcode ä ä Ä ä

.hcode ö ö Ö ö

.hcode ü ü Ü ü

.hcode ß ß

Without those assignments, GNU troff treats German words like
‘Kindergärten’ (the plural form of ‘kindergarten’) as two substrings
‘kinderg’ and ‘rten’ because the hyphenation code of the umlaut a is
zero by default. There is a German hyphenation pattern that covers
‘kinder’, so GNU troff finds the hyphenation ‘kin-der’. The other two
hyphenation points (‘kin-der-gär-ten’) are missed.

94 The GNU Troff Manual

[Request].hla lang
[Register]\n[.hla]

Set the hyphenation language to lang. Hyphenation exceptions speci-
fied with the hw request and hyphenation patterns and exceptions spec-
ified with the hpf and hpfa requests are associated with the hyphen-
ation language. The hla request is usually invoked by the troffrc or
troffrc-end files; troffrc sets the default language to ‘us’ (U.S. En-
glish).

The hyphenation language is associated with the current environment
(see Section 5.26 [Environments], page 174).

The hyphenation language is available as a string in the read-only number
register ‘.hla’.

.ds curr_language \n[.hla]
*[curr_language]

⇒ us

[Request].hlm [n]
[Register]\n[.hlm]
[Register]\n[.hlc]

Set the maximum number of consecutive hyphenated lines to n. If n
is negative, there is no maximum. If omitted, n is −1. This value is
associated with the current environment (see Section 5.26 [Environments],
page 174). Only lines output from a given environment count towards the
maximum associated with that environment. Hyphens resulting from \%
are counted; explicit hyphens are not.

The .hlm read-only number register stores this maximum. The count of
immediately preceding consecutive hyphenated lines is available in the
read-only number register .hlc.

[Request].hym [length]
[Register]\n[.hym]

Set the (right) hyphenation margin to length. If the adjustment mode
is not ‘b’ or ‘n’, the line is not hyphenated if it is shorter than length.
Without an argument, the hyphenation margin is reset to its default
value, 0. The default scaling indicator is ‘m’. The hyphenation margin is
associated with the current environment (see Section 5.26 [Environments],
page 174).

A negative argument resets the hyphenation margin to zero, emitting a
warning of type ‘range’.

The hyphenation margin is available in the .hym read-only number reg-
ister.

[Request].hys [hyphenation-space]
[Register]\n[.hys]

Suppress hyphenation of the line in adjustment modes ‘b’ or ‘n’ if it can
be justified by adding no more than hyphenation-space extra space to

Chapter 5: gtroff Reference 95

each inter-word space. Without an argument, the hyphenation space
adjustment threshold is set to its default value, 0. The default scaling
indicator is ‘m’. The hyphenation space adjustment threshold is associated
with the current environment (see Section 5.26 [Environments], page 174).

A negative argument resets the hyphenation space adjustment threshold
to zero, emitting a warning of type ‘range’.

The hyphenation space adjustment threshold is available in the .hys read-
only number register.

5.9 Manipulating Spacing

[Request].sp [distance]
Space downwards distance. With no argument it advances 1 line. A nega-
tive argument causes gtroff to move up the page the specified distance.
If the argument is preceded by a ‘|’ then gtroff moves that distance
from the top of the page. This request causes a line break, and that adds
the current line spacing to the space you have just specified. The default
scaling indicator is ‘v’.

For convenience you may wish to use the following macros to set the
height of the next line at a given distance from the top or the bottom of
the page:

.de y-from-top-down

. sp |\\$1-\\n[.v]u

..

.

.de y-from-bot-up

. sp |\\n[.p]u-\\$1-\\n[.v]u

..

A call to ‘.y-from-bot-up 10c’ means that the bottom of the next line
will be at 10 cm from the paper edge at the bottom.

If a vertical trap is sprung during execution of sp, the amount of vertical
space after the trap is discarded. For example, this

.de xxx

..

.

.wh 0 xxx

.

.pl 5v
foo
.sp 2
bar
.sp 50
baz

results in

96 The GNU Troff Manual

foo

bar

baz

The amount of discarded space is available in the number register .trunc.

To protect sp against vertical traps, use the vpt request:

.vpt 0

.sp -3

.vpt 1

[Request].ls [nnn]
[Register]\n[.L]

Output nnn−1 blank lines after each line of text. With no argument,
gtroff uses the previous value before the last ls call.

.ls 2 \" This causes double-spaced output

.ls 3 \" This causes triple-spaced output

.ls \" Again double-spaced

The line spacing is associated with the current environment (see
Section 5.26 [Environments], page 174).

The read-only number register .L contains the current line spacing set-
ting.

See Section 5.18.1 [Changing Type Sizes], page 133, for the requests vs
and pvs as alternatives to ls.

[Escape]\x’spacing’
[Register]\n[.a]

Sometimes, extra vertical spacing is only needed occasionally, e.g. to allow
space for a tall construct (like an equation). The \x escape does this. The
escape is given a numerical argument, usually enclosed in quotes (like
‘\x’3p’’); the default scaling indicator is ‘v’. If this number is positive
extra vertical space is inserted below the current line. A negative number
adds space above. If this escape is used multiple times on the same line,
the maximum of the values is used.

See Section 5.5.3 [Escapes], page 73, for details on parameter delimiting
characters.

The .a read-only number register contains the most recent (non-negative)
extra vertical line space.

Using \x can be necessary in combination with the \b escape, as the
following example shows.

Chapter 5: gtroff Reference 97

This is a test with the \[rs]b escape.
.br
This is a test with the \[rs]b escape.
.br
This is a test with \b’xyz’\x’-1m’\x’1m’.
.br
This is a test with the \[rs]b escape.
.br
This is a test with the \[rs]b escape.

produces

This is a test with the \b escape.
This is a test with the \b escape.

x
This is a test with y.

z
This is a test with the \b escape.
This is a test with the \b escape.

[Request].ns
[Request].rs
[Register]\n[.ns]

Enable no-space mode. In this mode, spacing (either via sp or via blank
lines) is disabled. The bp request to advance to the next page is also
disabled, except if it is accompanied by a page number (see Section 5.16
[Page Control], page 112). This mode ends when actual text is output or
the rs request is encountered, which ends no-space mode. The read-only
number register .ns is set to 1 as long as no-space mode is active.

This request is useful for macros that conditionally insert vertical space
before the text starts (for example, a paragraph macro could insert some
space except when it is the first paragraph after a section header).

5.10 Tabs and Fields
A tab character (ASCII char 9, EBCDIC char 5) causes a horizontal movement
to the next tab stop (much like it did on a typewriter).

[Escape]\t
This escape is a non-interpreted tab character. In copy mode (see
Section 5.21.1 [Copy Mode], page 151), \t is the same as a real tab
character.

[Request].ta [n1 n2 . . . nn T r1 r2 . . . rn]
[Register]\n[.tabs]

Change tab stop positions. This request takes a series of tab specifiers
as arguments (optionally divided into two groups with the letter ‘T’) that
indicate where each tab stop is to be (overriding any previous settings).

98 The GNU Troff Manual

Tab stops can be specified absolutely, i.e., as the distance from the left
margin. For example, the following sets 6 tab stops every one inch.

.ta 1i 2i 3i 4i 5i 6i

Tab stops can also be specified using a leading ‘+’, which means that the
specified tab stop is set relative to the previous tab stop. For example,
the following is equivalent to the previous example.

.ta 1i +1i +1i +1i +1i +1i

gtroff supports an extended syntax to specify repeat values after the ‘T’
mark (these values are always taken as relative)—this is the usual way to
specify tabs set at equal intervals. The following is, yet again, the same
as the previous examples. It does even more since it defines an infinite
number of tab stops separated by one inch.

.ta T 1i

Now we are ready to interpret the full syntax given at the beginning: Set
tabs at positions n1, n2, . . . , nn and then set tabs at nn+r1, nn+r2, . . . ,
nn+rn and then at nn+rn+r1, nn+rn+r2, . . . , nn+rn+rn, and so on.

Example: ‘4c +6c T 3c 5c 2c’ is equivalent to ‘4c 10c 13c 18c 20c 23c
28c 30c ...’.

The material in each tab column (i.e., the column between two tab stops)
may be justified to the right or left or centered in the column. This is
specified by appending ‘R’, ‘L’, or ‘C’ to the tab specifier. The default
justification is ‘L’. Example:

.ta 1i 2iC 3iR

Some notes:

• The default unit of the ta request is ‘m’.

• A tab stop is converted into a non-breakable horizontal movement
that can be neither stretched nor squeezed. For example,

.ds foo a\tb\tc

.ta T 5i
*[foo]

creates a single line, which is a bit longer than 10 inches (a string is
used to show exactly where the tab characters are). Now consider
the following:

.ds bar a\tb b\tc

.ta T 5i
*[bar]

gtroff first converts the tab stops of the line into unbreakable hori-
zontal movements, then splits the line after the second ‘b’ (assuming
a sufficiently short line length). Usually, this isn’t what the user
wants.

• Superfluous tabs (i.e., tab characters that do not correspond to a
tab stop) are ignored except the first one, which delimits the char-

Chapter 5: gtroff Reference 99

acters belonging to the last tab stop for right-justifying or centering.
Consider the following example

.ds Z foo\tbar\tfoo

.ds ZZ foo\tbar\tfoobar

.ds ZZZ foo\tbar\tfoo\tbar

.ta 2i 4iR
*[Z]
.br
*[ZZ]
.br
*[ZZZ]
.br

which produces the following output:

foo bar foo
foo bar foobar
foo bar foobar

The first line right-justifies the second ‘foo’ relative to the tab stop.
The second line right-justifies ‘foobar’. The third line finally right-
justifies only ‘foo’ because of the additional tab character, which
marks the end of the string belonging to the last defined tab stop.

• Tab stops are associated with the current environment (see
Section 5.26 [Environments], page 174).

• Calling ta without an argument removes all tab stops.

• The start-up value of gtroff is ‘T 0.5i’.

The read-only number register .tabs contains a string representation of
the current tab settings suitable for use as an argument to the ta request.

.ds tab-string \n[.tabs]
*[tab-string]

⇒ T120u

The troff version of the Plan 9 operating system uses register .S for the
same purpose.

[Request].tc [fill-glyph]
Normally gtroff fills the space to the next tab stop with whitespace. This
can be changed with the tc request. With no argument gtroff reverts
to using whitespace, which is the default. The value of this tab repetition
character is associated with the current environment (see Section 5.26
[Environments], page 174).24

24 Tab repetition character is a misnomer since it is an output glyph.

100 The GNU Troff Manual

[Request].linetabs n
[Register]\n[.linetabs]

If n is missing or not zero, enable line-tabs mode, or disable it otherwise
(the default). In line-tabs mode, gtroff computes tab distances relative
to the (current) output line instead of the input line.

For example, the following code:

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i
*x
*y
*z

in normal mode, results in the output

a b c

in line-tabs mode, the same code outputs

a b c

Line-tabs mode is associated with the current environment. The read-
only register .linetabs is set to 1 if in line-tabs mode, and 0 in normal
mode.

5.10.1 Leaders

Sometimes it may be desirable to use the tc request to fill a particular tab
stop with a given glyph (for example dots in a table of contents), but also
normal tab stops on the rest of the line. For this GNU troff provides an
alternate tab mechanism, called leaders, which does just that.25

A leader character (character code 1) behaves similarly to a tab character:
It moves to the next tab stop. The only difference is that for this movement,
the fill glyph defaults to a period character and not to space.

[Escape]\a
This escape is a non-interpreted leader character. In copy mode (see
Section 5.21.1 [Copy Mode], page 151), \a is the same as a real leader
character.

[Request].lc [fill-glyph]
Declare the leader repetition character.26 Without an argument, leaders
act the same as tabs (i.e., using whitespace for filling). gtroff’s start-
up value is a dot (‘.’). The value of the leader repetition character is
associated with the current environment (see Section 5.26 [Environments],
page 174).

25 This is pronounced to rhyme with “feeder”, and refers to how the glyphs “lead” the
eye across the page to the corresponding page number or other datum.

26 Leader repetition character is a misnomer since it is an output glyph.

Chapter 5: gtroff Reference 101

For a table of contents, to name an example, tab stops may be defined
so that the section number is one tab stop, the title is the second with the
remaining space being filled with a line of dots, and then the page number
slightly separated from the dots.

.ds entry 1.1\tFoo\a\t12

.lc .

.ta 1i 5i +.25i
*[entry]

This produces

1.1 Foo.. 12

5.10.2 Fields

Fields are a more general way of laying out tabular data. A field is defined as
the data between a pair of delimiting characters. It contains substrings that
are separated by padding characters. The width of a field is the distance on
the input line from the position where the field starts to the next tab stop. A
padding character inserts stretchable space similar to TEX’s \hss command
(thus it can even be negative) to make the sum of all substring lengths plus
the stretchable space equal to the field width. If more than one padding
character is inserted, the available space is evenly distributed among them.

[Request].fc [delim-char [padding-char]]
Define a delimiting and a padding character for fields. If the latter is
missing, the padding character defaults to a space character. If there
is no argument at all, the field mechanism is disabled (which is the de-
fault). In contrast to, e.g., the tab repetition character, delimiting and
padding characters are not associated with the current environment (see
Section 5.26 [Environments], page 174).

.fc # ^

.ta T 3i
#foo^bar^smurf#
.br
#foo^^bar^smurf#

⇒ foo bar smurf
⇒ foo bar smurf

5.11 Character Translations
The control character (‘.’) and the no-break control character (‘'’) can be
changed with the cc and c2 requests, respectively.

[Request].cc [c]
Set the control character to c. With no argument the default control
character ‘.’ is restored. The value of the control character is associated
with the current environment (see Section 5.26 [Environments], page 174).

102 The GNU Troff Manual

[Request].c2 [c]
Set the no-break control character to c. With no argument the default
control character ‘'’ is restored. The value of the no-break control char-
acter is associated with the current environment (see Section 5.26 [Envi-
ronments], page 174).

See Section 5.5.1 [Requests], page 71.

[Request].eo
Disable the escape mechanism completely. After executing this request,
the backslash character ‘\’ no longer starts an escape sequence.

This request can be very helpful in writing macros since it is not necessary
then to double the escape character. Here an example:

.\" This is a simplified version of the

.\" .BR request from the man macro package

.eo

.de BR

. ds result \&

. while (\n[.$] >= 2) \{\

. as result \fB\$1\fR\$2

. shift 2

. \}

. if \n[.$] .as result \fB\$1
*[result]
. ft R
..
.ec

[Request].ec [c]
Set the escape character to c. With no argument the default escape
character ‘\’ is restored. It can be also used to re-enable the escape
mechanism after an eo request.

Changing the escape character globally likely breaks macro packages,
since GNU troff has no mechanism to ‘intern’ macros, i.e., to convert a
macro definition into an internal form that is independent of its represen-
tation (TEX has such a mechanism). If a macro is called, it is executed
literally.

[Request].ecs
[Request].ecr

The ecs request saves the current escape character in an internal register.
Use this request in combination with the ec request to temporarily change
the escape character.

The ecr request restores the escape character saved with ecs. Without
a previous call to ecs, this request sets the escape character to \.

Chapter 5: gtroff Reference 103

[Escape]\\
[Escape]\e
[Escape]\E

Print the current escape character (which is the backslash character ‘\’
by default).

\\ is a ‘delayed’ backslash; more precisely, it is the default escape char-
acter followed by a backslash, which no longer has special meaning due
to the leading escape character. It is not an escape sequence in the usual
sense! In any unknown escape sequence \X the escape character is ignored
and X is printed. But if X is equal to the current escape character, no
warning is emitted.

As a consequence, only at the top level or in a diversion is a backslash
glyph printed; in copy mode, it expands to a single backslash, which then
combines with the following character to form an escape sequence.

The \E escape differs from \e by printing an escape character that is not
interpreted in copy mode. Use this to define strings with escapes that
work when used in copy mode (for example, as a macro argument). The
following example defines strings to begin and end a superscript:

.ds { \v'-.3m'\s'\En[.s]*60/100'

.ds } \s0\v'.3m'

Another example to demonstrate the differences between the various es-
cape sequences, using a strange escape character, ‘-’.

.ec -

.de xxx
--A'foo'
..
.xxx

⇒ -A'foo'

The result is surprising for most users, expecting ‘1’ since ‘foo’ is a valid
identifier. What has happened? As mentioned above, the leading escape
character makes the following character ordinary. Written with the de-
fault escape character the sequence ‘--’ becomes ‘\-’—this is the minus
sign.

If the escape character followed by itself is a valid escape sequence, only
\E yields the expected result:

.ec -

.de xxx
-EA'foo'
..
.xxx

⇒ 1

104 The GNU Troff Manual

[Escape]\.
Similar to \\, the sequence \. isn’t a real escape sequence. As before,
a warning message is suppressed if the escape character is followed by a
dot, and the dot itself is printed.

.de foo

. nop foo

.

. de bar

. nop bar
\\..
.
..
.foo
.bar

⇒ foo bar

The first backslash is consumed while the macro is read, and the second
is swallowed while executing macro foo.

A translation is a mapping of an input character to an output glyph.
The mapping occurs at output time, i.e., the input character gets assigned
the metric information of the mapped output character right before input
tokens are converted to nodes (see Section 5.32 [Gtroff Internals], page 186,
for more on this process).

[Request].tr abcd. . .
[Request].trin abcd. . .

Translate character a to glyph b, character c to glyph d, etc. If there is an
odd number of arguments, the last one is translated to an unstretchable
space (‘\ ’).

The trin request is identical to tr, but when you unformat a diversion
with asciify it ignores the translation. See Section 5.25 [Diversions],
page 170, for details about the asciify request.

Some notes:

• Special characters (\(xx, \[xxx], \C'xxx', \', \`, \-, _), glyphs
defined with the char request, and numbered glyphs (\N'xxx') can
be translated also.

• The \e escape can be translated also.

• Characters can be mapped onto the \% and \~ escapes (but \% and
\~ can’t be mapped onto another glyph).

• The following characters can’t be translated: space (with one ex-
ception, see below), backspace, newline, leader (and \a), tab (and
\t).

• Translations are not considered for finding the soft hyphen character
set with the shc request.

Chapter 5: gtroff Reference 105

• The pair ‘c\&’ (this is an arbitrary character c followed by the non-
printing input break) maps this character to nothing.

.tr a\&
foo bar

⇒ foo br

It is even possible to map the space character to nothing:

.tr aa \&
foo bar

⇒ foobar

As shown in the example, the space character can’t be the first char-
acter/glyph pair as an argument of tr. Additionally, it is not pos-
sible to map the space character to any other glyph; requests like
‘.tr aa x’ undo ‘.tr aa \&’ instead.

If justification is active, lines are justified in spite of the ‘empty’ space
character (but there is no minimal distance, i.e. the space character,
between words).

• After an output glyph has been constructed (this happens at the mo-
ment immediately before the glyph is appended to an output glyph
list, either by direct output, in a macro, diversion, or string), it is no
longer affected by tr.

• Translating character to glyphs where one of them or both are un-
defined is possible also; tr does not check whether the entities in its
argument do exist.

See Section 5.32 [Gtroff Internals], page 186.

• troff no longer has a hard-coded dependency on Latin-1; all
charXXX entities have been removed from the font description files.
This has a notable consequence that shows up in warnings like ‘can't
find character with input code XXX’ if the tr request isn’t han-
dled properly.

Consider the following translation:

.tr éÉ

This maps input character é onto glyph É, which is identical to
glyph char201. But this glyph intentionally doesn’t exist! Instead,
\[char201] is treated as an input character entity and is by de-
fault mapped onto \['E], and gtroff doesn’t handle translations of
translations.

The right way to write the above translation is

.tr é\['E]

In other words, the first argument of tr should be an input character
or entity, and the second one a glyph entity.

• Without an argument, the tr request is ignored.

106 The GNU Troff Manual

[Request].trnt abcd. . .
trnt is the same as the tr request except that the translations do not
apply to text that is transparently throughput into a diversion with \!.
See Section 5.25 [Diversions], page 170.

For example,

.tr ab

.di x
\!.tm a
.di
.x

prints ‘b’ to the standard error stream; if trnt is used instead of tr it
prints ‘a’.

5.12 Troff and Nroff Mode
Originally, nroff and troff were two separate programs, the former for
TTY output, the latter for everything else. With GNU troff, both pro-
grams are merged into one executable, sending its output to a device driver
(grotty for TTY devices, grops for PostScript, etc.) which interprets the
intermediate output of gtroff. For Unix troff it makes sense to talk about
Nroff mode and Troff mode since the differences are hardcoded. For GNU
troff, this distinction is not appropriate because gtroff simply takes the
information given in the font files for a particular device without handling
requests specially if a TTY output device is used.

Usually, a macro package can be used with all output devices. Never-
theless, it is sometimes necessary to make a distinction between TTY and
non-TTY devices: gtroff provides two built-in conditions ‘n’ and ‘t’ for
the if, ie, and while requests to decide whether gtroff shall behave like
nroff or like troff.

[Request].troff
Make the ‘t’ built-in condition true (and the ‘n’ built-in condition false)
for if, ie, and while conditional requests. This is the default if gtroff
(not groff) is started with the -R switch to avoid loading of the start-up
files troffrc and troffrc-end. Without -R, gtroff stays in troff mode
if the output device is not a TTY (e.g. ‘ps’).

[Request].nroff
Make the ‘n’ built-in condition true (and the ‘t’ built-in condition false)
for if, ie, and while conditional requests. This is the default if gtroff
uses a TTY output device; the code for switching to nroff mode is in the
file tty.tmac, which is loaded by the start-up file troffrc.

See Section 5.20 [Conditionals and Loops], page 143, for more details on
built-in conditions.

Chapter 5: gtroff Reference 107

5.13 Line Layout
The following drawing shows the dimensions that gtroff uses for placing
a line of output onto the page. They are labeled with the request that
manipulates each dimension.

-->| in |<--
|<-----------ll------------>|

+----+----+----------------------+----+
| : : : |
+----+----+----------------------+----+

-->| po |<--
|<--------paper width---------------->|

These dimensions are:

po Page offset—this is the leftmost position of text on the final
output, defining the left margin.

in Indentation—this is the distance from the left margin where text
is printed.

ll Line length—this is the distance from the left margin to right
margin.

A simple demonstration:

.ll 3i
This is text without indentation.
The line length has been set to 3\~inch.
.in +.5i
.ll -.5i
Now the left and right margins are both increased.
.in
.ll
Calling .in and .ll without parameters restore
the previous values.

Result:

This is text without indenta-
tion. The line length has
been set to 3 inch.

Now the left and
right margins are
both increased.

Calling .in and .ll without
parameters restore the previ-
ous values.

[Request].po [offset]
[Request].po +offset
[Request].po -offset

108 The GNU Troff Manual

[Register]\n[.o]
Set horizontal page offset to offset (or increment or decrement the current
value by offset). This request does not cause a break, so changing the
page offset in the middle of text being filled may not yield the expected
result. The initial value is 1 i. For terminal output devices, it is set to 0
in the startup file troffrc; the default scaling indicator is ‘m’ (and not
‘v’ as incorrectly documented in the AT&T troff manual).

The current page offset can be found in the read-only number register
‘.o’.

If po is called without an argument, the page offset is reset to the previous
value before the last call to po.

.po 3i
\n[.o]

⇒ 720
.po -1i
\n[.o]

⇒ 480
.po
\n[.o]

⇒ 720

[Request].in [indent]
[Request].in +indent
[Request].in -indent
[Register]\n[.i]

Set indentation to indent (or increment or decrement the current value
by indent). This request causes a break. Initially, there is no indentation.

If in is called without an argument, the indentation is reset to the previous
value before the last call to in. The default scaling indicator is ‘m’.

The indentation is associated with the current environment (see
Section 5.26 [Environments], page 174).

If a negative indentation value is specified (which is not allowed), gtroff
emits a warning of type ‘range’ and sets the indentation to zero.

The effect of in is delayed until a partially collected line (if it exists) is
output. A temporary indentation value is reset to zero also.

The current indentation (as set by in) can be found in the read-only
number register ‘.i’.

[Request].ti offset
[Request].ti +offset
[Request].ti -offset
[Register]\n[.in]

Temporarily indent the next output line by offset. If an increment or
decrement value is specified, adjust the temporary indentation relative to
the value set by the in request.

Chapter 5: gtroff Reference 109

This request causes a break; its value is associated with the current envi-
ronment (see Section 5.26 [Environments], page 174). The default scaling
indicator is ‘m’. A call of ti without an argument is ignored.

If the total indentation value is negative (which is not allowed), gtroff
emits a warning of type ‘range’ and sets the temporary indentation to
zero. ‘Total indentation’ is either offset if specified as an absolute value,
or the temporary plus normal indentation, if offset is given as a relative
value.

The effect of ti is delayed until a partially collected line (if it exists) is
output.

The read-only number register .in is the indentation that applies to the
current output line.

The difference between .i and .in is that the latter takes into account
whether a partially collected line still uses the old indentation value or a
temporary indentation value is active.

[Request].ll [length]
[Request].ll +length
[Request].ll -length
[Register]\n[.l]
[Register]\n[.ll]

Set the line length to length (or increment or decrement the current value
by length). Initially, the line length is set to 6.5 i. The effect of ll is
delayed until a partially collected line (if it exists) is output. The default
scaling indicator is ‘m’.

If ll is called without an argument, the line length is reset to the previous
value before the last call to ll. If a negative line length is specified (which
is not allowed), gtroff emits a warning of type ‘range’ and sets the line
length to zero.

The line length is associated with the current environment (see
Section 5.26 [Environments], page 174).

The current line length (as set by ll) can be found in the read-only
number register ‘.l’. The read-only number register .ll is the line length
that applies to the current output line.

Similar to .i and .in, the difference between .l and .ll is that the latter
takes into account whether a partially collected line still uses the old line
length value.

5.14 Line Control
It is important to understand how gtroff handles input and output lines.

Many escapes use positioning relative to the input line. For example, this

110 The GNU Troff Manual

This is a \h’|1.2i’test.

This is a
\h’|1.2i’test.

produces

This is a test.

This is a test.

The main usage of this feature is to define macros that act exactly at the
place where called.

.\" A simple macro to underline a word

.de underline

. nop \\$1\l’|0\[ul]’

..

In the above example, ‘|0’ specifies a negative distance from the current
position (at the end of the just emitted argument \$1) back to the beginning
of the input line. Thus, the ‘\l’ escape draws a line from right to left.

gtroff makes a difference between input and output line continuation;
the latter is also called interrupting a line.

[Escape]\RET
[Escape]\c

[Register]\n[.int]
Continue a line. \RET (this is a backslash at the end of a line immediately
followed by a newline) works on the input level, suppressing the effects
of the following newline in the input.

This is a \
.test

⇒ This is a .test

The ‘|’ operator is also affected.

\c works on the output level. Anything after this escape on the same
line is ignored except \R, which works as usual. Anything before \c on
the same line is appended to the current partial output line. The next
non-command line after an interrupted line counts as a new input line.

The visual results depend on whether no-fill mode is active.

• If no-fill mode is active (using the nf request), the next input text
line after \c is handled as a continuation of the same input text line.

.nf
This is a \c
test.

⇒ This is a test.

• If fill mode is active (using the fi request), a word interrupted with
\c is continued with the text on the next input text line, without an
intervening space.

Chapter 5: gtroff Reference 111

This is a te\c
st.

⇒ This is a test.

An intervening control line that causes a break is stronger than \c, flush-
ing out the current partial line in the usual way.

The .int register contains a positive value if the last output line was
interrupted with \c; this is associated with the current environment (see
Section 5.26 [Environments], page 174).

5.15 Page Layout
GNU troff provides some primitive operations for controlling page layout.

[Request].pl [length]
[Request].pl +length
[Request].pl -length
[Register]\n[.p]

Set the page length to length (or increment or decrement the current
value by length). This is the length of the physical output page. The
default scaling indicator is ‘v’.

The current setting can be found in the read-only number register ‘.p’.

This specifies only the size of the page, not the top and bottom margins.
Those are not set by GNU troff directly. See Section 5.24 [Traps],
page 163, for further information on how to do this.

Negative pl values are possible also, but not very useful: no trap is
sprung, and each line is output on a single page (thus suppressing all
vertical spacing).

If no argument or an invalid argument is given, pl sets the page length
to 11 i.

GNU troff provides several operations that help in setting up top and
bottom titles (also known as headers and footers).

[Request].tl 'left'center'right'
Print a title line. It consists of three parts: a left-justified portion, a
centered portion, and a right-justified portion. The argument separator
‘'’ can be replaced with any character not occurring in the title line. The
‘%’ character is replaced with the current page number. This character
can be changed with the pc request (see below).

Without argument, tl is ignored.

Some notes:

• The line length set by the ll request is not honoured by tl; use the
lt request (described below) instead, to control line length for text
set by tl.

• A title line is not restricted to the top or bottom of a page.

112 The GNU Troff Manual

• tl prints the title line immediately, ignoring a partially filled line
(which stays untouched).

• It is not an error to omit closing delimiters. For example, ‘.tl /foo’
is equivalent to ‘.tl /foo///’: It prints a title line with the left-
justified word ‘foo’; the centered and right-justified parts are empty.

• tl accepts the same parameter delimiting characters as the \A escape;
see Section 5.5.3 [Escapes], page 73.

[Request].lt [length]
[Request].lt +length
[Request].lt -length
[Register]\n[.lt]

The title line is printed using its own line length, which is specified (or
incremented or decremented) with the lt request. Initially, the title line
length is set to 6.5 i. If a negative line length is specified (which is not
allowed), gtroff emits a warning of type ‘range’ and sets the title line
length to zero. The default scaling indicator is ‘m’. If lt is called without
an argument, the title length is reset to the previous value before the last
call to lt.

The current setting of this is available in the .lt read-only number reg-
ister; it is associated with the current environment (see Section 5.26 [En-
vironments], page 174).

[Request].pn page
[Request].pn +page
[Request].pn -page
[Register]\n[.pn]

Change (increase or decrease) the page number of the next page. The only
argument is the page number; the request is ignored without a parameter.

The read-only number register .pn contains the number of the next page:
either the value set by a pn request, or the number of the current page
plus 1.

[Request].pc [char]
Change the page number character (used by the tl request) to a different
character. With no argument, this mechanism is disabled. This doesn’t
affect the number register %.

See Section 5.24 [Traps], page 163.

5.16 Page Control

[Request].bp [page]
[Request].bp +page
[Request].bp -page

Chapter 5: gtroff Reference 113

[Register]\n[%]
Stop processing the current page and move to the next page. This request
causes a break. It can also take an argument to set (increase, decrease)
the page number of the next page (which becomes the current page after
bp has finished). The difference between bp and pn is that pn does not
cause a break or actually eject a page. See Section 5.15 [Page Layout],
page 111.

.de newpage \" define macro
’bp \" begin page
’sp .5i \" vertical space
.tl ’left top’center top’right top’ \" title
’sp .3i \" vertical space
.. \" end macro

bp has no effect if not called within the top-level diversion (see Section 5.25
[Diversions], page 170).

The read-write register % holds the current page number.

The number register .pe is set to 1 while bp is active. See Section 5.24.1
[Page Location Traps], page 163.

[Request].ne [space]
It is often necessary to force a certain amount of space before a new page
occurs. This is most useful to make sure that there is not a single orphan
line left at the bottom of a page. The ne request ensures that there is
a certain distance, specified by the first argument, before the next page
is triggered (see Section 5.24 [Traps], page 163, for further information).
The default scaling indicator for ne is ‘v’; the default value of space is 1 v
if no argument is given.

For example, to make sure that no fewer than 2 lines get orphaned, do
the following before each paragraph:

.ne 2
text text text

ne then automatically causes a page break if there is space for one line
only.

[Request].sv [space]
[Request].os

sv is similar to the ne request; it reserves the specified amount of vertical
space. If the desired amount of space exists before the next trap (or the
bottom page boundary if no trap is set), the space is output immediately
(ignoring a partially filled line, which stays untouched). If there is not
enough space, it is stored for later output via the os request. The default
value is 1 v if no argument is given; the default scaling indicator is ‘v’.

Both sv and os ignore no-space mode. While the sv request allows neg-
ative values for space, os ignores them.

114 The GNU Troff Manual

[Register]\n[nl]
This register contains the current vertical position. If the vertical position
is zero and the top of page transition hasn’t happened yet, nl is set
to negative value. gtroff itself does this at the very beginning of a
document before anything has been printed, but the main usage is to
plant a header trap on a page if this page has already started.

Consider the following:

.de xxx

. sp

. tl ’’Header’’

. sp

..

.
First page.
.bp
.wh 0 xxx
.nr nl (-1)
Second page.

Result:

First page.

...

Header

Second page.

...

Without resetting nl to a negative value, the just planted trap would be
active beginning with the next page, not the current one.

See Section 5.25 [Diversions], page 170, for a comparison with the .h and
.d registers.

5.17 Fonts and Symbols
gtroff can switch fonts at any point in the text.

The basic set of fonts is ‘R’, ‘I’, ‘B’, and ‘BI’. These are Times roman,
italic, bold, and bold-italic. For non-terminal devices, there is also at least
one symbol font that contains various special symbols (Greek, mathematics).

5.17.1 Changing Fonts

[Request].ft [font]
[Escape]\ff
[Escape]\f(fn

Chapter 5: gtroff Reference 115

[Escape]\f[font]
[Register]\n[.sty]

The ft request and the \f escape change the current font to font (one-
character name f, two-character name fn).

If font is a style name (as set with the sty request or with the styles
command in the DESC file), use it within the current font family (as set
with the fam request, the \F escape, or the family command in the DESC
file).

It is not possible to switch to a font with the name ‘DESC’ (whereas this
name could be used as a style name; however, this is not recommended).

With no argument or using ‘P’ as an argument, ft switches to the previous
font. Use \f[] to do this with the escape. The old syntax forms \fP or
\f[P] are also supported.

Fonts are generally specified as upper-case strings, which are usually 1 to
4 characters representing an abbreviation or acronym of the font name.
This is no limitation, just a convention.

The example below produces two identical lines.

eggs, bacon,
.ft B
spam
.ft
and sausage.

eggs, bacon, \fBspam\fP and sausage.

\f doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font on the fly:

.mc \f[I]x\f[]

The current style name is available in the read-only number register ‘.sty’
(this is a string-valued register); if the current font isn’t a style, the empty
string is returned. It is associated with the current environment.

See Section 5.17.3 [Font Positions], page 118, for an alternative syntax.

[Request].ftr f [g]
Translate font f to font g. Whenever a font named f is referred to in a
\f escape sequence, in the F and S conditional operators, or in the ft,
ul, bd, cs, tkf, special, fspecial, fp, or sty requests, font g is used.
If g is missing or equal to f the translation is undone.

Font translations cannot be chained.

.ftr XXX TR

.ftr XXX YYY

.ft XXX
⇒ warning: can’t find font ’XXX’

116 The GNU Troff Manual

[Request].fzoom f [zoom]
[Register]\n[.zoom]

Set magnification of font f to factor zoom, which must be a non-negative
integer multiple of 1/1000th. This request is useful to adjust the optical
size of a font in relation to the others. In the example below, font CR is
magnified by 10% (the zoom factor is thus 1.1).

.fam P

.fzoom CR 1100

.ps 12
Palatino and \f[CR]Courier\f[]

A missing or zero value of zoom is the same as a value of 1000, which
means no magnification. f must be a real font name, not a style.

The magnification of a font is completely transparent to GNU troff;
a change of the zoom factor doesn’t cause any effect except that the
dimensions of glyphs, (word) spaces, kerns, etc., of the affected font are
adjusted accordingly.

The zoom factor of the current font is available in the read-only number
register ‘.zoom’, in multiples of 1/1000th. It returns zero if there is no
magnification.

5.17.2 Font Families

Due to the variety of fonts available, gtroff has added the concept of font
families and font styles. The fonts are specified as the concatenation of
the font family and style. Specifying a font without the family part causes
gtroff to use that style of the current family.

Currently, fonts for the devices -Tps, -Tpdf, -Tdvi, -Tlj4, -Tlbp, and
the X11 fonts are set up to this mechanism. By default, gtroff uses the
Times family with the four styles ‘R’, ‘I’, ‘B’, and ‘BI’.

This way, it is possible to use the basic four fonts and to select a different
font family on the command line (see Section 2.1 [Groff Options], page 7).

[Request].fam [family]
[Register]\n[.fam]
[Escape]\Ff
[Escape]\F(fm
[Escape]\F[family]

[Register]\n[.fn]
Switch font family to family (one-character name f, two-character name
fm). If no argument is given, switch back to the previous font family. Use
\F[] to do this with the escape; \FP selects font family ‘P’ instead.

The value at start-up is ‘T’. The current font family is available in the
read-only number register ‘.fam’ (this is a string-valued register); it is
associated with the current environment.

Chapter 5: gtroff Reference 117

spam,
.fam H \" helvetica family
spam, \" used font is family H + style R = HR
.ft B \" family H + style B = font HB
spam,
.fam T \" times family
spam, \" used font is family T + style B = TB
.ft AR \" font AR (not a style)
baked beans,
.ft R \" family T + style R = font TR
and spam.

\F doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font family on the fly.

.mc \F[P]x\F[]

The ‘.fn’ register contains the current real font name of the current font.
This is a string-valued register. If the current font is a style, the value of
\n[.fn] is the proper concatenation of family and style name.

[Request].sty n style
Associate style with font position n. A font position can be associated
either with a font or with a style. The current font is the index of a font
position and so is also either a font or a style. If it is a style, the font that
is actually used is the font whose name is the concatenation of the name
of the current family and the name of the current style. For example, if
the current font is 1 and font position 1 is associated with style ‘R’ and
the current font family is ‘T’, then font ‘TR’ is used. If the current font
is not a style, then the current family is ignored. If the requests cs, bd,
tkf, uf, or fspecial are applied to a style, they are instead applied to
the member of the current family corresponding to that style.

n must be a non-negative integer.

The default family can be set with the -f option (see Section 2.1 [Groff
Options], page 7). The styles command in the DESC file controls which
font positions (if any) are initially associated with styles rather than fonts.
For example, the default setting for PostScript fonts

styles R I B BI

is equivalent to

.sty 1 R

.sty 2 I

.sty 3 B

.sty 4 BI

fam and \F always check whether the current font position is valid; this
can give surprising results if the current font position is associated with
a style.

118 The GNU Troff Manual

In the following example, we want to access the PostScript font FooBar
from the font family Foo:

.sty \n[.fp] Bar

.fam Foo
⇒ warning: can’t find font ‘FooR’

The default font position at start-up is 1; for the PostScript device,
this is associated with style ‘R’, so gtroff tries to open FooR.

A solution to this problem is to use a dummy font like the following:

.fp 0 dummy TR \" set up dummy font at position 0

.sty \n[.fp] Bar \" register style ‘Bar’

.ft 0 \" switch to font at position 0

.fam Foo \" activate family ‘Foo’

.ft Bar \" switch to font ‘FooBar’

See Section 5.17.3 [Font Positions], page 118.

5.17.3 Font Positions

For compatibility with AT&T troff, GNU troff has the concept of font
positions at which various fonts are mounted.

[Request].fp pos font [external-name]
[Register]\n[.f]
[Register]\n[.fp]

Mount font font at position pos (which must be a non-negative integer).
This numeric position can then be referred to with font-changing com-
mands. When GNU troff starts, it uses font position 1 (which must
exist; position 0 is unused at start-up27).

The current font in use, as a font position, is available in the read-only
number register ‘.f’. This can be useful to save the current font for later
recall. It is associated with the current environment (see Section 5.26
[Environments], page 174).

.nr save-font \n[.f]

.ft B

... text text text ...

.ft \n[save-font]

The number of the next free font position is available in the read-only
number register ‘.fp’. This is useful when mounting a new font, like so:

.fp \n[.fp] NEATOFONT

Fonts not listed in the DESC file are automatically mounted on the next
available font position when they are referenced. If a font is to be mounted
explicitly with the fp request on an unused font position, it should be
mounted on the first unused font position, which can be found in the .fp
register, although GNU troff does not enforce this strictly.

27 Usually.

Chapter 5: gtroff Reference 119

The fp request has an optional third argument. This argument gives the
external name of the font, which is used for finding the font description
file. The second argument gives the internal name of the font, which is
used to refer to the font in gtroff after it has been mounted. If there is no
third argument then the internal name is used as the external name. This
feature makes it possible to use fonts with long names in compatibility
mode.

Both the ft request and the \f escape have alternative syntax forms to
access font positions.

[Request].ft nnn
[Escape]\fn
[Escape]\f(nn
[Escape]\f[nnn]

Change the current font position to nnn (one-digit position n, two-digit
position nn), which must be a non-negative integer.

If nnn is associated with a style (as set with the sty request or with the
styles command in the DESC file), use it within the current font family
(as set with the fam request, the \F escape, or the family command in
the DESC file).

this is font 1
.ft 2
this is font 2
.ft \" switch back to font 1
.ft 3
this is font 3
.ft
this is font 1 again

See Section 5.17.1 [Changing Fonts], page 114, for the standard syntax
form.

5.17.4 Using Symbols

A glyph is a graphical representation of a character. While a character is
an abstract entity containing semantic information, a glyph is something
that can be actually seen on screen or paper. It is possible that a char-
acter has multiple glyph representation forms (for example, the character
‘A’ can be either written in a roman or an italic font, yielding two different
glyphs); sometimes more than one character maps to a single glyph (this is
a ligature—the most common is ‘fi’).

A symbol is simply a named glyph. Within gtroff, all glyph names of
a particular font are defined in its font file. If the user requests a glyph
not available in this font, gtroff looks up an ordered list of special fonts.
By default, the PostScript output device supports the two special fonts
‘SS’ (slanted symbols) and ‘S’ (symbols) (the former is looked up before the
latter). Other output devices use different names for special fonts. Fonts

120 The GNU Troff Manual

mounted with the fonts keyword in the DESC file are globally available.
To install additional special fonts locally (i.e. for a particular font), use the
fspecial request.

Here are the exact rules how gtroff searches a given symbol:

• If the symbol has been defined with the char request, use it. This hides
a symbol with the same name in the current font.

• Check the current font.

• If the symbol has been defined with the fchar request, use it.

• Check whether the current font has a font-specific list of special fonts;
test all fonts in the order of appearance in the last fspecial call if
appropriate.

• If the symbol has been defined with the fschar request for the current
font, use it.

• Check all fonts in the order of appearance in the last special call.

• If the symbol has been defined with the schar request, use it.

• As a last resort, consult all fonts loaded up to now for special fonts and
check them, starting with the lowest font number. This can sometimes
lead to surprising results since the fonts line in the DESC file often con-
tains empty positions, which are filled later on. For example, consider
the following:

fonts 3 0 0 FOO

This mounts font foo at font position 3. We assume that FOO is a special
font, containing glyph foo, and that no font has been loaded yet. The
line

.fspecial BAR BAZ

makes font BAZ special only if font BAR is active. We further assume
that BAZ is really a special font, i.e., the font description file contains
the special keyword, and that it also contains glyph foo with a special
shape fitting to font BAR. After executing fspecial, font BAR is loaded
at font position 1, and BAZ at position 2.

We now switch to a new font XXX, trying to access glyph foo that is
assumed to be missing. There are neither font-specific special fonts
for XXX nor any other fonts made special with the special request, so
gtroff starts the search for special fonts in the list of already mounted
fonts, with increasing font positions. Consequently, it finds BAZ before
FOO even for XXX, which is not the intended behaviour.

See Section 8.2 [Device and Font Files], page 222, and Section 5.17.6
[Special Fonts], page 127, for more details.

The list of available symbols is device dependent; see the groff char(7)
man page for a complete list of all glyphs. For example, say

man -Tdvi groff_char > groff_char.dvi

Chapter 5: gtroff Reference 121

for a list using the default DVI fonts (not all versions of the man program
support the -T option). If you want to use an additional macro package to
change the used fonts, groff must be called directly:

groff -Tdvi -mec -man groff_char.7 > groff_char.dvi

Glyph names not listed in groff char(7) are derived algorithmically, us-
ing a simplified version of the Adobe Glyph List (AGL) algorithm, which
is described in https://github.com/adobe-type-tools/agl-aglfn. The
(frozen) set of glyph names that can’t be derived algorithmically is called
groff glyph list (GGL).

• A glyph for Unicode character U+XXXX [X [X]], which is not a compos-
ite character is named uXXXX[X[X]]. X must be an uppercase hexadeci-
mal digit. Examples: u1234, u008E, u12DB8. The largest Unicode value
is 0x10FFFF. There must be at least four X digits; if necessary, add
leading zeroes (after the ‘u’). No zero padding is allowed for charac-
ter codes greater than 0xFFFF. Surrogates (i.e., Unicode values greater
than 0xFFFF represented with character codes from the surrogate area
U+D800-U+DFFF) are not allowed either.

• A glyph representing more than a single input character is named

‘u’ component1 ‘_’ component2 ‘_’ component3 . . .

Example: u0045_0302_0301.

For simplicity, all Unicode characters that are composites must be max-
imally decomposed to NFD28; for example, u00CA_0301 is not a valid
glyph name since U+00CA (latin capital letter e with circum-
flex) can be further decomposed into U+0045 (latin capital letter
e) and U+0302 (combining circumflex accent). u0045_0302_0301
is thus the glyph name for U+1EBE, latin capital letter e with
circumflex and acute.

• groff maintains a table to decompose all algorithmically derived glyph
names that are composites itself. For example, u0100 (latin letter
a with macron) is automatically decomposed into u0041_0304. Ad-
ditionally, a glyph name of the GGL is preferred to an algorithmically
derived glyph name; groff also automatically does the mapping. Exam-
ple: The glyph u0045_0302 is mapped to ^E.

• glyph names of the GGL can’t be used in composite glyph names; for
example, ^E_u0301 is invalid.

[Escape]\(nm
[Escape]\[name]
[Escape]\[component1 component2 . . .]

Insert a symbol name (two-character name nm) or a composite glyph
with component glyphs component1, component2, . . . There is no special

28 This is “Normalization Form D” as documented in Unicode Standard Annex #15
(https://unicode.org/reports/tr15/).

https://github.com/adobe-type-tools/agl-aglfn
https://unicode.org/reports/tr15/

122 The GNU Troff Manual

syntax for one-character names—the natural form ‘\n’ would collide with
escapes.29

If name is undefined, a warning of type ‘char’ is generated, and the escape
is ignored. See Section 5.33 [Debugging], page 188, for information about
warnings.

groff resolves \[...] with more than a single component as follows:

• Any component that is found in the GGL is converted to the uXXXX
form.

• Any component uXXXX that is found in the list of decomposable
glyphs is decomposed.

• The resulting elements are then concatenated with ‘_’ in between,
dropping the leading ‘u’ in all elements but the first.

No check for the existence of any component (similar to tr request) is
done.

Examples:

\[A ho] ‘A’ maps to u0041, ‘ho’ maps to u02DB, thus the final glyph
name would be u0041_02DB. Note this is not the expected
result: The ogonek glyph ‘ho’ is a spacing ogonek, but for
a proper composite a non-spacing ogonek (U+0328) is nec-
essary. Looking into the file composite.tmac one can find
‘.composite ho u0328’, which changes the mapping of ‘ho’
while a composite glyph name is constructed, causing the
final glyph name to be u0041_0328.

\[^E u0301]
\[^E aa]
\[E a^ aa]
\[E ^ '] ‘^E’ maps to u0045_0302, thus the final glyph name is

u0045_0302_0301 in all forms (assuming proper calls of the
composite request).

It is not possible to define glyphs with names like ‘A ho’ within a groff font
file. This is not really a limitation; instead, you have to define u0041_
0328.

[Escape]\C'xxx'
Typeset the glyph named xxx.30 Normally it is more convenient to use
\[xxx], but \C has the advantage that it is compatible with newer ver-
sions of AT&T troff and is available in compatibility mode.

29 A one-character symbol is not the same as an input character, i.e., the character a is
not the same as \[a]. By default, groff defines only a single one-character symbol,
\[-]; it is usually accessed as \-. On the other hand, GNU troff has the special
feature that \[charXXX] is the same as the input character with character code XXX.
For example, \[char97] is identical to the letter a if ASCII encoding is active.

30 \C is actually a misnomer since it accesses an output glyph.

Chapter 5: gtroff Reference 123

[Request].composite from to
Map glyph name from to glyph name to if it is used in \[...] with more
than one component. See above for examples.

This mapping is based on glyph names only; no check for the existence
of either glyph is done.

A set of default mappings for many accents can be found in the file
composite.tmac, which is loaded at start-up.

[Escape]\N'n'
Typeset the glyph with code n in the current font (n is not the input
character code). The number n can be any non-negative decimal integer.
Most devices only have glyphs with codes between 0 and 255; the Unicode
output device uses codes in the range 0–65535. If the current font does
not contain a glyph with that code, special fonts are not searched. The \N
escape sequence can be conveniently used in conjunction with the char
request:

.char \[phone] \f[ZD]\N'37'

The code of each glyph is given in the fourth column in the font descrip-
tion file after the charset command. It is possible to include unnamed
glyphs in the font description file by using a name of ‘---’; the \N escape
sequence is the only way to use these.

No kerning is applied to glyphs accessed with \N.

Some escape sequences directly map onto special glyphs.

[Escape]\'
This is a backslash followed by the apostrophe character, ASCII character
0x27 (EBCDIC character 0x7D). The same as \[aa], the acute accent.

[Escape]\`
This is a backslash followed by ASCII character 0x60 (EBCDIC character
0x79 usually). The same as \[ga], the grave accent.

[Escape]\-
This is the same as \[-], the minus sign in the current font.

[Escape]_
This is the same as \[ul], the underline character.

[Request].cflags n c1 c2 . . .
Assign properties encoded by the number n to characters c1, c2, and so
on.

Input characters, including special characters introduced by an escape,
have certain properties associated with them.31 These properties can be

31 Output glyphs don’t have such properties. For GNU troff, a glyph is a box numbered
with an index into a font, a given height above and depth below the baseline, and a
width—nothing more.

124 The GNU Troff Manual

modified with this request. The first argument is the sum of the desired
flags and the remaining arguments are the characters to be assigned those
properties. Spaces between the cn arguments are optional. Any argument
cn can be a character class defined with the class request rather than an
individual character. See Section 5.17.5 [Character Classes], page 126.

The non-negative integer n is the sum of any of the following. Some
combinations are nonsensical, such as ‘33’ (1 + 32).

1 Recognize the character as ending a sentence if followed by
a newline or two spaces. Initially, characters ‘.?!’ have this
property.

2 Enable breaks before the character. A line is not broken at
a character with this property unless the characters on each
side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, no characters have
this property.

4 Enable breaks after the character. A line is not broken at a
character with this property unless the characters on each
side both have non-zero hyphenation codes. This excep-
tion can be overridden by adding 64. Initially, characters
‘\-\[hy]\[em]’ have this property.

8 Mark the glyph associated with this character as overlap-
ping other instances of itself horizontally. Initially, characters
‘\[ul]\[rn]\[ru]\[radicalex]\[sqrtex]’ have this prop-
erty.

16 Mark the glyph associated with this character as overlap-
ping other instances of itself vertically. Initially, the character
‘\[br]’ has this property.

32 Mark the character as transparent for the purpose of
end-of-sentence recognition. In other words, an end-of-
sentence character followed by any number of characters
with this property is treated as the end of a sentence if
followed by a newline or two spaces. This is the same as
having a zero space factor in TEX. Initially, characters
‘"')]*\[dg]\[dd]\[rq]\[cq]’ have this property.

64 Ignore hyphenation codes of the surrounding characters. Use
this in combination with values 2 and 4 (initially, no charac-
ters have this property).

For example, if you need an automatic break point after the
en-dash in numerical ranges like “3000–5000”, insert

.cflags 68 \[en]

into your document. Note, however, that this can lead to bad
layout if done without thinking; in most situations, a better

Chapter 5: gtroff Reference 125

solution instead of changing the cflags value is to insert \:
right after the hyphen at the places that really need a break
point.

The remaining values were implemented for East Asian language support;
those who use alphabetic scripts exclusively can disregard them.

128 Prohibit a line break before the character, but allow a line
break after the character. This works only in combination
with flags 256 and 512 and has no effect otherwise. Initially,
no characters have this property.

256 Prohibit a line break after the character, but allow a line
break before the character. This works only in combination
with flags 128 and 512 and has no effect otherwise. Initially,
no characters have this property.

512 Allow line break before or after the character. This works
only in combination with flags 128 and 256 and has no effect
otherwise. Initially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise.
If, for example, the left character has value 512, and the right character
128, no break will be automatically inserted between them. If we use
value 6 instead for the left character, a break after the character can’t
be suppressed since the neighboring character on the right doesn’t get
examined.

[Request].char g [string]
[Request].fchar g [string]
[Request].fschar f g [string]
[Request].schar g [string]

Define a new character or glyph g to be string, which can be empty. More
precisely, char defines a groff object (or redefines an existing one) that
is accessed with the name g on input, and produces string on output. Ev-
ery time glyph g needs to be printed, string is processed in a temporary
environment and the result is wrapped up into a single object. Com-
patibility mode is turned off and the escape character is set to \ while
string is processed. Any emboldening, constant spacing, or track kerning
is applied to this object rather than to individual glyphs in string.

An object defined by these requests can be used just like a normal glyph
provided by the output device. In particular, other characters can be
translated to it with the tr or trin requests; it can be made the leader
character with the lc request; repeated patterns can be drawn with it
using the \l and \L escape sequences; and words containing g can be
hyphenated correctly if the hcode request is used to give the object a
hyphenation code.

There is a special anti-recursion feature: use of the object within its own
definition is handled like a normal character (not defined with char).

126 The GNU Troff Manual

The tr and trin requests take precedence if char accesses the same
symbol.

.tr XY
X

⇒ Y
.char X Z
X

⇒ Y
.tr XX
X

⇒ Z

The fchar request defines a fallback glyph: gtroff only checks for glyphs
defined with fchar if it cannot find the glyph in the current font. gtroff
carries out this test before checking special fonts.

fschar defines a fallback glyph for font f : gtroff checks for glyphs
defined with fschar after the list of fonts declared as font-specific special
fonts with the fspecial request, but before the list of fonts declared as
global special fonts with the special request.

Finally, the schar request defines a global fallback glyph: gtroff checks
for glyphs defined with schar after the list of fonts declared as global
special fonts with the special request, but before the already mounted
special fonts.

See Section 5.17.5 [Character Classes], page 126.

[Request].rchar c1 c2 . . .
[Request].rfschar f c1 c2 . . .

Remove the definitions of glyphs c1, c2, . . . , undoing the effect of a char,
fchar, or schar request.

Spaces and tabs are optional between cn arguments.

The request rfschar removes glyph definitions defined with fschar for
font f.

See Section 7.1 [Special Characters], page 201.

5.17.5 Character Classes

Classes are particularly useful for East Asian languages such as Chinese,
Japanese, and Korean, where the number of needed characters is much larger
than in European languages, and where large sets of characters share the
same properties.

[Request].class name c1 c2 . . .
Define a character class (or simply “class”) name comprising the charac-
ters c1, c2, and so on.

A class thus defined can then be referred to in lieu of listing all the char-
acters within it. Currently, only the cflags request can handle references
to character classes.

Chapter 5: gtroff Reference 127

In the request’s simplest form, each cn is a character (or special charac-
ter).

.class [quotes] ' \[aq] \[dq] \[oq] \[cq] \[lq] \[rq]

Since class and glyph names share the same name space, it is recom-
mended to start and end the class name with [and], respectively, to
avoid collisions with existing character names defined by GNU troff or
the user (with char and related requests). This practice applies the pres-
ence of] in the class name to prevent the use of the special character
escape form \[. . .], thus you must use the \C escape to access a class
with such a name.

You can also use a character range notation consisting of a start char-
acter followed by ‘-’ and then an end character. Internally, GNU troff
converts these two symbol names to Unicode code points (according to
the groff glyph list [GGL]), which then give the start and end value of
the range. If that fails, the class definition is skipped.

Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]-\[u2016]

The class ‘[prepunctx]’ thus contains the contents of the class
[prepunct] as defined above (the set ‘, : ; > }’), and characters in the
range between U+2013 and U+2016.

If you want to include ‘-’ in a class, it must be the first character value
in the argument list, otherwise it gets misinterpreted as part of the range
syntax.

It is not possible to use class names as end points of range definitions.

A typical use of the class request is to control line-breaking and hyphen-
ation rules as defined by the cflags request. For example, to inhibit line
breaks before the characters belonging to the prepunctx class defined in
the previous example, you can write the following.

.cflags 2 \C'[prepunctx]'

See the cflags request in Section 5.17.4 [Using Symbols], page 119, for
more details.

5.17.6 Special Fonts

Special fonts are those that gtroff searches when it cannot find the re-
quested glyph in the current font. The Symbol font is usually a special
font.

gtroff provides the following two requests to add more special fonts. See
Section 5.17.4 [Using Symbols], page 119, for a detailed description of the
glyph searching mechanism in gtroff.

Usually, only non-TTY devices have special fonts.

128 The GNU Troff Manual

[Request].special [s1 s2 . . .]
[Request].fspecial f [s1 s2 . . .]

Use the special request to define special fonts. Initially, this list is empty.

Use the fspecial request to designate special fonts only when font f is
active. Initially, this list is empty.

Previous calls to special or fspecial are overwritten; without argu-
ments, the particular list of special fonts is set to empty. Special fonts
are searched in the order they appear as arguments.

All fonts that appear in a call to special or fspecial are loaded.

See Section 5.17.4 [Using Symbols], page 119, for the exact search order
of glyphs.

5.17.7 Artificial Fonts

There are a number of requests and escapes for artificially creating fonts.
These are largely vestiges of the days when output devices did not have a
wide variety of fonts, and when nroff and troff were separate programs.
Most of them are no longer necessary in GNU troff. Nevertheless, they are
supported.

[Escape]\H'height'
[Escape]\H'+height'
[Escape]\H'-height'

[Register]\n[.height]
Change (increment, decrement) the height of the current font, but not
the width. If height is zero, restore the original height. Default scaling
indicator is ‘z’.

The read-only number register .height contains the font height as set by
\H.

Currently, only the -Tps and -Tpdf devices support this feature.

\H doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font on the fly:

.mc \H'+5z'x\H'0'

In compatibility mode, gtroff behaves differently: If an increment or
decrement is used, it is always taken relative to the current point size and
not relative to the previously selected font height. Thus,

.cp 1
\H'+5'test \H'+5'test

prints the word ‘test’ twice with the same font height (five points larger
than the current font size).

[Escape]\S'slant'
[Register]\n[.slant]

Slant the current font by slant degrees. Positive values slant to the right.
Only integer values are possible.

Chapter 5: gtroff Reference 129

The read-only number register .slant contains the font slant as set by
\S.

Currently, only the -Tps and -Tpdf devices support this feature.

\S doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the font on the fly:

.mc \S'20'x\S'0'

This request is incorrectly documented in the original Unix troff manual;
the slant is always set to an absolute value.

[Request].ul [lines]
The ul request normally underlines subsequent lines if a TTY output
device is used. Otherwise, the lines are printed in italics (only the term
‘underlined’ is used in the following). The single argument is the num-
ber of input lines to be underlined; with no argument, the next line is
underlined. If lines is zero or negative, stop the effects of ul (if it was
active). Requests and empty lines do not count for computing the num-
ber of underlined input lines, even if they produce some output like tl.
Lines inserted by macros (e.g. invoked by a trap) do count.

At the beginning of ul, the current font is stored and the underline font
is activated. Within the span of a ul request, it is possible to change
fonts, but after the last line affected by ul the saved font is restored.

This number of lines still to be underlined is associated with the current
environment (see Section 5.26 [Environments], page 174). The underline
font can be changed with the uf request.

The ul request does not underline spaces.

[Request].cu [lines]
The cu request is similar to ul but underlines spaces as well (if a TTY
output device is used).

[Request].uf font
Set the underline font (globally) used by ul and cu. By default, this is
the font at position 2. font can be either a non-negative font position or
the name of a font.

[Request].bd font [offset]
[Request].bd font1 font2 [offset]
[Register]\n[.b]

Artificially create a bold font by printing each glyph twice, slightly offset.

Two syntax forms are available.

• Imitate a bold font unconditionally. The first argument specifies the
font to embolden, and the second is the number of basic units, minus
one, by which the two glyphs are offset. If the second argument is
missing, emboldening is turned off.

font can be either a non-negative font position or the name of a font.

130 The GNU Troff Manual

offset is available in the .b read-only register if a special font is active;
in the bd request, its default unit is ‘u’.

• Imitate a bold form conditionally. Embolden font1 by offset only if
font font2 is the current font. This request can be issued repeatedly
to set up different emboldening values for different current fonts. If
the second argument is missing, emboldening is turned off for this
particular current font.

This affects special fonts only (either set up with the special com-
mand in font files or with the fspecial request).

[Request].cs font [width [em-size]]
Switch to and from constant glyph space mode. If activated, the width of
every glyph is width/36 ems. The em size is given absolutely by em-size;
if this argument is missing, the em value is taken from the current font size
(as set with the ps request) when the font is effectively in use. Without
second and third argument, constant glyph space mode is deactivated.

Default scaling indicator for em-size is ‘z’; width is an integer.

5.17.8 Ligatures and Kerning

Ligatures are groups of characters that are run together, i.e, producing a
single glyph. For example, the letters ‘f’ and ‘i’ can form a ligature ‘fi’ as in
the word ‘file’. This produces a cleaner look (albeit subtle) to the printed
output. Usually, ligatures are not available in fonts for TTY output devices.

Most PostScript fonts support the fi and fl ligatures. The C/A/T
typesetter that was the target of AT&T troff also supported ‘ff’, ‘ffi’, and
‘ffl’ ligatures. Advanced typesetters or ‘expert’ fonts may include ligatures
for ‘ft’ and ‘ct’, although GNU troff does not support these (yet).

Only the current font is checked for ligatures and kerns; neither special
fonts nor entities defined with the char request (and its siblings) are taken
into account.

[Request].lg [flag]
[Register]\n[.lg]

Switch the ligature mechanism on or off; if the parameter is non-zero or
missing, ligatures are enabled, otherwise disabled. Default is on. The
current ligature mode can be found in the read-only number register .lg
(set to 1 or 2 if ligatures are enabled, 0 otherwise).

Setting the ligature mode to 2 enables the two-character ligatures (fi, fl,
and ff) and disables the three-character ligatures (ffi and ffl).

Pairwise kerning is another subtle typesetting mechanism that modifies
the distance between a glyph pair to improve readability. In most cases (but
not always) the distance is decreased. For example, compare the combination
of the letters ‘V’ and ‘A’. With kerning, ‘VA’ is printed. Without kerning
it appears as ‘VA’. Typewriter-like fonts and fonts for terminals where all
glyphs have the same width don’t use kerning.

Chapter 5: gtroff Reference 131

[Request].kern [flag]
[Register]\n[.kern]

Switch kerning on or off. If the parameter is non-zero or missing, enable
pairwise kerning, otherwise disable it. The read-only number register
.kern is set to 1 if pairwise kerning is enabled, 0 otherwise.

If the font description file contains pairwise kerning information, glyphs
from that font are kerned. Kerning between two glyphs can be inhibited
by placing \& between them: ‘V\&A’.

See Section 8.2.2 [Font File Format], page 225.

Track kerning expands or reduces the space between glyphs. This can be
handy, for example, if you need to squeeze a long word onto a single line or
spread some text to fill a narrow column. It must be used with great care
since it is usually considered bad typography if the reader notices the effect.

[Request].tkf f s1 n1 s2 n2
Enable track kerning for font f. If the current font is f the width of
every glyph is increased by an amount between n1 and n2 (n1, n2 can be
negative); if the current point size is less than or equal to s1 the width is
increased by n1; if it is greater than or equal to s2 the width is increased
by n2; if the point size is greater than or equal to s1 and less than or
equal to s2 the increase in width is a linear function of the point size.

The default scaling indicator is ‘z’ for s1 and s2, ‘p’ for n1 and n2.

The track kerning amount is added even to the rightmost glyph in a line;
for large values it is thus recommended to increase the line length by the
same amount to compensate.

Sometimes, when typesetting letters of different fonts, more or less space
at such boundaries is needed. There are two escapes to help with this.

[Escape]\/
Increase the width of the preceding glyph so that the spacing between
that glyph and the following glyph is correct if the following glyph is a
roman glyph. For example, if an italic f is immediately followed by a ro-
man right parenthesis, then in many fonts the top right portion of the f
overlaps the top left of the right parenthesis. Use this escape sequence
whenever an italic glyph is immediately followed by a roman glyph with-
out any intervening space. This small amount of space is also called italic
correction.

\f[I]f\f[R])
⇒ f)

\f[I]f\/\f[R])
⇒ f)

[Escape]\,
Modify the spacing of the following glyph so that the spacing between
that glyph and the preceding glyph is correct if the preceding glyph is

132 The GNU Troff Manual

a roman glyph. Use this escape sequence whenever a roman glyph is
immediately followed by an italic glyph without any intervening space.
In analogy to above, this space could be called left italic correction, but
this term isn’t used widely.

q\f[I]f
⇒ qf

q\,\f[I]f
⇒ q f

[Escape]\&
Insert a non-printing input break, which is invisible. Its intended use is
to stop interaction of a character with its surroundings.

• It prevents the insertion of extra space after an end-of-sentence char-
acter.

Test.
Test.

⇒ Test. Test.
Test.\&
Test.

⇒ Test. Test.

• It prevents interpretation of a control character at the beginning of
an input line.

.Test
error warning: macro 'Test' not defined

\&.Test
⇒ .Test

• It prevents kerning between two glyphs.

VA
⇒ VA

V\&A
⇒ VA

• It is needed to map an arbitrary character to nothing in the tr re-
quest (see Section 5.11 [Character Translations], page 101).

[Escape]\)
This escape is similar to \& except that it behaves like a character declared
with the cflags request to be transparent for the purposes of an end-of-
sentence character.

Its main usage is in macro definitions to protect against arguments start-
ing with a control character.

Chapter 5: gtroff Reference 133

.de xxx
\)\\$1
..
.de yyy
\&\\$1
..
This is a test.\c
.xxx '
This is a test.

⇒This is a test.' This is a test.
This is a test.\c
.yyy '
This is a test.

⇒This is a test.' This is a test.

5.18 Sizes
GNU troff uses two dimensions with each line of text, type size and vertical
spacing. The type size is approximately the height of the tallest glyph.32

Vertical spacing is the amount of space gtroff allows for a line of text;
normally, this is about 20% larger than the current type size. Ratios smaller
than this can result in hard-to-read text; larger than this, it spreads the
text out more vertically (useful for term papers). By default, gtroff uses
10 point type on 12 point spacing.

Typesetters call the difference between type size and vertical spacing
leading.33

5.18.1 Changing Type Sizes

[Request].ps [size]
[Request].ps +size
[Request].ps -size
[Escape]\ssize

[Register]\n[.s]
Use the ps request or the \s escape to change (increase, decrease) the
type size (in points). Specify size as either an absolute point size, or as a
relative change from the current size. ps with no argument restores the
previous size.

32 This is usually the parenthesis. In most cases the real dimensions of the glyphs in a font
are not related to its type size! For example, the standard PostScript font families
‘Times’, ‘Helvetica’, and ‘Courier’ can’t be used together at 10 pt; to get acceptable
output, the size of ‘Helvetica’ has to be reduced by one point, and the size of ‘Courier’
must be increased by one point.

33 This is pronounced to rhyme with “sledding”, and refers to the use of lead metal (Latin:
plumbum) in traditional typesetting.

134 The GNU Troff Manual

The default scaling indicator of size is ‘z’. If the resulting size is non-
positive, it is set to 1 u.

The read-only number register .s returns the point size in points as a
decimal fraction. This is a string. To get the point size in scaled points,
use the .ps register instead (see Section 5.18.2 [Fractional Type Sizes],
page 136).

.s is associated with the current environment (see Section 5.26 [Environ-
ments], page 174).

snap, snap,
.ps +2
grin, grin,
.ps +2
wink, wink, \s+2nudge, nudge,\s+8 say no more!
.ps 10

The \s escape may be called in a variety of ways. Much like other escapes
there must be a way to determine where the argument ends and the text
begins. Any of the following forms is valid:

\sn Set the point size to n points. n must be a single digit. If n is
0, restore the previous size.

\s+n
\s-n Increase or decrease the point size by n points. n must be

exactly one digit.

\s(nn Set the point size to nn points. nn must be exactly two digits.

\s+(nn
\s-(nn
\s(+nn
\s(-nn Increase or decrease the point size by nn points. nn must be

exactly two digits.

See Section 5.18.2 [Fractional Type Sizes], page 136, for additional syn-
tactical forms of the \s escape (which accept integers as well as fractions).

Note that \s doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font on the fly:

.mc \s[20]x\s[0]

[Request].sizes s1 s2 . . . sn [0]
Some devices may only have certain permissible sizes, in which case
gtroff rounds to the nearest permissible size. The DESC file specifies
which sizes are permissible for the device.

Use the sizes request to change the permissible sizes for the current
output device. Arguments are in scaled points; the sizescale line in the
DESC file for the output device provides the scaling factor. For example,
if the scaling factor is 1000, then the value 12000 is 12 points.

Chapter 5: gtroff Reference 135

Each argument can be a single point size (such as ‘12000’), or a range of
sizes (such as ‘4000-72000’). You can optionally end the list with a zero.

[Request].vs [space]
[Request].vs +space
[Request].vs -space
[Register]\n[.v]

Change (increase, decrease) the vertical spacing by space. The default
scaling indicator is ‘p’.

If vs is called without an argument, the vertical spacing is reset to the
previous value before the last call to vs.

gtroff creates a warning of type ‘range’ if space is negative; the vertical
spacing is then set to smallest positive value, the vertical resolution (as
given in the .V register).

‘.vs 0’ isn’t saved in a diversion since it doesn’t result in a vertical motion.
You explicitly have to repeat this command before inserting the diversion.

The read-only number register .v contains the current vertical spacing;
it is associated with the current environment (see Section 5.26 [Environ-
ments], page 174).

The effective vertical line spacing consists of four components. Breaking
a line causes the following actions (in the given order).

• Move the current point vertically by the extra pre-vertical line space.
This is the minimum value of all \x escapes with a negative argument
in the current output line.

• Move the current point vertically by the vertical line spacing as set with
the vs request.

• Output the current line.

• Move the current point vertically by the extra post-vertical line space.
This is the maximum value of all \x escapes with a positive argument
in the line that has just been output.

• Move the current point vertically by the post-vertical line spacing as
set with the pvs request.

It is usually better to use vs or pvs instead of ls to produce double-spaced
documents: vs and pvs have a finer granularity for the inserted vertical space
than ls; furthermore, certain preprocessors assume single spacing.

See Section 5.9 [Manipulating Spacing], page 95, for more details on the
\x escape and the ls request.

[Request].pvs [space]
[Request].pvs +space
[Request].pvs -space
[Register]\n[.pvs]

Change (increase, decrease) the post-vertical spacing by space. The de-
fault scaling indicator is ‘p’.

136 The GNU Troff Manual

If pvs is called without an argument, the post-vertical spacing is reset to
the previous value before the last call to pvs.

gtroff creates a warning of type ‘range’ if space is zero or negative; the
vertical spacing is then set to zero.

The read-only number register .pvs contains the current post-vertical
spacing; it is associated with the current environment (see Section 5.26
[Environments], page 174).

5.18.2 Fractional Type Sizes

A scaled point is equal to 1/sizescale points, where sizescale is specified in
the device description file DESC, and defaults to 1 . A new scale indicator ‘z’
has has the effect of multiplying by sizescale. Requests and escape sequences
in GNU troff interpret arguments that represent a point size as being in
units of scaled points; that is, they evaluate each such argument using a
default scale indicator of ‘z’. Arguments treated in this way comprise those
to the escapes \H and \s, to the request ps, the third argument to the cs
request, and the second and fourth arguments to the tkf request.

For example, if sizescale is 1000, then a scaled point is one one-thousandth
of a point. The request ‘.ps 10.25’ is synonymous with ‘.ps 10.25z’ and
sets the point size to 10250 scaled points, or 10.25 points.

Consequently, in GNU troff, the number register .s can contain a non-
integral point size.

It makes no sense to use the ‘z’ scale indicator in a numeric expression
whose default scale indicator is neither ‘u’ nor ‘z’, so GNU troff disallows
this. Similarly, it is nonsensical to use a scaling indicator other than ‘z’ or
‘u’ in a numeric expression whose default scale indicator is ‘z’, and so GNU
troff disallows this as well.

Another new scale indicator ‘s’ multiplies by the number of basic units
in a scaled point. For instance, ‘\n[.ps]s’ is equal to ‘1m’ by definition. Do
not confuse the ‘s’ and ‘z’ scale indicators.

[Register]\n[.ps]
A read-only number register returning the point size in scaled points.

.ps is associated with the current environment (see Section 5.26 [Envi-
ronments], page 174).

[Register]\n[.psr]
[Register]\n[.sr]

The last-requested point size in scaled points is contained in the .psr
read-only number register. The last-requested point size in points as a
decimal fraction can be found in .sr. This is a string-valued read-only
number register.

The requested point sizes are device-independent, whereas the values re-
turned by the .ps and .s registers are not. For example, if a point size

Chapter 5: gtroff Reference 137

of 11 pt is requested, and a sizes request (or a sizescale line in a DESC
file) specifies 10.95 pt instead, this value is actually used.

Both registers are associated with the current environment (see
Section 5.26 [Environments], page 174).

The \s escape has the following syntax for working with fractional type
sizes:

\s[n]
\s'n' Set the point size to n scaled points; n is a numeric expression

with a default scale indicator of ‘z’.

\s[+n]
\s[-n]
\s+[n]
\s-[n]
\s'+n'
\s'-n'
\s+'n'
\s-'n' Increase or decrease the point size by n scaled points; n is a

numeric expression (which may start with a minus sign) with a
default scale indicator of ‘z’.

See Section 8.2 [Device and Font Files], page 222.

5.19 Strings
GNU troff has string variables primarily for user convenience. Only one
string is predefined by the language.

[String]*[.T]
Contains the name of the output driver (for example, ‘utf8’ or ‘pdf’).

The ds (or ds1) request creates a string with a specified name and con-
tents and the * escape dereferences its name, retrieving the contents. Deref-
erencing an undefined string name defines it as empty.

[Request].ds name [string]
[Request].ds1 name [string]
[Escape]*n
[Escape]*(nm
[Escape]*[name [arg1 arg2 . . .]]

Define a string variable name with contents string. If name already exists,
it is removed first (see rm below). The syntax form using brackets accepts
arguments that are handled as macro arguments are; recall Section 5.5.1.1
[Request and Macro Arguments], page 72. In contrast to macro invoca-
tions, however, a closing bracket as a string argument must be enclosed
in double quotes.

138 The GNU Troff Manual

The * escape interpolates (expands in place) a previously defined string
variable name (one-character name n, two-character name nm). More
precisely, the stored string is pushed onto the input stack, which is then
parsed normally. Similarly to number registers, it is possible to nest
strings; i.e., string variables can be called within string variables. An
argument in a string definition must be escaped for correct behavior; See
Section 5.21.2 [Parameters], page 152.

.ds a \\$1 wildebeest

.ds b big, *[a hairy]
I see a *[b].

⇒ I see a big, hairy wildebeest.

If the string named by the * escape does not exist, it is defined as empty,
and a warning of type ‘mac’ is emitted (see Section 5.33 [Debugging],
page 188).

If ds is called with only one argument, name is defined as an empty string.

Caution: Unlike other requests, the second argument to the ds request
consumes the remainder of the input line, including trailing spaces. This
means that comments on a line with such a request can introduce un-
wanted space into a string when they are set off from the material they
annotate, as is conventional.

.ds TeX T\h'-.2m'\v'.2m'E\v'-.2m'\h'-.1m'X \" Knuth's TeX

Instead, place the comment on another line or put the comment escape
immediately adjacent to the last character of the string.

.ds TeX T\h'-.2m'\v'.2m'E\v'-.2m'\h'-.1m'X\" Knuth's TeX

It is good style to end string definitions (and appendments; see below)
with a comment, even an empty one, to prevent unwanted space from
creeping into them during source document maintenance.

.ds author Alice Pleasance Liddell\"

.ds empty \" might be appended to later with .as

To store leading space in a string, start it with a double quote. A double
quote is special only in that position; double quotes in any other location
are included in the string (the effects of escape sequences notwithstand-
ing).

.ds salutation " Yours in a white wine sauce,\"

.ds c-var-defn " char build_date[]="2020-07-29";\"

.ds sucmd sudo sh -c "fdisk -l /dev/sda > partitions"\"

Strings are not limited to a single line of input text. A string can span
several lines by escaping the newlines with a backslash. The resulting
string is stored without the newlines.

.ds foo This string contains \
text on multiple lines \
of input.

Chapter 5: gtroff Reference 139

It is not possible to embed a newline in a string that will be interpreted
as such when the string is interpolated. To achieve that effect, use the *
escape to interpolate a macro instead.

Strings, macros, and diversions (and boxes) share the same name space.
Internally, the same mechanism is used to store them. Thus it is possible
to invoke a macro with string interpolation syntax and vice versa.

.de subject
Typesetting
..
.de predicate
rewards attention to detail
..
*[subject] *[predicate].
Truly.

⇒ Typesetting
⇒ rewards attention to detail Truly.

What went wrong? Strings don’t contain newlines, but macros do. String
interpolation placed a newline at the end of ‘*[subject]’, and the next
thing on the input was a space. Similarly, when ‘*[predicate]’ was
interpolated, it was followed by the empty request ‘.’ on a line by itself.
If we want to use macros as strings, we must take interpolation behavior
into account.

.de subject
Typesetting\\
..
.de predicate
rewards attention to detail\\
..
*[subject] *[predicate].
Truly.

⇒ Typesetting rewards attention to detail. Truly.

By ending each text line of the macros with an escaped ‘\RET’, we get the
desired effect (see Section 5.14 [Line Control], page 109). What would
have happened if we had used only one backslash at a time instead?

Interpolating a string does not hide existing macro arguments. Thus in
a macro, a more efficient way of doing

.xx \\$@

is

*[xx]\\

The latter calling syntax doesn’t change the value of \$0, which is then in-
herited from the calling macro (see Section 5.21.2 [Parameters], page 152).

Diversions and boxes can be also called with string syntax. It is sometimes
convenient to copy one-line diversions or boxes to a string.

140 The GNU Troff Manual

.di xxx
a \fItest\fR
.br
.di
.ds yyy This is *[xxx]\c
*[yyy].

⇒ This is a test.

As the previous example shows, it is possible to store formatted output
in strings. The \c escape prevents the subsequent newline from being
interpreted as a break (again, see Section 5.14 [Line Control], page 109).

Copying diversions longer than a single output line produces unexpected
results.

.di xxx
a funny
.br
test
.br
.di
.ds yyy This is *[xxx]\c
*[yyy].

⇒ test This is a funny.

Usually, it is not predictable whether a diversion contains one or more
output lines, so this mechanism should be avoided. With AT&T troff,
this was the only solution to strip off a final newline from a diversion.
Another disadvantage is that the spaces in the copied string are already
formatted, making them unstretchable. This can cause ugly results.

A clean solution to this problem is available in GNU troff, using the
requests chop to remove the final newline of a diversion, and unformat
to make the horizontal spaces stretchable again.

.box xxx
a funny
.br
test
.br
.box
.chop xxx
.unformat xxx
This is *[xxx].

⇒ This is a funny test.

See Section 5.32 [Gtroff Internals], page 186.

The ds1 request defines a string such that compatibility mode is off when
the string is later interpolated. To be more precise, a compatibility save
input token is inserted at the beginning of the string, and a compatibility
restore input token at the end.

Chapter 5: gtroff Reference 141

.nr xxx 12345

.ds aa The value of xxx is \\n[xxx].

.ds1 bb The value of xxx is \\n[xxx].

.

.cp 1

.
*(aa

error warning: number register '[' not defined
⇒ The value of xxx is 0xxx].

*(bb
⇒ The value of xxx is 12345.

[Request].as name [string]
[Request].as1 name [string]

The as request is similar to ds but appends string to the string stored as
name instead of redefining it. If name doesn’t exist yet, it is created. If
as is called with only one argument, no operation is performed (beyond
dereferencing it).

.as salutation " with shallots, onions and garlic,\"

The as1 request is similar to as, but compatibility mode is switched off
when the appended portion of the string is later interpolated. To be more
precise, a compatibility save input token is inserted at the beginning of
the appended string, and a compatibility restore input token at the end.

Several requests exist to perform rudimentary string operations. Strings
can be queried (length) and modified (chop, substring, stringup,
stringdown), and their names can be manipulated through renaming,
removal, and aliasing (rn, rm, als).

[Request].length reg anything
Compute the number of characters of anything and store the count in the
number register reg. If reg doesn’t exist, it is created. anything is read
in copy mode.

.ds xxx abcd\h'3i'efgh

.length yyy *[xxx]
\n[yyy]

⇒ 14

[Request].chop object
Remove the last character from the macro, string, or diversion named
object. This is useful for removing the newline from the end of a diversion
that is to be interpolated as a string. This request can be used repeatedly
on the same object; see Section 5.32 [Gtroff Internals], page 186, for
details on nodes inserted additionally by GNU troff.

[Request].substring str start [end]
Replace the string named str with its substring bounded by the indices
start and end, inclusive. The first character in the string has index 0. If

142 The GNU Troff Manual

end is omitted, it is implicitly set to the largest valid value (the string
length minus one). Negative indices count backwards from the end of the
string: the last character has index −1, the character before the last has
index −2, and so on.

.ds xxx abcdefgh

.substring xxx 1 -4
*[xxx]

⇒ bcde
.substring xxx 2
*[xxx]

⇒ de

[Request].stringdown str
[Request].stringup str

Alter the string named str by replacing each of its bytes with its lower-
case (stringdown) or uppercase (stringup) version (if one exists). GNU
troff special characters (see the groff char(7) man page) can be used
and the output will usually transform in the expected way due to the
regular naming convention of the special character escapes.

.ds resume R\['e]sum\['e]
*[resume]
.stringdown resume
*[resume]
.stringup resume
*[resume]

⇒ Résumé résumé RÉSUMÉ

(In pratice, we would end the ds request with a comment escape \" to
prevent whitespace from creeping into the definition during source document
maintenance.)

[Request].rn old new
Rename the request, macro, diversion, or string old to new.

[Request].rm name
Remove the request, macro, diversion, or string name. GNU troff treats
subsequent invocations as if the name had never been defined.

[Request].als new old
Create an alias new for the existing request, string, macro, or diversion
object named old, causing the names to refer to the same stored object.
If old is undefined, a warning of type ‘mac’ is generated and the request
is ignored.

To understand how the als request works, consider two different storage
pools: one for objects (macros, strings, etc.), and another for names. As
soon as an object is defined, GNU troff adds it to the object pool, adds
its name to the name pool, and creates a link between them. When als

Chapter 5: gtroff Reference 143

creates an alias, it adds a new name to the name pool that gets linked to
the same object as the old name.

Now consider this example.

.de foo

..

.

.als bar foo

.

.de bar

. foo

..

.

.bar
error input stack limit exceeded
error (probable infinite loop)

In the above, bar remains an alias—another name for—the object re-
ferred to by foo, which the second de request replaces. Alternatively,
imagine that the de request dereferences its argument before replacing it.
Either way, the result of calling bar is a recursive loop that finally leads
to an error. See Section 5.21 [Writing Macros], page 148.

To remove an alias, simply call rm on its name. The object itself is not
destroyed until it has no more names.

5.20 Conditionals and Loops
GNU troff has if and while control structures like other languages. How-
ever, the syntax for grouping multiple input lines in the branches or bodies
of these structures is unusual.

5.20.1 Operators in Conditionals

In if, ie, and while requests, in addition to ordinary numeric expressions
(see Section 5.3 [Expressions], page 67), several boolean operators are avail-
able.

c glyph True if a glyph is available, where glyph is a Unicode basic Latin
character, a GNU troff special character ‘\(xx’ or ‘\[xxx]’,
‘\N'xxx'’, or has been defined by the char request.

d name True if there is a string, macro, diversion, or request called name.

e True if the current page is even-numbered.

F font True if a font called font exists. font is handled as if it were
opened with the ft request (that is, font translation and styles
are applied), without actually mounting it.

This test doesn’t load the complete font, but only its header to
verify its validity.

144 The GNU Troff Manual

m color True if there is a color called color.

n True if the document is being processed in nroff mode (i.e.,
the nroff request has been issued). See Section 5.12 [Troff and
Nroff Mode], page 106.

o True if the current page is odd-numbered.

r reg True if there is a number register called reg.

S style True if a style called style has been registered. Font translation
is applied.

t True if the document is being processed in troff mode (i.e.,
the troff request has been issued). See Section 5.12 [Troff and
Nroff Mode], page 106.

v Always false. This condition is recognized only for compatibility
with certain other troff implementations.34

'xxx'yyy'
True if the output produced by xxx is equal to the output pro-
duced by yyy. Other characters can be used in place of the
single quotes; the same set of delimiters as for the \D escape
is used (see Section 5.5.3 [Escapes], page 73). gtroff formats
xxx and yyy in separate environments; after the comparison the
resulting data is discarded.

.ie "|"\fR|\fP" \
true
.el \
false

⇒ true

The resulting motions, glyph sizes, and fonts have to match,35

and not the individual motion, size, and font requests. In the
previous example, ‘|’ and ‘\fR|\fP’ both result in a roman ‘|’
glyph with the same point size and at the same location on
the page, so the strings are equal. If ‘.ft I’ had been added
before the ‘.ie’, the result would be “false” because (the first)
‘|’ produces an italic ‘|’ rather than a roman one.

To compare strings without processing, surround the data with
\?.

.ie "\?|\?"\?\fR|\fP\?" \
true
.el \
false

⇒ false

34 This refers to vtroff, a translator that would convert the C/A/T output from early-
vintage AT&T troff to a form suitable for Versatec and Benson-Varian plotters.

35 The created output nodes must be identical. See Section 5.32 [Gtroff Internals],
page 186.

Chapter 5: gtroff Reference 145

Since data protected with \? is read in copy mode it is even
possible to use incomplete input without causing an error.

.ds a \[

.ds b \[

.ie '\?*a\?'\?*b\?' \
true
.el \
false

⇒ true

These operators can’t be combined with other operators like ‘:’ or ‘&’;
only a leading ‘!’ (without spaces or tabs between the exclamation mark and
the operator) can be used to negate the result.

.nr x 1

.ie !r x register x is not defined

.el register x is defined
⇒ register x is defined

Spaces and tabs immediately after ‘!’ cause the condition to evaluate as
zero (this bizarre behavior maintains compatibility with AT&T troff).

.nr x 1

.ie ! r x register x is not defined

.el register x is defined
⇒ r x register x is not defined

The unexpected appearance of ‘r x’ in the output is a clue that our condi-
tional was not interpreted the way we planned, but matters may not always
be so obvious.

Spaces and tabs are optional before the arguments to the ‘r’, ‘d’, and ‘c’
operators.

5.20.2 if-then

[Request].if expr anything
Evaluate the expression expr, and execute anything (the remainder of
the line) if expr evaluates true (that is, to a value greater than zero).
anything is interpreted as though it were on a line by itself (except that
leading spaces are ignored). See Section 5.20.1 [Operators in Condition-
als], page 143.

.nr xxx 1

.nr yyy 2

.if ((\n[xxx] == 1) & (\n[yyy] == 2)) true
⇒ true

[Request].nop anything
Executes anything. This is similar to ‘.if 1’.

146 The GNU Troff Manual

5.20.3 if-else

[Request].ie expr anything
[Request].el anything

Use the ie and el requests to write an if-then-else. The first request is
the ‘if’ part and the latter is the ‘else’ part.

.ie n .ls 2 \" double-spacing in nroff

.el .ls 1 \" single-spacing in troff

See Section 5.3 [Expressions], page 67.

5.20.4 Conditional Blocks

[Escape]\{
[Escape]\}

It is frequently desirable for a control structure to govern more than one
request, call more than one macro, span more than one input line of
text, or mix the foregoing. The opening and closing brace escapes \{
and \} perform such grouping. Brace escapes can be used outside of
control structures, but when they are they have no meaning and produce
no output.

\{ should appear (after optional spaces and tabs) immediately subsequent
to the request’s conditional expression. \} should appear on a line with
other occurrences of itself as necessary to match \{ escapes. It can be
preceded by a control character, spaces, and tabs. Input after an \}
escape on the same line is only processed if all the preceding conditions
to which the escapes correspond are true. Furthermore, a \} closing the
body of a while request must be the last such escape on an input line.

A
.if 0 \{ B
C
D
\}E
F

⇒ A F

N
.if 1 \{ O
. if 0 \{ P
Q
R\} S\} T
U

⇒ N O U

If the above behavior challenges the intuition, keep in mind that it was
implemented to retain compatibility with AT&T troff. For clarity, it is
common practice to end input lines with \{, optionally followed by \RET

Chapter 5: gtroff Reference 147

to suppress a break before subsequent text lines, and to have nothing more
than a control character, spaces, and tabs before any lines containing \}.

.de DEBUG
debug =
.ie \\$1 \{\
ON,
development
\}
.el \{\
OFF,
production
\}
version
..
.DEBUG 0
.br
.DEBUG 1

Try omitting the \RETs from the foregoing example and see how the out-
put changes. Remember that, as noted above, after a true conditional (or
after the el request if its counterpart ie condition was false) any spaces
or tabs on the same input line are interpreted as if they were on an input
line by themselves.

5.20.5 while

GNU troff provides a looping construct using the while request, which is
used much like the if request.

[Request].while expr anything
Evaluate the expression expr, and repeatedly execute anything (the re-
mainder of the line) until expr evaluates false.

.nr a 0 1

.while (\na < 9) \{\
\n+a,
.\}
\n+a

⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Some remarks.

• The body of a while request is treated like the body of a de request:
gtroff temporarily stores it in a macro that is deleted after the loop
has been exited. It can considerably slow down a macro if the body
of the while request (within the macro) is large. Each time the
macro is executed, the while body is parsed and stored again as a
temporary macro.

148 The GNU Troff Manual

.de xxx

. nr num 10

. while (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. \}

..

The traditional and often better solution (AT&T troff lacked the
while request) is to use a recursive macro instead that is parsed only
once during its definition.

.de yyy

. if (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. yyy

. \}

..

.

.de xxx

. nr num 10

. yyy

..

The number of available recursion levels is set to 1000 (this is a
compile-time constant value of gtroff).

• The closing brace of a while body must end a line.

.if 1 \{\

. nr a 0 1

. while (\n[a] < 10) \{\

. nop \n+[a]

.\}\}
⇒ unbalanced \{ \}

[Request].break
Break out of a while loop. Be sure not to confuse this with the br request
(causing a line break).

[Request].continue
Finish the current iteration of a while loop, immediately restarting the
next iteration.

5.21 Writing Macros
A macro is a collection of text and embedded commands that can be invoked
multiple times. Use macros to define common operations. See Section 5.19
[Strings], page 137, for a (limited) alternative syntax to call macros.

Chapter 5: gtroff Reference 149

Although the following requests can be used to create macros, simply
using an undefined macro will cause it to be defined as empty. See Section 5.4
[Identifiers], page 69.

[Request].de name [end]
[Request].de1 name [end]
[Request].dei name [end]
[Request].dei1 name [end]

Define a new macro named name. gtroff copies subsequent lines (start-
ing with the next one) into an internal buffer until it encounters the line
‘..’ (two dots). If the optional second argument to de is present it is used
as the macro closure request instead of ‘..’.

There can be spaces or tabs after the first dot in the line containing the
ending token (either ‘.’ or macro ‘end’). Don’t insert a tab character
immediately after the ‘..’, otherwise it isn’t recognized as the end-of-
macro symbol.36

Here is a small example macro called ‘P’ that causes a break and inserts
some vertical space. It could be used to separate paragraphs.

.de P

. br

. sp .8v

..

The following example defines a macro within another. Remember that
expansion must be protected twice; once for reading the macro and once
for executing.

\# a dummy macro to avoid a warning
.de end
..
.
.de foo
. de bar end
. nop \f[B]Hello \\\\$1!\f[]
. end
..
.
.foo
.bar Joe

⇒ Hello Joe!
36 While it is possible to define and call a macro ‘.’ with

.de .

. tm foo

..

.

.. \" This calls macro ‘.’!

you can’t use this as the end-of-macro macro: during a macro definition, ‘..’ is never
handled as a call to ‘.’, even if you say ‘.de foo .’ explicitly.

150 The GNU Troff Manual

Since \f has no expansion, it isn’t necessary to protect its backslash.
Had we defined another macro within bar that takes a parameter, eight
backslashes would be necessary before ‘$1’.

The de1 request turns off compatibility mode while executing the macro.
On entry, the current compatibility mode is saved and restored at exit.

.nr xxx 12345

.

.de aa
The value of xxx is \\n[xxx].
..
.de1 bb
The value of xxx is \\n[xxx].
..
.
.cp 1
.
.aa

⇒ warning: number register ‘[’ not defined
⇒ The value of xxx is 0xxx].

.bb
⇒ The value of xxx is 12345.

The dei request defines a macro indirectly. That is, it expands strings
whose names are name or end before performing the append.

This:

.ds xx aa

.ds yy bb

.dei xx yy

is equivalent to:

.de aa bb

The dei1 request is similar to dei but with compatibility mode switched
off during execution of the defined macro.

If compatibility mode is on, de (and dei) behave similar to de1 (and
dei1): A ‘compatibility save’ token is inserted at the beginning, and a
‘compatibility restore’ token at the end, with compatibility mode switched
on during execution. See Section 5.32 [Gtroff Internals], page 186, for
more information on switching compatibility mode on and off in a single
document.

Using trace.tmac, you can trace calls to de and de1.

Macro identifiers share their name space with identifiers for strings and
diversions (and boxes).

See [the description of the als request], page 142, for possible pitfalls if
redefining a macro that has been aliased.

Chapter 5: gtroff Reference 151

[Request].am name [end]
[Request].am1 name [end]
[Request].ami name [end]
[Request].ami1 name [end]

Works similarly to de except it appends onto the macro named name.
So, to make the previously defined ‘P’ macro set indented instead of block
paragraphs, add the necessary code to the existing macro.

.am P

.ti +5n

..

The am1 request turns off compatibility mode while executing the ap-
pended macro piece. To be more precise, a compatibility save input token
is inserted at the beginning of the appended code, and a compatibility
restore input token at the end.

The ami request appends indirectly, meaning that gtroff expands strings
whose names are name or end before performing the append.

The ami1 request is similar to ami but compatibility mode is switched off
during execution of the defined macro.

Using trace.tmac, you can trace calls to am and am1.

See Section 5.19 [Strings], page 137, for the als and rn request to create
an alias and rename a macro, respectively.

The am, as, da, de, di, and ds requests (together with their variants)
only create a new object if the name of the macro, diversion, or string is
currently undefined or if it is defined as a request; normally, they modify the
value of an existing object.

[Request].return [anything]
Exit a macro, immediately returning to the caller.

If called with an argument, exit twice, namely the current macro and
the macro one level higher. This is used to define a wrapper macro for
return in trace.tmac.

5.21.1 Copy Mode

When GNU troff processes certain requests, most importantly those which
define a macro, string, or diversion, it does so in copy mode: it copies the
characters of the definition into a dedicated storage region, interpolating the
escape sequences \n, \$, and *, intepreting \\ and \RET immediately and
storing all other escape sequences in an encoded form.

Since the escape character escapes itself, you can control whether any
escape sequence is interpreted at definition time or when it is later invoked or
interpolated by selectively insulating the escapes with an extra backslash.37

37 Compare this to the \def and \edef commands in TEX.

152 The GNU Troff Manual

.nr x 20

.de y

.nr x 10
\&\nx
\&\\nx
..
.y

⇒ 20 10

The counterpart to copy mode—a roff program’s behavior when not
defining a macro, string or diversion—where escapes are interpolated, re-
quests invoked, and macros called immediately upon recognition, can be
termed interpretation mode.

5.21.2 Parameters

The arguments to a macro or string can be examined using a variety of
escapes.

[Register]\n[.$]
The number of arguments passed to a macro or string. This is a read-only
number register.

The shift request can change its value.

Any individual argument can be retrieved with one of the following es-
capes:

[Escape]\$n
[Escape]\$(nn
[Escape]\$[nnn]

Retrieve the n th, nn th or nnn th argument. As usual, the first form only
accepts a single number (larger than zero), the second a two-digit number
(larger than or equal to 10), and the third any positive integer value
(larger than zero). Macros and strings can have an unlimited number of
arguments. Because string and macro definitions are read in copy mode,
use two backslashes on these in practice to prevent their interpolation
until the macro is actually invoked.

[Request].shift [n]
Shift the arguments 1 position, or as many positions as specified by its
argument. After executing this request, argument i becomes argument
i − n; arguments 1 to n are no longer available. Shifting by negative
amounts is currently undefined.

The register .$ is adjusted accordingly.

[Escape]\$*
[Escape]\$@

In some cases it is convenient to use all of the arguments at once (for
example, to pass the arguments along to another macro). The \$* escape

Chapter 5: gtroff Reference 153

concatenates all the arguments separated by spaces. A similar escape
is \$@, which concatenates all the arguments with each surrounded by
double quotes, and separated by spaces. If not in compatibility mode,
the input level of double quotes is preserved (see Section 5.5.1.1 [Request
and Macro Arguments], page 72).

[Escape]\$^
Handle the parameters of a macro as if they were an argument to the ds
or similar requests.

.de foo

. tm $1=‘\\$1’

. tm $2=‘\\$2’

. tm $*=‘\\$*’

. tm $@=‘\\$@’

. tm $^=‘\\$^’

..

.foo " This is a "test"
⇒ $1=‘ This is a ’
⇒ $2=‘test"’
⇒ $*=‘ This is a test"’
⇒ $@=‘" This is a " "test""’
⇒ $^=‘" This is a "test"’

This escape is useful mainly for macro packages like trace.tmac, which
redefines some requests and macros for debugging purposes.

[Escape]\$0
The name used to invoke the current macro. The als request can make
a macro have more than one name.

If a macro is called as a string (within another macro), the value of \$0
isn’t changed.

.de foo

. tm \\$0

..

.als foo bar

.

154 The GNU Troff Manual

.de aaa

. foo

..

.de bbb

. bar

..

.de ccc
*[foo]\\
..
.de ddd
*[bar]\\
..
.

.aaa
⇒ foo

.bbb
⇒ bar

.ccc
⇒ ccc

.ddd
⇒ ddd

See Section 5.5.1.1 [Request and Macro Arguments], page 72.

5.22 Page Motions
See Section 5.9 [Manipulating Spacing], page 95, for a discussion of the main
request for vertical motion, sp.

[Request].mk [reg]
[Request].rt [dist]

The request mk can be used to mark a location on a page, for movement
to later. This request takes a register name as an argument in which to
store the current page location. With no argument it stores the location
in an internal register. The results of this can be used later by the rt or
the sp request (or the \v escape).

The rt request returns upwards to the location marked with the last mk
request. If used with an argument, return to a position which distance
from the top of the page is dist (no previous call to mk is necessary in this
case). Default scaling indicator is ‘v’.

If a page break occurs between a mk request and its matching rt request,
the rt is silently ignored.

Here a primitive solution for a two-column macro.

Chapter 5: gtroff Reference 155

.nr column-length 1.5i

.nr column-gap 4m

.nr bottom-margin 1m

.

.de 2c

. br

. mk

. ll \\n[column-length]u

. wh -\\n[bottom-margin]u 2c-trap

. nr right-side 0

..

.

.de 2c-trap

. ie \\n[right-side] \{\

. nr right-side 0

. po -(\\n[column-length]u + \\n[column-gap]u)

. \" remove trap

. wh -\\n[bottom-margin]u

. \}

. el \{\

. \" switch to right side

. nr right-side 1

. po +(\\n[column-length]u + \\n[column-gap]u)

. rt

. \}

..

.

.pl 1.5i

.ll 4i
This is a small test that shows how the
rt request works in combination with mk.

.2c
Starting here, text is typeset in two columns.
Note that this implementation isn’t robust
and thus not suited for a real two-column
macro.

Result:

156 The GNU Troff Manual

This is a small test that shows how the
rt request works in combination with mk.

Starting here, isn’t robust
text is typeset and thus not
in two columns. suited for a
Note that this real two-column
implementation macro.

The following escapes give fine control of movements about the page.

[Escape]\v’e’
Move vertically, usually from the current location on the page (if no
absolute position operator ‘|’ is used). The argument e specifies the
distance to move; positive is downwards and negative upwards. The
default scaling indicator for this escape is ‘v’. Beware, however, that
gtroff continues text processing at the point where the motion ends,
so you should always balance motions to avoid interference with text
processing.

\v doesn’t trigger a trap. This can be quite useful; for example, consider
a page bottom trap macro that prints a marker in the margin to indicate
continuation of a footnote or something similar.

There are some special-case escapes for vertical motion.

[Escape]\r
Move upwards 1 v.

[Escape]\u
Move upwards .5 v.

[Escape]\d
Move down .5 v.

[Escape]\h’e’
Move horizontally, usually from the current location (if no absolute po-
sition operator ‘|’ is used). The expression e indicates how far to move:
positive is rightwards and negative leftwards. The default scaling indica-
tor for this escape is ‘m’.

This horizontal space is not discarded at the end of a line. To insert
discardable space of a certain length use the ss request.

There are a number of special-case escapes for horizontal motion.

[Escape]\SP
An unbreakable and unpaddable (i.e. not expanded during filling) space.
(Note: This is a backslash followed by a space.)

Chapter 5: gtroff Reference 157

[Escape]\~
An unbreakable space that stretches like a normal inter-word space when
a line is adjusted.

[Escape]\|
A 1/6 th em unbreakable space. Ignored for TTY output devices (rounded
to zero).

However, if there is a glyph defined in the current font file with name \|
(note the leading backslash), the width of this glyph is used instead (even
for TTYs).

[Escape]\^
A 1/12 th em unbreakable space. Ignored for TTY output devices
(rounded to zero).

However, if there is a glyph defined in the current font file with name \^
(note the leading backslash), the width of this glyph is used instead (even
for TTYs).

[Escape]\0
An unbreakable space the size of a digit.

The following string sets the TEX logo:

.ds TeX T\h’-.1667m’\v’.224m’E\v’-.224m’\h’-.125m’X

[Escape]\w’text’
[Register]\n[st]
[Register]\n[sb]
[Register]\n[rst]
[Register]\n[rsb]
[Register]\n[ct]
[Register]\n[ssc]
[Register]\n[skw]

Return the width of the specified text in basic units. This allows hori-
zontal movement based on the width of some arbitrary text (e.g. given as
an argument to a macro).

The length of the string ‘abc’ is \w’abc’u.
⇒ The length of the string ‘abc’ is 72u.

Font changes may occur in text, which don’t affect current settings.

After use, \w sets several registers:

st
sb The highest and lowest point of the baseline, respectively, in

text.

rst
rsb Like the st and sb registers, but takes account of the heights

and depths of glyphs. In other words, this gives the high-
est and lowest point of text. Values below the baseline are
negative.

158 The GNU Troff Manual

ct Defines the kinds of glyphs occurring in text:

0 only short glyphs, no descenders or tall glyphs.

1 at least one descender.

2 at least one tall glyph.

3 at least one each of a descender and a tall glyph.

ssc The amount of horizontal space (possibly negative) that
should be added to the last glyph before a subscript.

skw How far to right of the center of the last glyph in the \w
argument, the center of an accent from a roman font should
be placed over that glyph.

[Escape]\kp
[Escape]\k(ps
[Escape]\k[position]

Store the current horizontal position in the input line in number register
with name position (one-character name p, two-character name ps). Use
this, for example, to return to the beginning of a string for highlighting
or other decoration.

[Register]\n[hp]
The current horizontal position at the input line.

[Register]\n[.k]
A read-only number register containing the current horizontal output
position (relative to the current indentation).

[Escape]\o’abc’
Overstrike glyphs a, b, c, . . . ; the glyphs are centered, and the resulting
spacing is the largest width of the affected glyphs.

[Escape]\zg
Print glyph g with zero width, i.e., without spacing. Use this to overstrike
glyphs left-aligned.

[Escape]\Z’anything’
Print anything, then restore the horizontal and vertical position. The
argument may not contain tabs or leaders.

The following is an example of a strike-through macro:

.de ST

.nr ww \w’\\$1’
\Z@\v’-.25m’\l’\\n[ww]u’@\\$1
..
.
This is
.ST "a test"
an actual emergency!

Chapter 5: gtroff Reference 159

5.23 Drawing Requests
gtroff provides a number of ways to draw lines and other figures on the
page. Used in combination with the page motion commands (see Section 5.22
[Page Motions], page 154), a wide variety of figures can be drawn. However,
for complex drawings these operations can be quite cumbersome, and it may
be wise to use graphic preprocessors like gpic or ggrn. See Section 6.3 [gpic],
page 199, and Section 6.4 [ggrn], page 199.

All drawing is done via escapes.

[Escape]\l’l’
[Escape]\l’lg’

Draw a line horizontally. l is the length of the line to be drawn. If it
is positive, start the line at the current location and draw to the right;
its end point is the new current location. Negative values are handled
differently: The line starts at the current location and draws to the left,
but the current location doesn’t move.

l can also be specified absolutely (i.e. with a leading ‘|’), which draws
back to the beginning of the input line. Default scaling indicator is ‘m’.

The optional second parameter g is a glyph to draw the line with. If
this second argument is not specified, gtroff uses the underscore glyph,
\[ru].

To separate the two arguments (to prevent gtroff from interpreting a
drawing glyph as a scaling indicator if the glyph is represented by a single
character) use \&.

.de box
\[br]\\$*\[br]\l’|0\[rn]’\l’|0\[ul]’
..

This above works by outputting a box rule (a vertical line), then the
text given as an argument and then another box rule. Finally, the line-
drawing escapes both draw from the current location to the beginning of
the input line—this works because the line length is negative, not moving
the current point.

[Escape]\L’l’
[Escape]\L’lg’

Draw vertical lines. Its parameters are similar to the \l escape, except
that the default scaling indicator is ‘v’. The movement is downwards
for positive values, and upwards for negative values. The default glyph
is the box rule glyph, \[br]. As with the vertical motion escapes, text
processing blindly continues where the line ends.

This is a \L’3v’test.

Here is the result, produced with grotty.

160 The GNU Troff Manual

This is a
|
|
|test.

[Escape]\D’command arg . . .’
The \D escape provides a variety of drawing functions. On character
devices, only vertical and horizontal lines are supported within grotty;
other devices may only support a subset of the available drawing func-
tions.

The default scaling indicator for all subcommands of \D is ‘m’ for hor-
izontal distances and ‘v’ for vertical ones. Exceptions are ‘\D’f ...’’
and ‘\D’t ...’’, which use u as the default, and ‘\D’Fx ...’’, which
arguments are treated similar to the defcolor request.

\D’l dx dy’
Draw a line from the current location to the relative point
specified by (dx,dy), where positive values mean right and
down, respectively. The end point of the line is the new
current location.

The following example is a macro for creating a box around a
text string; for simplicity, the box margin is taken as a fixed
value, 0.2m.

.de BOX

. nr @wd \w’\\$1’
\h’.2m’\
\h’-.2m’\v’(.2m - \\n[rsb]u)’\
\D’l 0 -(\\n[rst]u - \\n[rsb]u + .4m)’\
\D’l (\\n[@wd]u + .4m) 0’\
\D’l 0 (\\n[rst]u - \\n[rsb]u + .4m)’\
\D’l -(\\n[@wd]u + .4m) 0’\
\h’.2m’\v’-(.2m - \\n[rsb]u)’\
\\$1\
\h’.2m’
..

First, the width of the string is stored in register @wd. Then,
four lines are drawn to form a box, properly offset by the box
margin. The registers rst and rsb are set by the \w escape,
containing the largest height and depth of the whole string.

\D’c d’ Draw a circle with a diameter of d with the leftmost point at
the current position. After drawing, the current location is
positioned at the rightmost point of the circle.

\D’C d’ Draw a solid circle with the same parameters and behaviour
as an outlined circle. No outline is drawn.

Chapter 5: gtroff Reference 161

\D’e x y’ Draw an ellipse with a horizontal diameter of x and a ver-
tical diameter of y with the leftmost point at the current
position. After drawing, the current location is positioned at
the rightmost point of the ellipse.

\D’E x y’ Draw a solid ellipse with the same parameters and behaviour
as an outlined ellipse. No outline is drawn.

\D’a dx1 dy1 dx2 dy2’
Draw an arc clockwise from the current location through the
two specified relative locations (dx1,dy1) and (dx2,dy2). The
coordinates of the first point are relative to the current posi-
tion, and the coordinates of the second point are relative to
the first point. After drawing, the current position is moved
to the final point of the arc.

\D’~ dx1 dy1 dx2 dy2 ...’
Draw a spline from the current location to the relative point
(dx1,dy1) and then to (dx2,dy2), and so on. The current
position is moved to the terminal point of the drawn curve.

\D’f n’ Set the shade of gray to be used for filling solid objects to n;
nmust be an integer between 0 and 1000, where 0 corresponds
solid white and 1000 to solid black, and values in between
correspond to intermediate shades of gray. This applies only
to solid circles, solid ellipses, and solid polygons. By default,
a level of 1000 is used.

Nonintuitively, the current point is moved horizontally to the
right by n.

Don’t use this command! It has the serious drawback that
it is always rounded to the next integer multiple of the hor-
izontal resolution (the value of the hor keyword in the DESC
file). Use \M (see Section 5.28 [Colors], page 177) or ‘\D’Fg
...’’ instead.

\D’p dx1 dy1 dx2 dy2 ...’
Draw a polygon from the current location to the relative po-
sition (dx1,dy1) and then to (dx2,dy2) and so on. When the
specified data points are exhausted, a line is drawn back to
the starting point. The current position is changed by adding
the sum of all arguments with odd index to the actual hori-
zontal position and the even ones to the vertical position.

\D’P dx1 dy1 dx2 dy2 ...’
Draw a solid polygon with the same parameters and be-
haviour as an outlined polygon. No outline is drawn.

Here a better variant of the box macro to fill the box with
some color. The box must be drawn before the text since

162 The GNU Troff Manual

colors in GNU troff are not transparent; the filled polygon
would hide the text completely.

.de BOX

. nr @wd \w’\\$1’
\h’.2m’\
\h’-.2m’\v’(.2m - \\n[rsb]u)’\
\M[lightcyan]\
\D’P 0 -(\\n[rst]u - \\n[rsb]u + .4m) \

(\\n[@wd]u + .4m) 0 \
0 (\\n[rst]u - \\n[rsb]u + .4m) \
-(\\n[@wd]u + .4m) 0’\

\h’.2m’\v’-(.2m - \\n[rsb]u)’\
\M[]\
\\$1\
\h’.2m’
..

If you want a filled polygon that has exactly the same size as
an unfilled one, you must draw both an unfilled and a filled
polygon. A filled polygon is always smaller than an unfilled
one because the latter uses straight lines with a given line
thickness to connect the polygon’s corners, while the former
simply fills the area defined by the coordinates.

\h’1i’\v’1i’\
\# increase line thickness
\Z’\D’t 5p’’\
\# draw unfilled polygon
\Z’\D’p 3 3 -6 0’’\
\# draw filled polygon
\Z’\D’P 3 3 -6 0’’

\D’t n’ Set the current line thickness to n machine units. A value of
zero selects the smallest available line thickness. A negative
value makes the line thickness proportional to the current
point size (this is the default behaviour of AT&T troff).

Nonintuitively, the current point is moved horizontally to the
right by n.

\D’Fscheme color_components’
Change current fill color. scheme is a single letter denoting
the color scheme: ‘r’ (rgb), ‘c’ (cmy), ‘k’ (cmyk), ‘g’ (gray),
or ‘d’ (default color). The color components use exactly the
same syntax as in the defcolor request (see Section 5.28
[Colors], page 177); the command \D’Fd’ doesn’t take an
argument.

No position changing!

Examples:

Chapter 5: gtroff Reference 163

\D’Fg .3’ \" same gray as \D’f 700’
\D’Fr #0000ff’ \" blue

See Section 8.1.2.3 [Graphics Commands], page 214.

[Escape]\b’string’
Pile a sequence of glyphs vertically, and center it vertically on the current
line. Use it to build large brackets and braces.

Here an example how to create a large opening brace:

\b’\[lt]\[bv]\[lk]\[bv]\[lb]’

The first glyph is on the top, the last glyph in string is at the bottom.
GNU troff separates the glyphs vertically by 1m, and the whole object
is centered 0.5m above the current baseline; the largest glyph width is
used as the width for the whole object. This rather inflexible positioning
algorithm doesn’t work with -Tdvi since the bracket pieces vary in height
for this device. Instead, use the eqn preprocessor.

See Section 5.9 [Manipulating Spacing], page 95, how to adjust the vertical
spacing with the \x escape.

5.24 Traps
Traps are locations that, when reached, call a specified macro. These traps
can occur at a given location on the page, at a given location in the current
diversion, at a blank line, after a certain number of input lines, or at the end
of input.

Setting a trap is also called planting. It is also said that a trap is sprung
if the associated macro is executed.

5.24.1 Page Location Traps

Page location traps perform an action when gtroff reaches or passes a
certain vertical location on the page. Page location traps have a variety of
purposes, including:

• setting headers and footers

• setting body text in multiple columns

• setting footnotes

[Request].vpt flag
[Register]\n[.vpt]

Enable vertical position traps if flag is non-zero, or disables them oth-
erwise. Vertical position traps are traps set by the wh request, or by dt
within a diversion. Traps set by the it request are not vertical posi-
tion traps. The parameter that controls whether vertical position traps
are enabled is global. Initially vertical position traps are enabled. The
current setting of this is available in the .vpt read-only number register.

A page can’t be ejected if vpt is set to zero.

164 The GNU Troff Manual

[Request].wh dist [macro]
Set a page location trap. Non-negative values for dist set the trap relative
to the top of the page; negative values set the trap relative to the bottom
of the page. Default scaling indicator is ‘v’; values of dist are always
rounded to be multiples of the vertical resolution (as given in register
.V).

macro is the name of the macro to execute when the trap is sprung. If
macro is missing, remove the first trap (if any) at dist.

The following is a simple example of how many macro packages set head-
ers and footers.

.de hd \" Page header
’ sp .5i
. tl ’Title’’date’
’ sp .3i
..
.
.de fo \" Page footer
’ sp 1v
. tl ’’%’’
’ bp
..
.
.wh 0 hd \" trap at top of the page
.wh -1i fo \" trap one inch from bottom

A trap at or below the bottom of the page is ignored; it can be made
active by either moving it up or increasing the page length so that the
trap is on the page.

Negative trap values always use the current page length; they are not
converted to an absolute vertical position:

.pl 5i

.wh -1i xx

.ptr
⇒ xx -240

.pl 100i

.ptr
⇒ xx -240

It is possible to have more than one trap at the same location; to do
so, the traps must be defined at different locations, then moved together
with the ch request; otherwise the second trap would replace the first
one. Earlier defined traps hide later defined traps if moved to the same
position (the many empty lines caused by the bp request are omitted in
the following example):

Chapter 5: gtroff Reference 165

.de a

. nop a

..

.de b

. nop b

..

.de c

. nop c

..

.

.wh 1i a

.wh 2i b

.wh 3i c

.bp
⇒ a b c

.ch b 1i

.ch c 1i

.bp
⇒ a

.ch a 0.5i

.bp
⇒ a b

[Register]\n[.t]
A read-only number register holding the distance to the next trap.

If there are no traps between the current position and the bottom of the
page, it contains the distance to the page bottom. In a diversion, the
distance to the page bottom is infinite (the returned value is the biggest
integer that can be represented in groff) if there are no diversion traps.

[Request].ch macro [dist]
Change the location of a trap. The first argument is the name of the
macro to be invoked at the trap, and the second argument is the new
location for the trap (note that the parameters are specified in opposite
order as in the wh request). This is useful for building up footnotes in a
diversion to allow more space at the bottom of the page for them.

Default scaling indicator for dist is ‘v’. If dist is missing, the trap is
removed.

[Register]\n[.ne]
The read-only number register .ne contains the amount of space that was
needed in the last ne request that caused a trap to be sprung. Useful in
conjunction with the .trunc register. See Section 5.16 [Page Control],
page 112.

Since the .ne register is only set by traps it doesn’t make much sense to
use it outside of trap macros.

166 The GNU Troff Manual

[Register]\n[.trunc]
A read-only register containing the amount of vertical space truncated
from an sp request by the most recently sprung vertical position trap,
or, if the trap was sprung by an ne request, minus the amount of vertical
motion produced by the ne request. In other words, at the point a trap
is sprung, it represents the difference of what the vertical position would
have been but for the trap, and what the vertical position actually is.

Since the .trunc register is only set by traps it doesn’t make much sense
to use it outside of trap macros.

[Register]\n[.pe]
A read-only register that is set to 1 while a page is ejected with the bp
request (or by the end of input).

Outside of traps this register is always zero. In the following example,
only the second call to x is caused by bp.

.de x
\&.pe=\\n[.pe]
.br
..
.wh 1v x
.wh 4v x
A line.
.br
Another line.
.br

⇒ A line.
.pe=0
Another line.

.pe=1

An important fact to consider while designing macros is that diversions
and traps do not interact normally. For example, if a trap invokes a header
macro (while outputting a diversion) that tries to change the font on the
current page, the effect is not visible before the diversion has completely
been printed (except for input protected with \! or \?) since the data in
the diversion is already formatted. In most cases, this is not the expected
behaviour.

5.24.2 Diversion Traps

[Request].dt [dist macro]
Set a trap within a diversion. dist is the location of the trap (as with the
wh request, the default scaling indicator is ‘v’) and macro is the name of
the macro to be invoked. If called with fewer than two arguments, the
diversion trap is removed.

Chapter 5: gtroff Reference 167

There exists only a single diversion trap.

The number register .t still works within diversions. See Section 5.25
[Diversions], page 170.

5.24.3 Input Line Traps

[Request].it n macro
[Request].itc n macro

Set an input line trap. n is the number of lines of input that may be read
before springing the trap, macro is the macro to be invoked. Request
lines are not counted as input lines.

For example, one possible use is to have a macro that prints the next
n lines in a bold font.

.de B

. it \\$1 B-end

. ft B

..

.

.de B-end

. ft R

..

The itc request is identical except that an interrupted text line (ending
with \c) is not counted as a separate line.

Both requests are associated with the current environment (see
Section 5.26 [Environments], page 174); switching to another environ-
ment disables the current input trap, and going back reactivates it,
restoring the number of already processed lines.

5.24.4 Blank Line Traps

[Request].blm [macro]
Set a blank line trap. If a blank line macro is thus defined, GNU troff
executes macro when a blank line is encountered in the input file, in-
stead of the usual behavior (see Section 5.1.4 [Breaking], page 58). If no
argument is supplied, the default blank line behavior is (re-)asserted.

5.24.5 Leading Spaces Traps

[Request].lsm macro
[Register]\n[lsn]
[Register]\n[lss]

Set a leading spaces trap. gtroff executes macro when it encounters
leading spaces in an input line; the implicit line break that normally hap-
pens in this case is suppressed. A line consisting of spaces only, however,
is treated as an empty line, possibly subject to an empty line macro set
with the blm request.

168 The GNU Troff Manual

Leading spaces are removed from the input line before calling the leading
spaces macro. The number of removed spaces is stored in register lsn;
the horizontal space that would be emitted if there was no leading space
macro is stored in register lss. Note that lsn and lss are available even
if no leading space macro has been set.

The first thing a leading space macro sees is a token. However, some
escapes like \f or \m are handled on the fly (see Section 5.32 [Gtroff
Internals], page 186, for a complete list) without creating a token at all.
Consider that a line starts with two spaces followed by \fIfoo. While
skipping the spaces \fI is handled too so that groff’s current font is
properly set to ‘I’, but the leading space macro only sees foo, without
the preceding \fI. If the macro should see the font escape you have
to ‘protect’ it with something that creates a token, for example with
\&\fIfoo.

5.24.6 End-of-input Traps

[Request].em macro
Set a trap at the end of input. macro is executed after the last line of the
input file has been processed.

For example, if the document had to have a section at the bottom of the
last page for someone to approve it, the em request could be used.

.de approval
\c
. ne 3v
. sp (\\n[.t]u - 3v)
. in +4i
. lc _
. br
Approved:\t\a
. sp
Date:\t\t\a
..
.
.em approval

The \c in the above example needs explanation. For historical reasons
(and for compatibility with AT&T troff), the end macro exits as soon as
it causes a page break and no remaining data is in the partially collected
line.

Let us assume that there is no \c in the above approval macro, and
that the page is full and has been ended with, say, a br request. The ne
request now causes the start of a new page, which in turn makes troff
exit immediately for the reasons just described. In most situations this
is not intended.

Chapter 5: gtroff Reference 169

To always force processing the whole end macro independently of this
behaviour it is thus advisable to insert something that starts an empty
partially filled line (\c) whenever there is a chance that a page break can
happen. In the above example, the call of the ne request assures that
the remaining code stays on the same page, so we have to insert \c only
once.

The next example shows how to append three lines, then starting a new
page unconditionally. Since ‘.ne 1’ doesn’t give the desired effect—there
is always one line available or we are already at the beginning of the next
page—we temporarily increase the page length by one line so that we can
use ‘.ne 2’.

.de EM

.pl +1v
\c
.ne 2
line one
.br
\c
.ne 2
line two
.br
\c
.ne 2
line three
.br
.pl -1v
\c
’bp
..
.em EM

This specific feature affects only the first potential page break caused by
the end macro; further page breaks emitted by the end macro are handled
normally.

Another possible use of the em request is to make gtroff emit a single
large page instead of multiple pages. For example, one may want to
produce a long plain-text file for reading on-screen. The idea is to set
the page length at the beginning of the document to a very large value to
hold all the text, and automatically adjust it to the exact height of the
document after the text has been output.

170 The GNU Troff Manual

.de adjust-page-length

. br

. pl \\n[nl]u \" \n[nl] holds the current vert. position

..

.

.de single-page-mode

. pl 99999

. em adjust-page-length

..

.

.\" activate the above code

.single-page-mode

Since only one end-of-input trap does exist and other macro packages may
already use it, care must be taken not to break the mechanism. A simple
solution would be to append the above macro to the macro package’s
end-of-input macro using the am request.

5.25 Diversions
In gtroff it is possible to divert text into a named storage area. Due to the
similarity to defining macros it is sometimes said to be stored in a macro.
This is used for saving text for output at a later time, which is useful for
keeping blocks of text on the same page, footnotes, tables of contents, and
indices.

For orthogonality it is said that gtroff is in the top-level diversion if no
diversion is active (i.e., the data is diverted to the output device).

Although the following requests can be used to create diversions, sim-
ply using an undefined diversion will cause it to be defined as empty. See
Section 5.4 [Identifiers], page 69.

[Request].di macro
[Request].da macro

Begin a diversion. Like the de request, it takes an argument of a macro
name to divert subsequent text into. The damacro appends to an existing
diversion.

di or da without an argument ends the diversion.

The current partially filled line is included into the diversion. See the box
request below for an example. Switching to another (empty) environment
(with the ev request) avoids the inclusion of the current partially filled
line.

[Request].box macro
[Request].boxa macro

Begin (or append to) a diversion like the di and da requests. The dif-
ference is that box and boxa do not include a partially filled line in the
diversion.

Chapter 5: gtroff Reference 171

Compare this:

Before the box.
.box xxx
In the box.
.br
.box
After the box.
.br

⇒ Before the box. After the box.
.xxx

⇒ In the box.

with this:

Before the diversion.
.di yyy
In the diversion.
.br
.di
After the diversion.
.br

⇒ After the diversion.
.yyy

⇒ Before the diversion. In the diversion.

box or boxa without an argument ends the diversion.

[Register]\n[.z]
[Register]\n[.d]

Diversions may be nested. The read-only number register .z contains
the name of the current diversion (this is a string-valued register). The
read-only number register .d contains the current vertical place in the
diversion. If not in a diversion it is the same as register nl.

[Register]\n[.h]
The high-water mark on the current page or in the current diversion. It
corresponds to the text baseline of the lowest line on the page. This is a
read-only register.

.tm .h==\n[.h], nl==\n[nl]
⇒ .h==0, nl==-1

This is a test.
.br
.sp 2
.tm .h==\n[.h], nl==\n[nl]

⇒ .h==40, nl==120

As the previous example shows, empty lines are not considered in the
return value of the .h register.

172 The GNU Troff Manual

[Register]\n[dn]
[Register]\n[dl]

After completing a diversion, the read-write number registers dn and
dl contain the vertical and horizontal size of the diversion. Only the
just-processed lines are counted: for the computation of dn and dl, the
requests da and boxa are handled as if di and box had been used—lines
that have been already stored in a macro are not taken into account.

.\" Center text both horizontally and vertically.

.

.\" Enclose macro definitions in .eo and .ec

.\" to avoid the doubling of the backslash.

.eo

.\" Macro .(c starts centering mode.

.de (c

. br

. ev (c

. evc 0

. in 0

. nf

. di @c

..

.\" Macro .)c terminates centering mode.

.de)c

. br

. ev

. di

. nr @s (((\n[.t]u - \n[dn]u) / 2u) - 1v)

. sp \n[@s]u

. ce 1000

. @c

. ce 0

. sp \n[@s]u

. br

. fi

. rr @s

. rm @c

..

.\" End of macro definitions; restore escape mechanism.

.ec

[Escape]\!
[Escape]\?anything\?

Prevent requests, macros, and escapes from being interpreted when read
into a diversion. Both escapes take the given text and transparently
embed it into the diversion. This is useful for macros that shouldn’t be
invoked until the diverted text is actually output.

Chapter 5: gtroff Reference 173

The \! escape transparently embeds text up to and including the end
of the line. The \? escape transparently embeds text until the next
occurrence of the \? escape. Example:

\?anything\?

anything may not contain newlines; use \! to embed newlines in a diver-
sion. The escape sequence \? is also recognized in copy mode and turned
into a single internal code; it is this code that terminates anything. Thus
the following example prints 4.

.nr x 1

.nf

.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

Both escapes read the data in copy mode.

If \! is used in the top-level diversion, its argument is directly embedded
into the gtroff intermediate output. This can be used for example to
control a postprocessor that processes the data before it is sent to the
device driver.

The \? escape used in the top-level diversion produces no output at all;
its argument is simply ignored.

[Request].output string
Emit string directly to the gtroff intermediate output (subject to copy
mode interpretation); this is similar to \! used at the top level. An initial
double quote in string is stripped off to allow initial blanks.

This request can’t be used before the first page has started—if you get
an error, simply insert .br before the output request.

Without argument, output is ignored.

Use with caution! It is normally only needed for mark-up used by a
postprocessor that does something with the output before sending it to
the output device, filtering out string again.

[Request].asciify div
Unformat the diversion div in a way such that Unicode basic Latin
(ASCII) characters, characters translated with the trin request, space

174 The GNU Troff Manual

characters, and some escape sequences, that were formatted and diverted
into div are treated like ordinary input characters when div is reread.
Doing so can be useful in conjunction with the writem request. asciify
can be also used for gross hacks; for example, the following sets register n
to 1.

.tr @.

.di x
@nr n 1
.br
.di
.tr @@
.asciify x
.x

asciify cannot return all items in a diversion back to their source equiv-
alent; nodes such as those produced by \N[...] will remain nodes, so the
result cannot be guaranteed to be a pure string.

See Section 5.21.1 [Copy Mode], page 151.

[Request].unformat div
Like asciify, unformat the diversion div. However, unformat handles
only tabs and spaces between words, the latter usually arising from spaces
or newlines in the input. Tabs are treated as input tokens, and spaces
become stretchable again.

The vertical sizes of lines are not preserved, but glyph information (font,
font size, space width, etc.) is retained. unformat can be useful in con-
junction with the box and boxa requests.

5.26 Environments
It happens frequently that some text should be printed in a certain format
regardless of what may be in effect at the time, for example, in a trap
invoked macro to print headers and footers. To solve this gtroff processes
text in environments. An environment contains most of the parameters that
control text processing. It is possible to switch amongst these environments;
by default gtroff processes text in environment 0. The following is the
information kept in an environment.

• font parameters (size, family, style, glyph height and slant, space and
sentence space size)

• page parameters (line length, title length, vertical spacing, line spacing,
indentation, line numbering, centering, right-justifying, underlining, hy-
phenation data)

• fill and adjust mode

• tab stops, tab and leader characters, escape character, no-break and
hyphen indicators, margin character data

• partially collected lines

Chapter 5: gtroff Reference 175

• input traps

• drawing and fill colours

These environments may be given arbitrary names (see Section 5.4 [Iden-
tifiers], page 69.) Old versions of troff only had environments named ‘0’,
‘1’, and ‘2’.

[Request].ev [env]
[Register]\n[.ev]

Switch to another environment. The argument env is the name of the
environment to switch to. With no argument, gtroff switches back to
the previous environment. There is no limit on the number of named
environments; they are created the first time that they are referenced.
The .ev read-only register contains the name or number of the current
environment. This is a string-valued register.

A call to ev (with argument) pushes the previously active environment
onto a stack. If, say, environments ‘foo’, ‘bar’, and ‘zap’ are called
(in that order), the first ev request without parameter switches back
to environment ‘bar’ (which is popped off the stack), and a second call
switches back to environment ‘foo’.

Here is an example:

.ev footnote-env

.fam N

.ps 6

.vs 8

.ll -.5i

.ev

...

.ev footnote-env
\(dg Note the large, friendly letters.
.ev

[Request].evc env
Copy the environment env into the current environment.

The following environment data is not copied:

• Partially filled lines.

• The status whether the previous line was interrupted.

• The number of lines still to center, or to right-justify, or to underline
(with or without underlined spaces); they are set to zero.

• The status whether a temporary indentation is active.

• Input traps and its associated data.

• Line numbering mode is disabled; it can be reactivated with ‘.nm +0’.

• The number of consecutive hyphenated lines (set to zero).

176 The GNU Troff Manual

[Register]\n[.w]
[Register]\n[.cht]
[Register]\n[.cdp]
[Register]\n[.csk]

The \n[.w] register contains the width of the last glyph added to the
current environment.

The \n[.cht] register contains the height of the last glyph added to the
current environment.

The \n[.cdp] register contains the depth of the last glyph added to
the current environment. It is positive for glyphs extending below the
baseline.

The \n[.csk] register contains the skew (how far to the right of the
glyph’s center that gtroff should place an accent) of the last glyph added
to the current environment.

[Register]\n[.n]
The \n[.n] register contains the length of the previous output line in the
current environment.

5.27 Suppressing output

[Escape]\Onum
Disable or enable output depending on the value of num:

‘\O0’ Disable any glyphs from being emitted to the device driver,
provided that the escape occurs at the outer level (see \O[3]
and \O[4]). Motion is not suppressed so effectively \O[0]
means pen up.

‘\O1’ Enable output of glyphs, provided that the escape occurs at
the outer level.

\O0 and \O1 also reset the four registers ‘opminx’, ‘opminy’, ‘opmaxx’,
and ‘opmaxy’ to −1. See tie E [Register Index], page 249. These four
registers mark the top left and bottom right hand corners of a box that
encompasses all written glyphs.

For example the input text:

Hello \O[0]world \O[1]this is a test.

produces the following output:

Hello this is a test.

‘\O2’ Provided that the escape occurs at the outer level, enable
output of glyphs and also write out to stderr the page num-
ber and four registers encompassing the glyphs previously
written since the last call to \O.

Chapter 5: gtroff Reference 177

‘\O3’ Begin a nesting level. At start-up, gtroff is at outer level.
The current level is contained within the read-only register
.O. See Section 5.6.5 [Built-in Registers], page 81.

‘\O4’ End a nesting level. The current level is contained within the
read-only register .O. See Section 5.6.5 [Built-in Registers],
page 81.

‘\O[5Pfilename]’
This escape is grohtml specific. Provided that this escape oc-
curs at the outer nesting level write the filename to stderr.
The position of the image, P, must be specified and must be
one of l, r, c, or i (left, right, centered, inline). filename is
associated with the production of the next inline image.

5.28 Colors

[Request].color [n]
[Register]\n[.color]

If n is missing or non-zero, activate colors (this is the default); otherwise,
turn it off.

The read-only number register .color is 1 if colors are active, 0 otherwise.

Internally, color sets a global flag; it does not produce a token. Similar
to the cp request, you should use it at the beginning of your document
to control color output.

Colors can be also turned off with the -c command-line option.

[Request].defcolor ident scheme color components
Define color with name ident. scheme can be one of the following val-
ues: rgb (three components), cmy (three components), cmyk (four com-
ponents), and gray or grey (one component).

Color components can be given either as a hexadecimal string or as posi-
tive decimal integers in the range 0–65535. A hexadecimal string contains
all color components concatenated. It must start with either # or ##; the
former specifies hex values in the range 0–255 (which are internally mul-
tiplied by 257), the latter in the range 0–65535. Examples: #FFC0CB
(pink), ##ffff0000ffff (magenta). The default color name value is
device-specific (usually black). It is possible that the default color for
\m and \M is not identical.

A new scaling indicator f has been introduced, which multiplies its value
by 65536; this makes it convenient to specify color components as fractions
in the range 0 to 1 (1f equals 65536u). Example:

.defcolor darkgreen rgb 0.1f 0.5f 0.2f

Note that f is the default scaling indicator for the defcolor request, thus
the above statement is equivalent to

.defcolor darkgreen rgb 0.1 0.5 0.2

178 The GNU Troff Manual

[Request].gcolor [color]
[Escape]\mc
[Escape]\m(co
[Escape]\m[color]

[Register]\n[.m]
Set (glyph) drawing color. The following examples show how to turn the
next four words red.

.gcolor red
these are in red
.gcolor
and these words are in black.

\m[red]these are in red\m[] and these words are in black.

The escape \m[] returns to the previous color, as does a call to gcolor
without an argument.

The name of the current drawing color is available in the read-only, string-
valued number register ‘.m’.

The drawing color is associated with the current environment (see
Section 5.26 [Environments], page 174).

\m doesn’t produce an input token in GNU troff. As a consequence, it
can be used in requests like mc (which expects a single character as an
argument) to change the color on the fly:

.mc \m[red]x\m[]

[Request].fcolor [color]
[Escape]\Mc
[Escape]\M(co
[Escape]\M[color]

[Register]\n[.M]
Set fill (background) color for filled objects drawn with the \D’...’ com-
mands.

A red ellipse can be created with the following code:

\M[red]\h’0.5i’\D’E 2i 1i’\M[]

The escape \M[] returns to the previous fill color, as does a call to fcolor
without an argument.

The name of the current fill (background) color is available in the read-
only, string-valued number register ‘.M’.

The fill color is associated with the current environment (see Section 5.26
[Environments], page 174).

\M doesn’t produce an input token in GNU troff.

5.29 I/O
gtroff has several requests for including files:

Chapter 5: gtroff Reference 179

[Request].so file
Read in the specified file and include it in place of the so request. This is
quite useful for large documents, e.g. keeping each chapter in a separate
file. See Section 6.8 [gsoelim], page 199, for more information.

Since gtroff replaces the so request with the contents of file, it makes a
difference whether the data is terminated with a newline or not: Assuming
that file xxx contains the word ‘foo’ without a final newline, this

This is
.so xxx
bar

yields ‘This is foobar’.

The search path for file can be controlled with the -I command-line
option.

[Request].pso command
Read the standard output from the specified command and include it in
place of the pso request.

This request causes an error if used in safer mode (which is the default).
Use groff’s or troff’s -U option to activate unsafe mode.

The comment regarding a final newline for the so request is valid for pso
also.

[Request].mso file
Identical to the so request except that gtroff searches for the specified
file in the same directories as macro files for the -m command-line option.
If the file name to be included has the form name.tmac and it isn’t found,
mso tries to include tmac.name and vice versa. If the file does not exist, a
warning of type ‘file’ is emitted. See Section 5.33 [Debugging], page 188,
for information about warnings.

[Request].trf file
[Request].cf file

Transparently output the contents of file. Each line is output as if it
were preceded by \!; however, the lines are not subject to copy mode
interpretation. If the file does not end with a newline, then a newline
is added (trf only). For example, to define a macro x containing the
contents of file f, use

.ev 1

.di x

.trf f

.di

.ev

The calls to ev prevent that the current partial input line becomes part
of the diversion.

Both trf and cf, when used in a diversion, embeds an object in the
diversion which, when reread, causes the contents of file to be transpar-

180 The GNU Troff Manual

ently copied through to the output. In Unix troff, the contents of file
is immediately copied through to the output regardless of whether there
is a current diversion; this behaviour is so anomalous that it must be
considered a bug.

While cf copies the contents of file completely unprocessed, trf disallows
characters such as NUL that are not valid gtroff input characters (see
Section 5.4 [Identifiers], page 69).

For cf, within a diversion, ‘completely unprocessed’ means that each line
of a file to be inserted is handled as if it were preceded by \!\\!.

Both requests cause a line break.

[Request].nx [file]
Force gtroff to continue processing of the file specified as an argument.
If no argument is given, immediately jump to the end of file.

[Request].rd [prompt [arg1 arg2 . . .]]
Read from standard input, and include what is read as though it were
part of the input file. Text is read until a blank line is encountered.

If standard input is a TTY input device (keyboard), write prompt to
standard error, followed by a colon (or send BEL for a beep if no argument
is given).

Arguments after prompt are available for the input. For example, the
line

.rd data foo bar

with the input ‘This is \$2.’ prints

This is bar.

Using the nx and rd requests, it is easy to set up form letters. The form
letter template is constructed like this, putting the following lines into a file
called repeat.let:

.ce
*(td
.sp 2
.nf
.rd
.sp
.rd
.fi
Body of letter.
.bp
.nx repeat.let

When this is run, a file containing the following lines should be redirected
in. Requests included in this file are executed as though they were part of
the form letter. The last block of input is the ex request, which tells GNU

Chapter 5: gtroff Reference 181

troff to stop processing. If this were not there, troff would not know
when to stop.

Trent A. Fisher
708 NW 19th Av., #202
Portland, OR 97209

Dear Trent,

Len Adollar
4315 Sierra Vista
San Diego, CA 92103

Dear Mr. Adollar,

.ex

[Request].pi pipe
Pipe the output of gtroff to the shell command(s) specified by pipe.
This request must occur before gtroff has a chance to print anything.

pi causes an error if used in safer mode (which is the default). Use
groff’s or troff’s -U option to activate unsafe mode.

Multiple calls to pi are allowed, acting as a chain. For example,

.pi foo

.pi bar

...

is the same as ‘.pi foo | bar’.

The intermediate output format of GNU troff is piped to the specified
commands. Consequently, calling groff without the -Z option normally
causes a fatal error.

[Request].sy cmds
[Register]\n[systat]

Execute the shell command(s) specified by cmds. The output is not saved
anywhere, so it is up to the user to do so.

This request causes an error if used in safer mode (which is the default).
Use groff’s or troff’s -U option to activate unsafe mode.

For example, the following code fragment introduces the current time into
a document:

.sy perl -e ’printf ".nr H %d\\n.nr M %d\\n.nr S %d\\n",\
(localtime(time))[2,1,0]’ > /tmp/x\n[$$]

.so /tmp/x\n[$$]

.sy rm /tmp/x\n[$$]
\nH:\nM:\nS

182 The GNU Troff Manual

This works by having the Perl script (run by sy) print out the nr re-
quests that set the number registers H, M, and S, and then reading those
commands in with the so request.

For most practical purposes, the number registers seconds, minutes,
and hours, which are initialized at start-up of GNU troff, should be
sufficient. Use the af request to format their values for output.

.af hours 00

.af minutes 00

.af seconds 00
\n[hours]:\n[minutes]:\n[seconds]

The systat read-write number register contains the return value of the
system() function executed by the last sy request.

[Request].open stream file
[Request].opena stream file

Open the specified file for writing and associates the specified stream with
it.

The opena request is like open, but if the file exists, append to it instead
of truncating it.

Both open and opena cause an error if used in safer mode (which is the
default). Use groff’s or troff’s -U option to activate unsafe mode.

[Request].write stream data
[Request].writec stream data

Write to the file associated with the specified stream. The stream must
previously have been the subject of an open request. The remainder of
the line is interpreted as the ds request reads its second argument: A
leading ‘"’ is stripped, and it is read in copy mode.

The writec request is like write, but only write appends a newline to
the data.

[Request].writem stream xx
Write the contents of the macro or string xx to the file associated with
the specified stream.

xx is read in copy mode, i.e., already formatted elements are ignored.
Consequently, diversions must be unformatted with the asciify request
before calling writem. Usually, this means a loss of information.

[Request].close stream
Close the specified stream; the stream is no longer an acceptable argument
to the write request.

Here a simple macro to write an index entry.

Chapter 5: gtroff Reference 183

.open idx test.idx

.

.de IX

. write idx \\n[%] \\$*

..

.

.IX test entry

.

.close idx

[Escape]\Ve
[Escape]\V(ev
[Escape]\V[env]

Interpolate the contents of the specified environment variable env (one-
character name e, two-character name ev) as returned by the function
getenv. \V is interpreted in copy mode.

5.30 Postprocessor Access
There are two escapes that give information directly to the postprocessor.
This is particularly useful for embedding PostScript into the final docu-
ment.

[Request].device xxx
[Escape]\X’xxx’

Embeds its argument into the gtroff output preceded with ‘x X’.

The escapes \&, \), \%, and \: are ignored within \X, ‘\ ’ and \~ are
converted to single space characters. All other escapes (except \\, which
produces a backslash) cause an error.

Contrary to \X, the device request simply processes its argument in copy
mode (see Section 5.21.1 [Copy Mode], page 151).

If the ‘use_charnames_in_special’ keyword is set in the DESC file, spe-
cial characters no longer cause an error; they are simply output verbatim.
Additionally, the backslash is represented as \\.

‘use_charnames_in_special’ is currently used by grohtml only.

[Request].devicem xx
[Escape]\Yn
[Escape]\Y(nm
[Escape]\Y[name]

This is approximately equivalent to ‘\X’*[name]’’ (one-character
name n, two-character name nm). However, the contents of the string or
macro name are not interpreted; also it is permitted for name to have
been defined as a macro and thus contain newlines (it is not permitted
for the argument to \X to contain newlines). The inclusion of newlines
requires an extension to the Unix troff output format, and confuses

184 The GNU Troff Manual

drivers that do not know about this extension (see Section 8.1.2.4
[Device Control Commands], page 217).

See Chapter 7 [Output Devices], page 201.

5.31 Miscellaneous
This section documents parts of gtroff that cannot (yet) be categorized
elsewhere in this manual.

[Request].nm [start [inc [space [indent]]]]
Print line numbers. start is the line number of the next output line.
inc indicates which line numbers are printed. For example, the value 5
means to emit only line numbers that are multiples of 5; this defaults
to 1. space is the space to be left between the number and the text; this
defaults to one digit space. The fourth argument is the indentation of
the line numbers, defaulting to zero. Both space and indent are given
as multiples of digit spaces; they can be negative also. Without any
arguments, line numbers are turned off.

gtroff reserves three digit spaces for the line number (which is printed
right-justified) plus the amount given by indent; the output lines are con-
catenated to the line numbers, separated by space, and without reducing
the line length. Depending on the value of the horizontal page offset (as
set with the po request), line numbers that are longer than the reserved
space stick out to the left, or the whole line is moved to the right.

Parameters corresponding to missing arguments are not changed; any
non-digit argument (to be more precise, any argument starting with a
character valid as a delimiter for identifiers) is also treated as missing.

If line numbering has been disabled with a call to nm without an argu-
ment, it can be reactivated with ‘.nm +0’, using the previously active line
numbering parameters.

The parameters of nm are associated with the current environment (see
Section 5.26 [Environments], page 174). The current output line number
is available in the number register ln.

.po 1m

.ll 2i
This test shows how line numbering works with groff.
.nm 999
This test shows how line numbering works with groff.
.br
.nm xxx 3 2
.ll -\w’0’u
This test shows how line numbering works with groff.
.nn 2
This test shows how line numbering works with groff.

The result is as follows.

Chapter 5: gtroff Reference 185

This test shows how
line numbering works
999 with groff. This

1000 test shows how line
1001 numbering works with
1002 groff.

This test shows how
line numbering

works with groff.
This test shows how

1005 line numbering
works with groff.

[Request].nn [skip]
Temporarily turn off line numbering. The argument is the number of
lines not to be numbered; this defaults to 1.

[Request].mc glyph [dist]
Print a margin character to the right of the text.38 The first argument is
the glyph to be printed. The second argument is the distance away from
the right margin. If missing, the previously set value is used; default
is 10 pt). For text lines that are too long (that is, longer than the text
length plus dist), the margin character is directly appended to the lines.

With no arguments the margin character is turned off. If this occurs
before a break, no margin character is printed.

For compatibility with AT&T troff, a call to mc to set the margin charac-
ter can’t be undone immediately; at least one line gets a margin character.
Thus

.ll 1i

.mc \[br]

.mc
xxx
.br
xxx

produces

xxx |
xxx

For empty lines and lines produced by the tl request no margin character
is emitted.

The margin character is associated with the current environment (see
Section 5.26 [Environments], page 174).

This is quite useful for indicating text that has changed, and, in fact,
there are programs available for doing this (they are called nrchbar and
changebar and can be found in any ‘comp.sources.unix’ archive).

38 Margin character is a misnomer since it is an output glyph.

186 The GNU Troff Manual

.ll 3i

.mc |
This paragraph is highlighted with a margin
character.
.sp
Vertical space isn’t marked.
.br
\&
.br
But we can fake it with ‘\&’.

Result:

This paragraph is highlighted |
with a margin character. |

Vertical space isn’t marked. |
|

But we can fake it with ‘\&’. |

[Request].psbb filename
[Register]\n[llx]
[Register]\n[lly]
[Register]\n[urx]
[Register]\n[ury]

Retrieve the bounding box of the PostScript image found in filename.
The file must conform to Adobe’s Document Structuring Conventions
(DSC); the command searches for a %%BoundingBox comment and ex-
tracts the bounding box values into the number registers llx, lly,
urx, and ury. If an error occurs (for example, psbb cannot find the
%%BoundingBox comment), it sets the four number registers to zero.

The search path for filename can be controlled with the -I command-line
option.

5.32 gtroff Internals
gtroff processes input in three steps. One or more input characters are
converted to an input token.39 Then, one or more input tokens are converted
to an output node. Finally, output nodes are converted to the intermediate
output language understood by all output devices.

Actually, before step one happens, gtroff converts certain escape se-
quences into reserved input characters (not accessible by the user); such
reserved characters are used for other internal processing also – this is the
very reason why not all characters are valid input. See Section 5.4 [Identi-
fiers], page 69, for more on this topic.

39 Except the escapes \f, \F, \H, \m, \M, \R, \s, and \S, which are processed immediately
if not in copy mode.

Chapter 5: gtroff Reference 187

For example, the input string ‘fi\[:u]’ is converted into a character
token ‘f’, a character token ‘i’, and a special token ‘:u’ (representing u um-
laut). Later on, the character tokens ‘f’ and ‘i’ are merged to a single output
node representing the ligature glyph ‘fi’ (provided the current font has a
glyph for this ligature); the same happens with ‘:u’. All output glyph nodes
are ‘processed’, which means that they are invariably associated with a given
font, font size, advance width, etc. During the formatting process, gtroff
itself adds various nodes to control the data flow.

Macros, diversions, and strings collect elements in two chained lists: a
list of input tokens that have been passed unprocessed, and a list of output
nodes. Consider the following the diversion.

.di xxx
a
\!b
c
.br
.di

It contains these elements.

node list token list element number

line start node — 1
glyph node a — 2
word space node — 3
— b 4
— \n 5
glyph node c — 6
vertical size node — 7
vertical size node — 8
— \n 9

Elements 1, 7, and 8 are inserted by gtroff; the latter two (which are
always present) specify the vertical extent of the last line, possibly modified
by \x. The br request finishes the current partial line, inserting a newline
input token, which is subsequently converted to a space when the diversion is
reread. Note that the word space node has a fixed width that isn’t stretchable
anymore. To convert horizontal space nodes back to input tokens, use the
unformat request.

Macros only contain elements in the token list (and the node list is
empty); diversions and strings can contain elements in both lists.

Note that the chop request simply reduces the number of elements in
a macro, string, or diversion by one. Exceptions are compatibility save
and compatibility ignore input tokens, which are ignored. The substring
request also ignores those input tokens.

Some requests like tr or cflags work on glyph identifiers only; this
means that the associated glyph can be changed without destroying this

188 The GNU Troff Manual

association. This can be very helpful for substituting glyphs. In the following
example, we assume that glyph ‘foo’ isn’t available by default, so we provide
a substitution using the fchar request and map it to input character ‘x’.

.fchar \[foo] foo

.tr x \[foo]

Now let us assume that we install an additional special font ‘bar’ that has
glyph ‘foo’.

.special bar

.rchar \[foo]

Since glyphs defined with fchar are searched before glyphs in special fonts,
we must call rchar to remove the definition of the fallback glyph. Anyway,
the translation is still active; ‘x’ now maps to the real glyph ‘foo’.

Macro and request arguments preserve the compatibility mode:

.cp 1 \" switch to compatibility mode

.de xx
\\$1
..
.cp 0 \" switch compatibility mode off
.xx caf\[’e]

⇒ café

Since compatibility mode is on while de is called, the macro xx activates com-
patibility mode while executing. Argument $1 can still be handled properly
because it inherits the compatibility mode status which was active at the
point where xx is called.

After expansion of the parameters, the compatibility save and restore
tokens are removed.

5.33 Debugging
gtroff is not easy to debug, but there are some useful features and strategies
for debugging.

[Request].lf line [filename]
Change the line number and optionally the file name gtroff shall use
for error and warning messages. line is the input line number of the next
line.

Without argument, the request is ignored.

This is a debugging aid for documents that are split into many files,
then put together with soelim and other preprocessors. Usually, it isn’t
invoked manually.

Other troff implementations (including the original AT&T version) han-
dle lf differently. For them, line changes the line number of the current
line.

Chapter 5: gtroff Reference 189

[Request].tm string
[Request].tm1 string
[Request].tmc string

Send string to the standard error output; this is very useful for printing
debugging messages among other things.

string is read in copy mode.

The tm request ignores leading spaces of string ; tm1 handles its argument
similar to the ds request: a leading double quote in string is stripped to
allow initial blanks.

The tmc request is similar to tm1 but does not append a newline (as is
done in tm and tm1).

[Request].ab [string]
Write string to the standard error stream (like tm)and then abort GNU
troff; that is, stop processing and terminate with a failure status. With
no argument, the message written is ‘User Abort.’.

[Request].ex
Exit GNU troff; that is, stop processing and terminate with a successful
status. To stop processing only the current file, use the nx request; See
Section 5.29 [I/O], page 178.

When doing something involved it is useful to leave the debugging state-
ments in the code and have them turned on by a command-line flag.

.if \n[DB] .tm debugging output

To activate such statements, use the -r option to set the register.

groff -rDB=1 file

If it is known in advance that there are many errors and no useful output,
GNU troff can be forced to suppress formatted output with the -z option.

[Request].pev
Report the contents of the current environment and all the currently
defined environments (both named and numbered) to the standard error
stream.

[Request].pm
Report, to the standard error stream, the names of all defined macros,
strings, and diversions with their sizes in bytes. Since GNU troff some-
times adds nodes by itself, the returned sizes can be larger than expected.

[Request].pnr
Report the names and contents of all currently defined number registers
to the standard error stream.

[Request].ptr
Report the names and positions of all traps (not including input line
traps and diversion traps) to the standard error stream. Empty slots in

190 The GNU Troff Manual

the page trap list are printed as well, because they can affect the priority
of subsequently planted traps.

[Request].fl
Instruct gtroff to flush its output immediately. The intent is for inter-
active use, but this behaviour is currently not implemented in gtroff.
Contrary to Unix troff, TTY output is sent to a device driver also
(grotty), making it non-trivial to communicate interactively.

This request causes a line break.

[Request].backtrace
Print a backtrace of the input stack to the standard error stream.

Consider the following in file test:

.de xxx

. backtrace

..

.de yyy

. xxx

..

.

.yyy

On execution, gtroff prints the following:

gtroff: backtrace: 'test':2: macro 'xxx'
gtroff: backtrace: 'test':5: macro 'yyy'
gtroff: backtrace: file 'test':8

The option -b of gtroff causes a backtrace to be generated on each error
and warning. Warnings have to be enabled; see Section 5.33.1 [Warnings],
page 191.

[Register]\n[slimit]
Use the slimit number register to set the maximum number of objects
on the input stack. If slimit is less than or equal to 0, there is no limit
set. With no limit, a buggy recursive macro can exhaust virtual memory.

The default value is 1000; this is a compile-time constant.

[Request].warnscale si
Set the scaling indicator used in warnings to si. Valid values for si are
‘u’, ‘i’, ‘c’, ‘p’, and ‘P’. At startup, it is set to ‘i’.

[Request].spreadwarn [limit]
Emit a break warning if the additional space inserted for each space
between words in an output line adjusted to both margins with ‘.ad b’
is larger than or equal to limit. A negative value is treated as zero; an
absent argument toggles the warning on and off without changing limit.
The default scaling indicator is ‘m’. At startup, spreadwarn is inactive
and limit is 3m.

Chapter 5: gtroff Reference 191

For example,

.spreadwarn 0.2m

causes a warning if break warnings are not suppressed and gtroff must
add 0.2m or more for each interword space in a line. See Section 5.33.1
[Warnings], page 191.

gtroff has command-line options for printing out more warnings (-w)
and for printing backtraces (-b) when a warning or an error occurs. The
most verbose level of warnings is -ww.

[Request].warn [flags]
[Register]\n[.warn]

Control the level of warnings checked for. The flags are the sum of the
numbers associated with each warning that is to be enabled; all other
warnings are disabled. The number associated with each warning is listed
below. For example, ‘.warn 0’ disables all warnings, and ‘.warn 1’ dis-
ables all warnings except that about missing glyphs. If no argument is
given, all warnings are enabled.

The read-only number register .warn contains the current warning level.

5.33.1 Warnings

The warnings that can be given to gtroff are divided into the following
categories. The name associated with each warning is used by the -w and -W
options; the number is used by the warn request and by the .warn register.

‘char’
‘1’ Non-existent glyphs.40 This is enabled by default.

‘number’
‘2’ Invalid numeric expressions. This is enabled by default. See

Section 5.3 [Expressions], page 67.

‘break’
‘4’ In fill mode, lines that could not be broken so that their length

was less than the line length. This is enabled by default.

‘delim’
‘8’ Missing or mismatched closing delimiters.

‘el’
‘16’ Use of the el request with no matching ie request. See

Section 5.20.3 [if-else], page 146.

‘scale’
‘32’ Meaningless scaling indicators.

40 char is a misnomer since it reports missing glyphs—there aren’t missing input char-
acters, only invalid ones.

192 The GNU Troff Manual

‘range’
‘64’ Out of range arguments.

‘syntax’
‘128’ Invalid syntax.

‘di’
‘256’ Use of di or da without an argument when there is no current

diversion.

‘mac’
‘512’ Use of undefined strings, macros and diversions. When an unde-

fined string, macro, or diversion is used, that string is automat-
ically defined as empty. So, in most cases, at most one warning
is given for each name.

‘reg’
‘1024’ Use of undefined number registers. When an undefined number

register is used, that register is automatically defined to have a
value of 0. So, in most cases, at most one warning is given for
use of a particular name.

‘tab’
‘2048’ Use of a tab character where a number was expected.

‘right-brace’
‘4096’ Use of \} where a number was expected.

‘missing’
‘8192’ Requests that are missing non-optional arguments.

‘input’
‘16384’ Invalid input characters.

‘escape’
‘32768’ Unrecognized escape sequences. When an unrecognized escape

sequence \X is encountered, the escape character is ignored, and
X is printed.

‘space’
‘65536’ Missing space between a request or macro and its argument.

This warning is given when an undefined name longer than two
characters is encountered, and the first two characters of the
name make a defined name. The request or macro is not in-
voked. When this warning is given, no macro is automatically
defined. This is enabled by default. This warning never occurs
in compatibility mode.

‘font’
‘131072’ Non-existent fonts. This is enabled by default.

Chapter 5: gtroff Reference 193

‘ig’
‘262144’ Invalid escapes in text ignored with the ig request. These are

conditions that are errors when they do not occur in ignored
text.

‘color’
‘524288’ Color related warnings.

‘file’
‘1048576’ Missing files. The mso request gives this warning when the re-

quested macro file does not exist. This is enabled by default.

‘all’ All warnings except ‘di’, ‘mac’ and ‘reg’. It is intended that
this covers all warnings that are useful with traditional macro
packages.

‘w’ All warnings.

5.34 Implementation Differences
GNU troff has a number of features that cause incompatibilities with doc-
uments written using old versions of troff. Some GNU extensions to troff
have become supported by other implementations.

GNU troff does not always hyphenate words as AT&T troff does. The
AT&T implementation uses a set of hard-coded rules specific to U.S. English,
while GNU troff uses language-specific hyphenation pattern files derived
from TEX. Furthermore, in old versions of troff there was a limited amount
of space to store hyphenation exceptions (arguments to the hw request); GNU
troff has no such restriction.

Long names may be GNU troff’s most obvious innovation. AT&T troff
interprets ‘.dsabcd’ as defining a string ‘ab’ with contents ‘cd’. Normally,
GNU troff interprets this as a call of a macro named dsabcd. AT&T
troff also interprets *[and \n[as a reference to a string or number
register, respectively, called ‘[’. In GNU troff, however, the ‘[’ is normally
interpreted as delimiting a long name. In compatibility mode, GNU troff
interprets names in the traditional way, which means that they are limited
to one or two characters.

[Request].cp [n]
[Request].do name
[Register]\n[.C]
[Register]\n[.cp]

If n is missing or non-zero, turn on compatibility mode; otherwise, turn
it off.

The read-only number register .C is 1 if compatibility mode is on, 0 oth-
erwise.

Compatibility mode can be also turned on with the -C command-line
option.

194 The GNU Troff Manual

The do request interprets the string, request, diversion, or macro name
(along with any further arguments) with compatibility mode disabled.
Compatibility mode is restored (only if it was active) when the expansion
of name is interpreted; that is, the restored compatibility state applies to
the contents of the macro (string, . . .) name as well as file or pipe data
read if name is the so, mso, or pso request.

The following example illustrates several aspects of do behavior.

.de mac1
FOO
..
.de1 mac2
groff
.mac1
..
.de mac3
compatibility
.mac1
..
.de ma
\\$1
..
.cp 1
.do mac1
.do mac2 \" mac2, defined with .de1, calls "mac1"
.do mac3 \" mac3 calls "ma" with argument "c1"
.do mac3 \[ti] \" groff syntax accepted in .do arguments

⇒ FOO groff FOO compatibility c1 ~

The read-only number register .cp, meaningful only when dereferenced
from a do request, is 1 if compatibility mode was on when the do request
was encountered, and 0 if it was not. This register is specialized and may
require a statement of rationale.

When writing macro packages or documents that use GNU troff fea-
tures and which may be mixed with other packages or documents that
do not—common scenarios include serial processing of man pages or use
of the so or mso requests—you may desire correct operation regardless of
compatibility mode in the surrounding context. It may occur to you to
save the existing value of ‘\n(.C’ into a register, say, ‘_C’, at the begin-
ning of your file, turn compatibility mode off with ‘.cp 0’, then restore
it from that register at the end with ‘.cp \n(_C’. At the same time, a
modular design of a document or macro package may lead you to multiple
layers of inclusion. You cannot use the same register name everywhere
or you risk “clobbering” the value from a preceding or enclosing context.
The two-character register name space of AT&T troff is confining and
mnemonically challenging; you may wish to use the more capacious name
space of GNU troff. However, attempting ‘.nr _my_saved_C \n(.C’

Chapter 5: gtroff Reference 195

will not work in compatibility mode; the register name is too long. “This
is exactly what do is for,” you think, ‘.do nr _my_saved_C \n(.C’. The
foregoing will always save zero to your register, because do turns com-
patibility mode off while it interprets its argument list. What you need
is:

.do nr _my_saved_C \n[.cp]

.cp 0

at the beginning of your file, followed by

.cp _my_saved_C

at the end. As in the C language, we all have to share one big name space,
so choose a register name that is unlikely to collide with other uses.

Normally, GNU troff preserves the input level in delimited arguments,
but not in compatibility mode.

.ds xx '
\w'abc*(xxdef'

⇒ 168 (normal mode on a terminal device)
⇒ 72def' (compatibility mode on a terminal device)

Furthermore, the escapes \f, \H, \m, \M, \R, \s, and \S are transparent
for recognizing the beginning of a line only in compatibility mode. For
example, this code produces bold output in both cases, but the text differs.

.de xx
Hello!
..
\fB.xx\fP

⇒ .xx (normal mode)
⇒ Hello! (compatibility mode)

GNU troff does not allow the use of the escape sequences \|, \^, \&, \{,
\}, \SP, \', \`, \-, _, \!, \%, and \c in names of strings, macros, diversions,
number registers, fonts, or environments; AT&T troff does. The \A escape
sequence (see Section 5.4 [Identifiers], page 69) may be helpful in avoiding
use of these escape sequences in names.

Normally, the syntax form \sn accepts only a single character (a digit)
for n, consistently with other forms that originated in AT&T troff, like *,
\$, \f, \g, \k, \n, and \z. In compatibility mode only, a non-zero n must
be in the range 4–39. Legacy documents relying upon this quirk of parsing41

should be migrated to another \s form.

Fractional point sizes cause one noteworthy incompatibility. In AT&T
troff the ps request ignores scale indicators and thus ‘.ps 10u’ sets the

41 The Graphic Systems C/A/T phototypesetter (the original device target for AT&T

troff) supported only a few discrete point sizes in the range 6–36, so Ossanna contrived
a special case in the parser to do what the user must have meant. Kernighan warned
of this in the 1992 revision of CSTR #54 (§2.3), and more recently, McIlroy referred
to it as a “living fossil”.

196 The GNU Troff Manual

point size to 10 points, whereas in GNU troff it sets the point size to
10 scaled points. See Section 5.18.2 [Fractional Type Sizes], page 136.

The pm request differs from AT&T troff: GNU troff reports the sizes of
macros, strings, and diversions in bytes and ignores an argument to report
only the sum of the sizes.

Unlike AT&T troff, GNU troff does not ignore the ss request if the
output is a terminal device; instead, the values of minimal inter-word and
additional inter-sentence spacing are each rounded down to the nearest mul-
tiple of 12.

In GNU troff there is a fundamental difference between (unformatted)
input characters and (formatted) output glyphs. Everything that affects
how a glyph is output is stored with the glyph node; once a glyph node
has been constructed, it is unaffected by any subsequent requests that are
executed, including bd, cs, tkf, tr, or fp requests. Normally, glyphs are
constructed from input characters immediately before the glyph is added to
the current output line. Macros, diversions, and strings are all, in fact, the
same type of object; they contain lists of input characters and glyph nodes
in any combination. Special characters can be both: before being added
to the output, they act as input entities; afterwards, they denote glyphs.
A glyph node does not behave like an input character for the purposes of
macro processing; it does not inherit any of the special properties that the
input character from which it was constructed might have had. Consider
the following example.

.di x
\\\\
.br
.di
.x

It prints ‘\\’ in GNU troff; each pair of input backslashes is turned into one
output backslash and the resulting output backslashes are not interpreted as
escape characters when they are reread. AT&T troff would interpret them
as escape characters when they were reread and would end up printing one
‘\’.

One correct way to obtain a printable backslash in most documents is to
use the \e escape sequence; this always prints a single instance of the current
escape character42, regardless of whether or not it is used in a diversion; it
also works in both GNU troff and AT&T troff.

The other correct way, appropriate in contexts independent of the back-
slash’s common use as a troff escape character—perhaps in discussion of
character sets or other programming languages—is the character escape \(rs

42 Naturally, if you’ve changed the escape character, you need to prefix the e with what-
ever it is—and you’ll likely get something other than a backslash in the output.

Chapter 5: gtroff Reference 197

or \[rs], for “reverse solidus”, from its name in the ECMA-6 (ISO/IEC 646)
standard43.

To store an escape sequence in a diversion that is interpreted when the
diversion is reread, either use the traditional \! transparent output facil-
ity, or, if this is unsuitable, the new \? escape sequence. See Section 5.25
[Diversions], page 170, and Section 5.32 [Gtroff Internals], page 186.

43 This character escape is not portable to AT&T troff, but is to its lineal descendant,
Heirloom Doctools troff, as of its 060716 release (July 2006).

199

6 Preprocessors

This chapter describes all preprocessors that come with groff or which are
freely available.

6.1 geqn

6.1.1 Invoking geqn

6.2 gtbl

6.2.1 Invoking gtbl

6.3 gpic

6.3.1 Invoking gpic

6.4 ggrn

6.4.1 Invoking ggrn

6.5 grap

A free implementation of grap, written by Ted Faber, is available as an extra
package from the following address:

http://www.lunabase.org/~faber/Vault/software/grap/

6.6 gchem

6.6.1 Invoking gchem

6.7 grefer

6.7.1 Invoking grefer

6.8 gsoelim

6.8.1 Invoking gsoelim

http://www.lunabase.org/~faber/Vault/software/grap/

200 The GNU Troff Manual

6.9 preconv

6.9.1 Invoking preconv

201

7 Output Devices

7.1 Special Characters
See Section 8.2 [Device and Font Files], page 222.

7.2 grotty

The postprocessor grotty translates the output from GNU troff into a
form suitable for typewriter-like devices. It is fully documented on its manual
page, grotty(1).

7.2.1 Invoking grotty

The postprocessor grotty accepts the following command-line options:

-b Do not overstrike bold glyphs. Ignored if -c isn’t used.

-B Do not underline bold-italic glyphs. Ignored if -c isn’t used.

-c Use overprint and disable colours for printing on legacy Teletype
printers (see below).

-d Do not render lines (that is, ignore all \D escapes).

-f Use form feed control characters in the output.

-Fdir Put the directory dir/devname in front of the search path for the
font and device description files, given the target device name.

-h Use horizontal tabs for sequences of 8 space characters.

-i Request italic glyphs from the terminal. Ignored if -c is active.

-o Do not overstrike.

-r Highlight italic glyphs. Ignored if -c is active.

-u Do not underline italic glyphs. Ignored if -c isn’t used.

-U Do not overstrike bold-italic glyphs. Ignored if -c isn’t used.

-v Print the version number.

The -c option tells grotty to use an output format compatible with paper
terminals, like the Teletype machines for which roff and nroff were first
developed but which are no longer in wide use. SGR escape sequences (from
ISO 6429) are not emitted. Instead, grotty overstrikes, representing a bold
character c with the sequence ‘c BACKSPACE c’ and an italic character c with
the sequence ‘_ BACKSPACE c’. Furthermore, color output is disabled. The
same effect can be achieved either by setting the GROFF_NO_SGR environment
variable or by using a groff escape sequence within the document; see the
subsection “Device control commands” of the grotty(1) man page for details.

202 The GNU Troff Manual

The legacy output format can be rendered on a video terminal (or emu-
lator) by piping grotty’s output through ul, which may render bold italics
as reverse video. Some implementations of more are also able to display
these sequences; you may wish to experiment with that command’s -b op-
tion. less renders legacy bold and italics without requiring options. In
contrast to the teletype output drivers of some other roff implementations,
grotty never outputs reverse line feeds. There is therefore no need to filter
its output through col.

7.3 grops

The postprocessor grops translates the output from GNU troff into a form
suitable for Adobe PostScript devices. It is fully documented on its man-
ual page, grops(1).

7.3.1 Invoking grops

The postprocessor grops accepts the following command-line options:

-bflags Use backward compatibility settings given by flags as docu-
mented in the grops(1) manual page. Overrides the command
broken in the DESC file.

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for
the font, prologue and device description files, given the target
device name, usually ps.

-g Tell the printer to guess the page length. Useful for printing
vertically centered pages when the paper dimensions are deter-
mined at print time.

-Ipath ...
Consider the directory path for searching included files speci-
fied with relative paths. The current directory is searched as
fallback.

-l Use landscape orientation.

-m Use manual feed.

-ppapersize
Set the page dimensions. Overrides the commands papersize,
paperlength, and paperwidth in the DESC file. See the
groff font(5) manual page for details.

-Pprologue
Use the prologue in the font path as the prologue instead of the
default prologue. Overrides the environment variable GROPS_
PROLOGUE.

Chapter 7: Output Devices 203

-wn Set the line thickness to n/1000 em. Overrides the default value
n = 40.

-v Print the version number.

7.3.2 Embedding PostScript

The escape sequence

‘\X’ps: import file llx lly urx ury width [height]’’

places a rectangle of the specified width containing the PostScript drawing
from file file bound by the box from llx lly to urx ury (in PostScript
coordinates) at the insertion point. If height is not specified, the embedded
drawing is scaled proportionally.

See Section 5.31 [Miscellaneous], page 184, for the psbb request, which
automatically generates the bounding box.

This escape sequence is used internally by the macro PSPIC (see the
groff tmac(5) manual page).

7.4 gropdf

The postprocessor gropdf translates the output from GNU troff into a
form suitable for Adobe PDF devices. It is fully documented on its manual
page, gropdf(1).

7.4.1 Invoking gropdf

The postprocessor gropdf accepts the following command-line options:

-d Produce uncompressed PDFs that include debugging comments.

-e This forces gropdf to embed all used fonts in the PDF, even if
they are one of the 14 base Adobe fonts.

-Fdir Put the directory dir/devname in front of the search path for
the font, prologue and device description files, given the target
device name, usually pdf.

-yfoundry
This forces the use of a different font foundry.

-l Use landscape orientation.

-ppapersize
Set the page dimensions. Overrides the commands papersize,
paperlength, and paperwidth in the DESC file. See the
groff font(5) manual page for details.

-v Print the version number.

-s Append a comment line to end of PDF showing statistics, i.e.
number of pages in document. Ghostscript’s ps2pdf(1) com-
plains about this line if it is included, but works anyway.

204 The GNU Troff Manual

-ufilename
gropdf normally includes a ToUnicode CMap with any font cre-
ated using text.enc as the encoding file, this makes it easier to
search for words that contain ligatures. You can include your
own CMap by specifying a filename or have no CMap at all by
omitting the filename.

7.4.2 Embedding PDF

The escape sequence

‘\X’pdf: pdfpic file alignment width [height] [linelength]’’

places a rectangle of the specified width containing the PDF drawing from
file file of desired width and height (if height is missing or zero then it is
scaled proportionally). If alignment is -L the drawing is left aligned. If it
is -C or -R a linelength greater than the width of the drawing is required as
well. If width is specified as zero then the width is scaled in proportion to
the height.

7.5 grodvi

The postprocessor grodvi translates the output from GNU troff into the
DVI format produced by the TEX document preparation system. This en-
ables the use of programs that process the DVI format, like dvips and
dvipdf, with GNU troff output. grodvi is fully documented in its manual
page, grodvi(1).

7.5.1 Invoking grodvi

The postprocessor grodvi accepts the following command-line options:

-d Do not use tpic specials to implement drawing commands.

-Fdir Put the directory dir/devname in front of the search path for the
font and device description files, given the target device name,
usually dvi.

-l Use landscape orientation.

-ppapersize
Set the page dimensions. Overrides the commands papersize,
paperlength, and paperwidth in the DESC file. See groff font(5)
manual page for details.

-v Print the version number.

-wn Set the line thickness to n/1000 em. Overrides the default value
n = 40.

Chapter 7: Output Devices 205

7.6 grolj4

The postprocessor grolj4 translates the output from GNU troff into the
PCL5 output format suitable for printing on a HP LaserJet 4 printer. It is
fully documented on its manual page, grolj4(1).

7.6.1 Invoking grolj4

The postprocessor grolj4 accepts the following command-line options:

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for the
font and device description files, given the target device name,
usually lj4.

-l Use landscape orientation.

-psize Set the page dimensions. Valid values for size are: letter,
legal, executive, a4, com10, monarch, c5, b5, d1.

-v Print the version number.

-wn Set the line thickness to n/1000 em. Overrides the default value
n = 40.

The special drawing command ‘\D’R dh dv’’ draws a horizontal rectangle
from the current position to the position at offset (dh,dv).

7.7 grolbp

The postprocessor grolbp translates the output from GNU troff into the
LBP output format suitable for printing on Canon CAPSL printers. It is
fully documented on its manual page, grolbp(1).

7.7.1 Invoking grolbp

The postprocessor grolbp accepts the following command-line options:

-cn Print n copies of each page.

-Fdir Put the directory dir/devname in front of the search path for
the font, prologue and device description files, given the target
device name, usually lbp.

-l Use landscape orientation.

-oorientation
Use the orientation specified: portrait or landscape.

-ppapersize
Set the page dimensions. See groff font(5) manual page for de-
tails.

206 The GNU Troff Manual

-wn Set the line thickness to n/1000 em. Overrides the default value
n = 40.

-v Print the version number.

-h Print command-line help.

7.8 grohtml

The grohtml front end (which consists of a preprocessor, pre-grohtml,
and a device driver, post-grohtml) translates the output of GNU troff
to HTML. Users should always invoke grohtml via the groff command
with a \-Thtml option. If no files are given, grohtml will read the standard
input. A filename of - will also cause grohtml to read the standard input.
HTML output is written to the standard output. When grohtml is run by
groff, options can be passed to grohtml using groff’s -P option.

grohtml invokes groff twice. In the first pass, pictures, equations, and
tables are rendered using the ps device, and in the second pass HTML output
is generated by the html device.

grohtml always writes output in UTF-8 encoding and has built-in entities
for all non-composite Unicode characters. In spite of this, groff may issue
warnings about unknown special characters if they can’t be found during the
first pass. Such warnings can be safely ignored unless the special characters
appear inside a table or equation, in which case glyphs for these characters
must be defined for the ps device as well.

This output device is fully documented on its manual page, grohtml(1).

7.8.1 Invoking grohtml

The postprocessor grohtml accepts the following command-line options:

-abits Use this number of bits (= 1, 2 or 4) for text antialiasing. De-
fault: bits = 4.

-a0 Do not use text antialiasing.

-b Use white background.

-Ddir Store rendered images in the directory dir.

-Fdir Put the directory dir/devname in front of the search path for
the font, prologue and device description files, given the target
device name, usually html.

-gbits Use this number of bits (= 1, 2 or 4) for antialiasing of drawings.
Default: bits = 4.

-g0 Do not use antialiasing for drawings.

-h Use the B element for section headings.

Chapter 7: Output Devices 207

-iresolution
Use the resolution for rendered images. Default: resolution =
100 dpi.

-Istem Set the images’ stem name. Default: stem = grohtml-XXX
(XXX is the process ID).

-jstem Place each section in a separate file called stem-n.html (where
n is a generated section number).

-l Do not generate the table of contents.

-n Generate simple fragment identifiers.

-ooffset Use vertical padding offset for images.

-p Display the page rendering progress to stderr.

-r Do not use horizontal rules to separate headers and footers.

-ssize Set the base font size, to be modified using the elements BIG and
SMALL.

-Slevel Generate separate files for sections at level level.

-v Print the version number.

-V Generate a validator button at the bottom.

-y Generate a signature of groff after the validator button, if any.

7.8.2 grohtml specific registers and strings

[Register]\n[ps4html]
[String]*[www-image-template]

The registers ps4html and www-image-template are defined by the
pre-grohtml preprocessor. pre-grohtml reads in the troff input, marks
up the inline equations and passes the result firstly to

troff -Tps -rps4html=1 -dwww-image-template=template

and secondly to

troff -Thtml

or

troff -Txhtml

The PostScript device is used to create all the image files (for -Thtml;
if -Txhtml is used, all equations are passed to geqn to produce MathML,
and the register ps4html enables the macro sets to ignore floating keeps,
footers, and headings.

The register www-image-template is set to the user specified template
name or the default name.

208 The GNU Troff Manual

7.9 gxditview

7.9.1 Invoking gxditview

209

8 File formats

All files read and written by gtroff are text files. The following two sections
describe their format.

8.1 gtroff Output
This section describes the intermediate output format of GNU troff. This
output is produced by a run of gtroff before it is fed into a device postpro-
cessor program.

As groff is a wrapper program around gtroff that automatically calls
a postprocessor, this output does not show up normally. This is why it is
called intermediate. groff provides the option -Z to inhibit postprocessing,
such that the produced intermediate output is sent to standard output just
like calling gtroff manually.

Here, the term troff output describes what is output by gtroff, while
intermediate output refers to the language that is accepted by the parser that
prepares this output for the postprocessors. This parser is more tolerant of
whitespace and implements obsolete elements for compatibility, otherwise
both formats are the same.1

The main purpose of the intermediate output concept is to facilitate
the development of postprocessors by providing a common programming
interface for all devices. It has a language of its own that is completely
different from the gtroff language. While the gtroff language is a high-
level programming language for text processing, the intermediate output
language is a kind of low-level assembler language by specifying all positions
on the page for writing and drawing.

The intermediate output produced by gtroff is fairly readable, while
output from AT&T troff is rather hard to understand because of strange
habits that are still supported, but not used any longer by gtroff.

8.1.1 Language Concepts

During the run of gtroff, the input data is cracked down to the information
on what has to be printed at what position on the intended device. So the
language of the intermediate output format can be quite small. Its only
elements are commands with and without arguments. In this section, the
term command always refers to the intermediate output language, and never
to the gtroff language used for document formatting. There are commands
for positioning and text writing, for drawing, and for device controlling.

1 The parser and postprocessor for intermediate output can be found in the file
groff-source-dir/src/libs/libdriver/input.cpp.

210 The GNU Troff Manual

8.1.1.1 Separation

AT&T troff output has strange requirements regarding whitespace. The
gtroff output parser, however, is more tolerant, making whitespace max-
imally optional. Such characters, i.e., the tab, space, and newline, always
have a syntactical meaning. They are never printable because spacing within
the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical
space. It separates commands and arguments, but is only required when
there would occur a clashing between the command code and the arguments
without the space. Most often, this happens when variable-length command
names, arguments, argument lists, or command clusters meet. Commands
and arguments with a known, fixed length need not be separated by syntac-
tical space.

A line break is a syntactical element, too. Every command argument
can be followed by whitespace, a comment, or a newline character. Thus a
syntactical line break is defined to consist of optional syntactical space that
is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a sin-
gle letter taking a fixed number of arguments. For historical reasons, the
parser allows stacking of such commands on the same line, but fortunately,
in gtroff’s intermediate output, every command with at least one argument
is followed by a line break, thus providing excellent readability.

The other commands—those for drawing and device controlling—have
a more complicated structure; some recognize long command names, and
some take a variable number of arguments. So all ‘D’ and ‘x’ commands
were designed to request a syntactical line break after their last argument.
Only one command, ‘x X’, has an argument that can stretch over several
lines; all other commands must have all of their arguments on the same line
as the command, i.e., the arguments may not be split by a line break.

Empty lines (these are lines containing only space and/or a comment),
can occur everywhere. They are just ignored.

8.1.1.2 Argument Units

Some commands take integer arguments that are assumed to represent values
in a measurement unit, but the letter for the corresponding scale indicator is
not written with the output command arguments. Most commands assume
the scale indicator ‘u’, the basic unit of the device, some use ‘z’, the scaled
point unit of the device, while others, such as the color commands, expect
plain integers.

Single characters can have the eighth bit set, as can the names of fonts
and special characters. The names of characters and fonts can be of arbitrary
length. A character that is to be printed is always in the current font.

A string argument is always terminated by the next whitespace character
(space, tab, or newline); an embedded ‘#’ character is regarded as part of

Chapter 8: File formats 211

the argument, not as the beginning of a comment command. An integer
argument is already terminated by the next non-digit character, which then
is regarded as the first character of the next argument or command.

8.1.1.3 Document Parts

A correct intermediate output document consists of two parts, the prologue
and the body.

The task of the prologue is to set the general device parameters using
three exactly specified commands. gtroff’s prologue is guaranteed to consist
of the following three lines (in that order):

x T device
x res n h v
x init

with the arguments set as outlined in Section 8.1.2.4 [Device Control Com-
mands], page 217. The parser for the intermediate output format is able to
swallow additional whitespace and comments as well even in the prologue.

The body is the main section for processing the document data. Syntac-
tically, it is a sequence of any commands different from the ones used in the
prologue. Processing is terminated as soon as the first ‘x stop’ command is
encountered; the last line of any gtroff intermediate output always contains
such a command.

Semantically, the body is page oriented. A new page is started by a ‘p’
command. Positioning, writing, and drawing commands are always done
within the current page, so they cannot occur before the first ‘p’ command.
Absolute positioning (by the ‘H’ and ‘V’ commands) is done relative to the
current page; all other positioning is done relative to the current location
within this page.

8.1.2 Command Reference

This section describes all intermediate output commands, both from AT&T
troff as well as the gtroff extensions.

8.1.2.1 Comment Command

#anything〈end of line〉
A comment. Ignore any characters from the ‘#’ character up to
the next newline character.

This command is the only possibility for commenting in the in-
termediate output. Each comment can be preceded by arbitrary
syntactical space; every command can be terminated by a com-
ment.

8.1.2.2 Simple Commands

The commands in this subsection have a command code consisting of a
single character, taking a fixed number of arguments. Most of them are

212 The GNU Troff Manual

commands for positioning and text writing. These commands are tolerant
of whitespace. Optionally, syntactical space can be inserted before, after, and
between the command letter and its arguments. All of these commands are
stackable; i.e., they can be preceded by other simple commands or followed
by arbitrary other commands on the same line. A separating syntactical
space is only necessary when two integer arguments would clash or if the
preceding argument ends with a string argument.

C xxx〈whitespace〉
Print a special character named xxx. The trailing syntactical
space or line break is necessary to allow glyph names of arbitrary
length. The glyph is printed at the current print position; the
glyph’s size is read from the font file. The print position is not
changed.

c g Print glyph g at the current print position;2 the glyph’s size is
read from the font file. The print position is not changed.

f n Set font to font number n (a non-negative integer).

H n Move right to the absolute vertical position n (a non-negative
integer in basic units ‘u’ relative to left edge of current page.

h n Move n (a non-negative integer) basic units ‘u’ horizontally to
the right. The original Unix troff manual allows negative values
for n also, but gtroff doesn’t use this.

m color-scheme [component ...]
Set the color for text (glyphs), line drawing, and the outline
of graphic objects using different color schemes; the analogous
command for the filling color of graphic objects is ‘DF’. The color
components are specified as integer arguments between 0 and
65536. The number of color components and their meaning vary
for the different color schemes. These commands are generated
by gtroff’s escape sequence \m. No position changing. These
commands are a gtroff extension.

mc cyan magenta yellow
Set color using the CMY color scheme, having the
3 color components cyan, magenta, and yellow.

md Set color to the default color value (black in most
cases). No component arguments.

mg gray Set color to the shade of gray given by the argument,
an integer between 0 (black) and 65536 (white).

mk cyan magenta yellow black
Set color using the CMYK color scheme, having
the 4 color components cyan, magenta, yellow, and
black.

2 ‘c’ is actually a misnomer since it outputs a glyph.

Chapter 8: File formats 213

mr red green blue
Set color using the RGB color scheme, having the
3 color components red, green, and blue.

N n Print glyph with index n (a non-negative integer) of the current
font. This command is a gtroff extension.

n b a Inform the device about a line break, but no positioning is done
by this command. In AT&T troff, the integer arguments b
and a informed about the space before and after the current line
to make the intermediate output more human readable without
performing any action. In groff, they are just ignored, but they
must be provided for compatibility reasons.

p n Begin a new page in the outprint. The page number is set to n.
This page is completely independent of pages formerly processed
even if those have the same page number. The vertical position
on the outprint is automatically set to 0. All positioning, writ-
ing, and drawing is always done relative to a page, so a ‘p’
command must be issued before any of these commands.

s n Set point size to n scaled points (this is unit ‘z’). AT&T troff
used the unit points (‘p’) instead. See Section 8.1.4 [Output
Language Compatibility], page 221.

t xxx〈whitespace〉
t xxx dummy-arg〈whitespace〉

Print a word, i.e., a sequence of characters xxx representing
output glyphs which names are single characters, terminated by
a space character or a line break; an optional second integer
argument is ignored (this allows the formatter to generate an
even number of arguments). The first glyph should be printed
at the current position, the current horizontal position should
then be increased by the width of the first glyph, and so on
for each glyph. The widths of the glyphs are read from the
font file, scaled for the current point size, and rounded to a
multiple of the horizontal resolution. Special characters cannot
be printed using this command (use the ‘C’ command for special
characters). This command is a gtroff extension; it is only
used for devices whose DESC file contains the tcommand keyword
(see Section 8.2.1 [DESC File Format], page 222).

u n xxx〈whitespace〉
Print word with track kerning. This is the same as the ‘t’ com-
mand except that after printing each glyph, the current horizon-
tal position is increased by the sum of the width of that glyph
and n (an integer in basic units ‘u’). This command is a gtroff
extension; it is only used for devices whose DESC file contains
the tcommand keyword (see Section 8.2.1 [DESC File Format],
page 222).

214 The GNU Troff Manual

V n Move down to the absolute vertical position n (a non-negative
integer in basic units ‘u’) relative to upper edge of current page.

v n Move n basic units ‘u’ down (n is a non-negative integer). The
original Unix troff manual allows negative values for n also, but
gtroff doesn’t use this.

w Informs about a paddable white space to increase readability.
The spacing itself must be performed explicitly by a move com-
mand.

8.1.2.3 Graphics Commands

Each graphics or drawing command in the intermediate output starts with
the letter ‘D’, followed by one or two characters that specify a subcommand;
this is followed by a fixed or variable number of integer arguments that are
separated by a single space character. A ‘D’ command may not be followed
by another command on the same line (apart from a comment), so each ‘D’
command is terminated by a syntactical line break.

gtroff output follows the classical spacing rules (no space between com-
mand and subcommand, all arguments are preceded by a single space char-
acter), but the parser allows optional space between the command letters
and makes the space before the first argument optional. As usual, each space
can be any sequence of tab and space characters.

Some graphics commands can take a variable number of arguments. In
this case, they are integers representing a size measured in basic units ‘u’.
The arguments called h1, h2, . . . , hn stand for horizontal distances where
positive means right, negative left. The arguments called v1, v2, . . . , vn
stand for vertical distances where positive means down, negative up. All
these distances are offsets relative to the current location.

Each graphics command directly corresponds to a similar gtroff \D es-
cape sequence. See Section 5.23 [Drawing Requests], page 159.

Unknown ‘D’ commands are assumed to be device-specific. Its arguments
are parsed as strings; the whole information is then sent to the postprocessor.

In the following command reference, the syntax element 〈line break〉
means a syntactical line break as defined above.

D~ h1 v1 h2 v2 ... hn vn〈line break〉
Draw B-spline from current position to offset (h1,v1), then to
offset (h2,v2), if given, etc. up to (hn,vn). This command takes
a variable number of argument pairs; the current position is
moved to the terminal point of the drawn curve.

Da h1 v1 h2 v2〈line break〉
Draw arc from current position to (h1,v1)+(h2,v2) with center
at (h1,v1); then move the current position to the final point of
the arc.

Chapter 8: File formats 215

DC d〈line break〉
DC d dummy-arg〈line break〉

Draw a solid circle using the current fill color with diameter d
(integer in basic units ‘u’) with leftmost point at the current po-
sition; then move the current position to the rightmost point of
the circle. An optional second integer argument is ignored (this
allows the formatter to generate an even number of arguments).
This command is a gtroff extension.

Dc d〈line break〉
Draw circle line with diameter d (integer in basic units ‘u’) with
leftmost point at the current position; then move the current
position to the rightmost point of the circle.

DE h v〈line break〉
Draw a solid ellipse in the current fill color with a horizontal
diameter of h and a vertical diameter of v (both integers in
basic units ‘u’) with the leftmost point at the current position;
then move to the rightmost point of the ellipse. This command
is a gtroff extension.

De h v〈line break〉
Draw an outlined ellipse with a horizontal diameter of h and a
vertical diameter of v (both integers in basic units ‘u’) with the
leftmost point at current position; then move to the rightmost
point of the ellipse.

DF color-scheme [component ...]〈line break〉
Set fill color for solid drawing objects using different color
schemes; the analogous command for setting the color of text,
line graphics, and the outline of graphic objects is ‘m’. The color
components are specified as integer arguments between 0 and
65536. The number of color components and their meaning vary
for the different color schemes. These commands are generated
by gtroff’s escape sequences ‘\D’F ...’’ and \M (with no other
corresponding graphics commands). No position changing. This
command is a gtroff extension.

DFc cyan magenta yellow〈line break〉
Set fill color for solid drawing objects using the
CMY color scheme, having the 3 color components
cyan, magenta, and yellow.

DFd〈line break〉
Set fill color for solid drawing objects to the default
fill color value (black in most cases). No component
arguments.

216 The GNU Troff Manual

DFg gray〈line break〉
Set fill color for solid drawing objects to the shade
of gray given by the argument, an integer between
0 (black) and 65536 (white).

DFk cyan magenta yellow black〈line break〉
Set fill color for solid drawing objects using the
CMYK color scheme, having the 4 color components
cyan, magenta, yellow, and black.

DFr red green blue〈line break〉
Set fill color for solid drawing objects using the RGB
color scheme, having the 3 color components red,
green, and blue.

Df n〈line break〉
The argument n must be an integer in the range −32767 to
32767.

0 ≤ n ≤ 1000
Set the color for filling solid drawing objects to a
shade of gray, where 0 corresponds to solid white,
1000 (the default) to solid black, and values in be-
tween to intermediate shades of gray; this is obso-
leted by command ‘DFg’.

n < 0 or n > 1000
Set the filling color to the color that is currently be-
ing used for the text and the outline, see command
‘m’. For example, the command sequence

mg 0 0 65536
Df -1

sets all colors to blue.

No position changing. This command is a gtroff extension.

Dl h v〈line break〉
Draw line from current position to offset (h,v) (integers in basic
units ‘u’); then set current position to the end of the drawn line.

Dp h1 v1 h2 v2 ... hn vn〈line break〉
Draw a polygon line from current position to offset (h1,v1), from
there to offset (h2,v2), etc. up to offset (hn,vn), and from there
back to the starting position. For historical reasons, the posi-
tion is changed by adding the sum of all arguments with odd
index to the actual horizontal position and the even ones to the
vertical position. Although this doesn’t make sense it is kept for
compatibility. This command is a gtroff extension.

Chapter 8: File formats 217

DP h1 v1 h2 v2 ... hn vn〈line break〉
Draw a solid polygon in the current fill color rather than an
outlined polygon, using the same arguments and positioning as
the corresponding ‘Dp’ command. This command is a gtroff
extension.

Dt n〈line break〉
Set the current line thickness to n (an integer in basic units ‘u’)
if n > 0; if n = 0 select the smallest available line thickness; if
n < 0 set the line thickness proportional to the point size (this
is the default before the first ‘Dt’ command was specified). For
historical reasons, the horizontal position is changed by adding
the argument to the actual horizontal position, while the vertical
position is not changed. Although this doesn’t make sense it is
kept for compatibility. This command is a gtroff extension.

8.1.2.4 Device Control Commands

Each device control command starts with the letter ‘x’, followed by a space
character (optional or arbitrary space or tab in gtroff) and a subcommand
letter or word; each argument (if any) must be preceded by a syntactical
space. All ‘x’ commands are terminated by a syntactical line break; no
device control command can be followed by another command on the same
line (except a comment).

The subcommand is basically a single letter, but to increase readability, it
can be written as a word, i.e., an arbitrary sequence of characters terminated
by the next tab, space, or newline character. All characters of the subcom-
mand word but the first are simply ignored. For example, gtroff outputs
the initialization command ‘x i’ as ‘x init’ and the resolution command
‘x r’ as ‘x res’.

In the following, the syntax element 〈line break〉 means a syntactical line
break (see Section 8.1.1.1 [Separation], page 210).

xF name〈line break〉
The ‘F’ stands for Filename.

Use name as the intended name for the current file in error
reports. This is useful for remembering the original file name
when gtroff uses an internal piping mechanism. The input file
is not changed by this command. This command is a gtroff
extension.

xf n s〈line break〉
The ‘f’ stands for font.

Mount font position n (a non-negative integer) with font named s
(a text word). See Section 5.17.3 [Font Positions], page 118.

xH n〈line break〉
The ‘H’ stands for Height.

218 The GNU Troff Manual

Set glyph height to n (a positive integer in scaled points ‘z’).
AT&T troff uses the unit points (‘p’) instead. See Section 8.1.4
[Output Language Compatibility], page 221.

xi〈line break〉
The ‘i’ stands for init.

Initialize device. This is the third command of the prologue.

xp〈line break〉
The ‘p’ stands for pause.

Parsed but ignored. The original Unix troff manual writes

pause device, can be restarted

xr n h v〈line break〉
The ‘r’ stands for resolution.

Resolution is n, while h is the minimal horizontal motion, and
v the minimal vertical motion possible with this device; all ar-
guments are positive integers in basic units ‘u’ per inch. This is
the second command of the prologue.

xS n〈line break〉
The ‘S’ stands for Slant.

Set slant to n (an integer in basic units ‘u’).

xs〈line break〉
The ‘s’ stands for stop.

Terminates the processing of the current file; issued as the last
command of any intermediate troff output.

xt〈line break〉
The ‘t’ stands for trailer.

Generate trailer information, if any. In GNU troff, this is
ignored.

xT xxx〈line break〉
The ‘T’ stands for Typesetter.

Set name of device to word xxx, a sequence of characters ended
by the next white space character. The possible device names
coincide with those from the groff -T option. This is the first
command of the prologue.

xu n〈line break〉
The ‘u’ stands for underline.

Configure underlining of spaces. If n is 1, start underlining of
spaces; if n is 0, stop underlining of spaces. This is needed for
the cu request in nroff mode and is ignored otherwise. This
command is a gtroff extension.

Chapter 8: File formats 219

xX anything〈line break〉
The ‘x’ stands for X-escape.

Send string anything uninterpreted to the device. If the line
following this command starts with a ‘+’ character this line is
interpreted as a continuation line in the following sense. The ‘+’
is ignored, but a newline character is sent instead to the device,
the rest of the line is sent uninterpreted. The same applies to
all following lines until the first character of a line is not a ‘+’
character. This command is generated by the gtroff escape
sequence \X. The line-continuing feature is a gtroff extension.

8.1.2.5 Obsolete Command

In AT&T troff output, the writing of a single glyph is mostly done by a very
strange command that combines a horizontal move and a single character
giving the glyph name. It doesn’t have a command code, but is represented
by a 3-character argument consisting of exactly 2 digits and a character.

ddg Move right dd (exactly two decimal digits) basic units ‘u’, then
print glyph g (represented as a single character).

In GNU troff, arbitrary syntactical space around and within
this command is allowed. Only when a preceding command on
the same line ends with an argument of variable length is a
separating space obligatory. In AT&T troff, large clusters of
these and other commands are used, mostly without spaces; this
made such output almost unreadable.

For modern high-resolution devices, this command does not make sense
because the width of the glyphs can become much larger than two decimal
digits. In gtroff, this is only used for the devices X75, X75-12, X100, and
X100-12. For other devices, the commands ‘t’ and ‘u’ provide a better
functionality.

8.1.3 Intermediate Output Examples

This section presents the intermediate output generated from the same input
for three different devices. The input is the sentence ‘hell world’ fed into
gtroff on the command line.

High-resolution device ps
This is the standard output of gtroff if no -T option is given.

shell> echo "hell world" | groff -Z -T ps

x T ps
x res 72000 1 1
x init
p1
x font 5 TR

220 The GNU Troff Manual

f5
s10000
V12000
H72000
thell
wh2500
tw
H96620
torld
n12000 0
x trailer
V792000
x stop

This output can be fed into grops to get its representation as a
PostScript file.

Low-resolution device latin1
This is similar to the high-resolution device except that the posi-
tioning is done at a minor scale. Some comments (lines starting
with ‘#’) were added for clarification; they were not generated
by the formatter.

shell> echo "hell world" | groff -Z -T latin1

prologue
x T latin1
x res 240 24 40
x init
begin a new page
p1
font setup
x font 1 R
f1
s10
initial positioning on the page
V40
H0
write text 'hell'
thell
inform about space, and issue a horizontal jump
wh24
write text 'world'
tworld
announce line break, but do nothing because...
n40 0

Chapter 8: File formats 221

...the end of the document has been reached
x trailer
V2640
x stop

This output can be fed into grotty to get a formatted text
document.

AT&T troff output
Since a computer monitor has a much lower resolution than mod-
ern printers, the intermediate output for X11 devices can use the
jump-and-write command with its 2-digit displacements.

shell> echo "hell world" | groff -Z -T X100

x T X100
x res 100 1 1
x init
p1
x font 5 TR
f5
s10
V16
H100
write text with jump-and-write commands
ch07e07l03lw06w11o07r05l03dh7
n16 0
x trailer
V1100
x stop

This output can be fed into xditview or gxditview for display-
ing in X.

Due to the obsolete jump-and-write command, the text clusters
in the AT&T troff output are almost unreadable.

8.1.4 Output Language Compatibility

The intermediate output language of AT&T troff was first documented in
the Unix troff manual, with later additions documented in A Typesetter-
independent TROFF, written by Brian Kernighan.

The gtroff intermediate output format is compatible with this specifi-
cation except for the following features.

• The classical quasi-device independence is not yet implemented.

• The old hardware was very different from what we use today. So the
groff devices are also fundamentally different from the ones in AT&T
troff. For example, the AT&T PostScript device is called post and
has a resolution of only 720 units per inch, suitable for printers 20
years ago, while groff’s ps device has a resolution of 72000 units per

222 The GNU Troff Manual

inch. Maybe, by implementing some rescaling mechanism similar to the
classical quasi-device independence, groff could emulate AT&T’s post
device.

• The B-spline command ‘D~’ is correctly handled by the intermediate
output parser, but the drawing routines aren’t implemented in some of
the postprocessor programs.

• The argument of the commands ‘s’ and ‘x H’ has the implicit unit scaled
point ‘z’ in gtroff, while AT&T troff has point (‘p’). This isn’t an
incompatibility but a compatible extension, for both units coincide for
all devices without a sizescale parameter in the DESC file, including
all postprocessors from AT&T and groff’s text devices. The few groff
devices with a sizescale parameter either do not exist for AT&T troff,
have a different name, or seem to have a different resolution. So conflicts
are very unlikely.

• The position changing after the commands ‘Dp’, ‘DP’, and ‘Dt’ is illogical,
but as old versions of gtroff used this feature it is kept for compatibility
reasons.

8.2 Device and Font Files
The GNU troff font format is a rough superset of the AT&T device-
independent troff font format. In distinction to the AT&T implementation,
GNU troff lacks a binary format; all files are text files.3 The font files for
device name are stored in a directory devname. There are two types of file:
a device description file called DESC and for each font f a font file called f.

8.2.1 DESC File Format

The DESC file can contain the following types of line. Except for the charset
keyword, which must come last (if at all), the order of the lines is not im-
portant. Later entries in the file, however, override previous values.

charset This line and everything following in the file are ignored. It is
allowed for the sake of backwards compatibility.

family fam
The default font family is fam.

fonts n F1 F2 F3 ... Fn
Fonts F1 . . . Fn are mounted in the font positions m+1, . . . ,
m+n wherem is the number of styles. This command may extend
over more than one line. A font name of 0 means no font is
mounted on the corresponding font position.

hor n The horizontal resolution is n machine units. All horizontal
quantities are rounded to be multiples of this value.

3 Plan 9 troff has also abandoned the binary format.

Chapter 8: File formats 223

image_generator string
Needed for grohtml only. It specifies the program to generate
PNG images from PostScript input. Under GNU/Linux this
is usually gs but under other systems (notably cygwin) it might
be set to another name.

paperlength n
The physical vertical dimension of the output medium in ma-
chine units. This isn’t used by troff itself but by output de-
vices. Deprecated. Use papersize instead.

papersize string ...
Select a paper size. Valid values for string are the ISO pa-
per types A0–A7, B0–B7, C0–C7, D0–D7, DL, and the US paper
types letter, legal, tabloid, ledger, statement, executive,
com10, and monarch. Case is not significant for string if it holds
predefined paper types. Alternatively, string can be a file name
(e.g. /etc/papersize); if the file can be opened, groff reads the
first line and tests for the above paper sizes. Finally, string can
be a custom paper size in the format length,width (no spaces
before and after the comma). Both length and width must have
a unit appended; valid values are ‘i’ for inches, ‘c’ for centime-
ters, ‘p’ for points, and ‘P’ for picas. Example: 12c,235p. An
argument that starts with a digit is always treated as a custom
paper format. papersize sets both the vertical and horizontal
dimension of the output medium.

More than one argument can be specified; groff scans from left
to right and uses the first valid paper specification.

paperwidth n
The physical horizontal dimension of the output medium in ma-
chine units. This isn’t used by troff itself but by output de-
vices. Deprecated. Use papersize instead.

pass_filenames
Tell gtroff to emit the name of the source file currently being
processed. This is achieved by the intermediate output com-
mand ‘F’. Currently, this is only used by the grohtml output
device.

postpro program
Call program as a postprocessor. For example, the line

postpro grodvi

in the file devdvi/DESC makes groff call grodvi if option -Tdvi
is given (and -Z isn’t used).

prepro program
Call program as a preprocessor. Currently, this keyword is used
by groff with option -Thtml or -Txhtml only.

224 The GNU Troff Manual

print program
Use program as a spooler program for printing. If omitted, the
-l and -L options of groff are ignored.

res n There are n machine units per inch.

sizes s1 s2 ... sn 0
This means that the device has fonts at s1, s2, . . . sn scaled
points. The list of sizes must be terminated by 0 (this is digit
zero). Each si can also be a range of sizes m–n. The list can
extend over more than one line.

sizescale n
The scale factor for point sizes. By default this has a value of 1.
One scaled point is equal to one point/n. The arguments to the
unitwidth and sizes commands are given in scaled points. See
Section 5.18.2 [Fractional Type Sizes], page 136.

styles S1 S2 ... Sm
The first m font positions are associated with styles S1 . . . Sm.

tcommand This means that the postprocessor can handle the ‘t’ and ‘u’
intermediate output commands.

unicode Indicate that the output device supports the complete Unicode
repertoire. Useful only for devices that produce character enti-
ties instead of glyphs.

If unicode is present, no charset section is required in the font
description files since the Unicode handling built into groff is
used. However, if there are entries in a charset section, they
either override the default mappings for those particular charac-
ters or add new mappings (normally for composite characters).

This is used for -Tutf8, -Thtml, and -Txhtml.

unitwidth n
Quantities in the font files are given in machine units for fonts
whose point size is n scaled points.

unscaled_charwidths
Make the font handling module always return unscaled character
widths. Needed for the grohtml device.

use_charnames_in_special
This command indicates that gtroff should encode special char-
acters inside special commands. Currently, this is only used by
the grohtml output device. See Section 5.30 [Postprocessor Ac-
cess], page 183.

vert n The vertical resolution is nmachine units. All vertical quantities
are rounded to be multiples of this value.

Chapter 8: File formats 225

The res, unitwidth, fonts, and sizes lines are mandatory. Other com-
mands are ignored by gtroff but may be used by postprocessors to store
arbitrary information about the device in the DESC file.

GNU troff recognizes but completely ignores the obsolete keywords
spare1, spare2, and biggestfont.

8.2.2 Font File Format

A font file, also (and probably better) called a font description file, has two
sections. The first section is a sequence of lines each containing a sequence
of blank-delimited words; the first word in the line is a key, and subsequent
words give a value for that key.

name f The name of the font is f.

spacewidth n
The normal width of a space is n.

slant n The glyphs of the font have a slant of n degrees. (Positive means
forward.)

ligatures lig1 lig2 ... lign [0]
Glyphs lig1, lig2, . . . , lign are ligatures; possible ligatures are
‘ff’, ‘fi’, ‘fl’, ‘ffi’ and ‘ffl’. For backwards compatibility, the
list of ligatures may be terminated with a 0. The list of ligatures
may not extend over more than one line.

special The font is special; this means that when a glyph is requested
that is not present in the current font, it is searched for in any
special fonts that are mounted.

Other commands are ignored by gtroff but may be used by postproces-
sors to store arbitrary information about the font in the font file.

The first section can contain comments, which start with the ‘#’ character
and extend to the end of a line.

The second section contains one or two subsections. It must contain a
charset subsection and it may also contain a kernpairs subsection. These
subsections can appear in any order. Each subsection starts with a word on
a line by itself.

The word charset starts the character set subsection.4 The charset line
is followed by a sequence of lines. Each line gives information for one glyph.
A line comprises a number of fields separated by blanks or tabs. The format
is

name metrics type code [entity-name] [-- comment]

4 This keyword is misnamed since it starts a list of ordered glyphs, not characters.

226 The GNU Troff Manual

name identifies the glyph name5: If name is a single character c then it
corresponds to the gtroff input character c; if it is of the form ‘\c’ where
c is a single character, then it corresponds to the special character \[c];
otherwise it corresponds to the special character ‘\[name]’. If it is exactly
two characters xx it can be entered as ‘\(xx’. Single-letter special characters
can’t be accessed as ‘\c’; the only exception is ‘\-’, which is identical to \[-].

gtroff supports 8-bit input characters; however some utilities have diffi-
culties with eight-bit characters. For this reason, there is a convention that
the entity name ‘charn’ is equivalent to the single input character whose
code is n. For example, ‘char163’ would be equivalent to the character with
code 163, which is the pounds sterling sign in the ISO Latin-1 character
set. You shouldn’t use ‘charn’ entities in font description files since they
are related to input, not output. Otherwise, you get hard-coded connections
between input and output encoding, which prevents use of different (input)
character sets.

The name ‘---’ is special and indicates that the glyph is unnamed; such
glyphs can only be used by means of the \N escape sequence in gtroff.

The type field gives the glyph type:

1 the glyph has a descender, for example, ‘p’;

2 the glyph has an ascender, for example, ‘b’;

3 the glyph has both an ascender and a descender, for example,
‘(’.

The code field gives the code that the postprocessor uses to print the
glyph. The glyph can also be input to gtroff using this code by means
of the \N escape sequence. code can be any integer. If it starts with ‘0’
it is interpreted as octal; if it starts with ‘0x’ or ‘0X’ it is interpreted as
hexadecimal. Note, however, that the \N escape sequence only accepts a
decimal integer.

The entity-name field gives an ASCII string identifying the glyph that the
postprocessor uses to print the gtroff glyph name. This field is optional
and has been introduced so that the grohtml device driver can encode its
character set. For example, the glyph ‘\[Po]’ is represented as ‘£’ in
HTML 4.0.

Anything on the line after the entity-name field resp. after ‘--’ is ignored.

The metrics field has the form:

width[,height[,depth[,italic-correction
[,left-italic-correction[,subscript-correction]]]]]

There must not be any spaces between these subfields (it has been split here
into two lines for better legibility only). Missing subfields are assumed to

5 The distinction between input, characters, and output, glyphs, is not clearly separated
in the terminology of groff; for example, the char request should be called glyph since
it defines an output entity.

Chapter 8: File formats 227

be 0. The subfields are all decimal integers. Since there is no associated
binary format, these values are not required to fit into a variable of type
‘char’ as they are in AT&T device-independent troff. The width subfield
gives the width of the glyph. The height subfield gives the height of the glyph
(upwards is positive); if a glyph does not extend above the baseline, it should
be given a zero height, rather than a negative height. The depth subfield
gives the depth of the glyph, that is, the distance from the baseline to the
lowest point below the baseline to which the glyph extends (downwards is
positive); if a glyph does not extend below the baseline, it should be given
a zero depth, rather than a negative depth. The italic-correction subfield
gives the amount of space that should be added after the glyph when it is
immediately to be followed by a glyph from a roman font. The left-italic-
correction subfield gives the amount of space that should be added before
the glyph when it is immediately to be preceded by a glyph from a roman
font. The subscript-correction gives the amount of space that should be
added after a glyph before adding a subscript. This should be less than the
italic correction.

A line in the charset section can also have the format

name "

This indicates that name is just another name for the glyph mentioned in
the preceding line.

The word kernpairs starts the kernpairs section. This contains a se-
quence of lines of the form:

c1 c2 n

This means that when glyph c1 appears next to glyph c2 the space between
them should be increased by n. Most entries in the kernpairs section have a
negative value for n.

229

9 Installation

231

A Copying This Manual

Version 1.3, 3 November 2008

Copyright c© 2000-2018 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of

http://fsf.org/

232 The GNU Troff Manual

mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A: Copying This Manual 233

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

234 The GNU Troff Manual

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

A: Copying This Manual 235

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

236 The GNU Troff Manual

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

A: Copying This Manual 237

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may differ

238 The GNU Troff Manual

in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

A: Copying This Manual 239

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

241

B Request Index

Requests appear without the leading control character (normally either ‘.’
or ‘’’).

A
ab . 189
ad . 84
af . 80
aln . 78
als . 142
am . 151
am1 . 151
ami . 151
ami1 . 151
as . 141
as1 . 141
asciify . 173

B
backtrace . 190
bd . 129
blm . 167
box . 170
boxa . 170
bp . 112
br . 83
break . 148
brp . 85

C
c2 . 102
cc . 101
ce . 87
cf . 179
cflags . 123
ch . 165
char . 125
chop . 141
class . 126
close . 182
color . 177
composite . 123
continue . 148
cp . 193
cs . 130
cu . 129

D
da . 170
de . 149
de1 . 149
defcolor . 177
dei . 149
dei1 . 149
device . 183
devicem . 183
di . 170
do . 193
ds . 28, 137
ds1 . 137
dt . 166

E
ec . 102
ecr . 102
ecs . 102
el . 146
em . 168
eo . 102
ev . 175
evc . 175
ex . 189

F
fam . 116
fc . 101
fchar . 125
fcolor . 178
fi . 83
fl . 190
fp . 118
fschar . 125
fspecial . 128
ft . 114, 119
ftr . 115
fzoom . 116

G
gcolor . 178

242 The GNU Troff Manual

H
hc . 89
hcode . 93
hla . 94
hlm . 94
hpf . 92
hpfa . 92
hpfcode . 92
hw . 88
hy . 90
hym . 94
hys . 94

I
ie . 146
if . 145
ig . 76
in . 108
it . 167
itc . 167

K
kern . 131

L
lc . 100
length . 141
lf . 188
lg . 130
linetabs . 100
ll . 109
ls . 96
lsm . 167
lt . 112

M
mc . 185
mk . 154
mso . 179

N
na . 85
ne . 113
nf . 84
nh . 92
nm . 184
nn . 185
nop . 145
nr . 28, 77, 78, 79
nroff . 106
ns . 97
nx . 180

O
open . 182
opena . 182
os . 113
output . 173

P
pc . 112
pev . 189
pi . 181
pl . 111
pm . 189
pn . 112
pnr . 189
po . 107
ps . 133
psbb . 186
pso . 179
ptr . 189
pvs . 135

R
rchar . 126
rd . 180
return . 151
rfschar . 126
rj . 88
rm . 142
rn . 142
rnn . 78
rr . 78
rs . 97
rt . 154

B: Request Index 243

S
schar . 125
shc . 89
shift . 152
sizes . 134
so . 179
sp . 95
special . 128
spreadwarn . 190
ss . 86
stringdown . 142
stringup . 142
sty . 117
substring . 141
sv . 113
sy . 181

T
ta . 97
tc . 99
ti . 108
tkf . 131
tl . 111
tm . 189
tm1 . 189

tmc . 189
tr . 104
trf . 179
trin . 104
trnt . 106
troff . 106

U
uf . 129
ul . 129
unformat . 174

V
vpt . 163
vs . 135

W
warn . 191
warnscale . 190
wh . 164
while . 147
write . 182
writec . 182
writem . 182

245

C Escape Index

Any escape sequence \X withX not in the list below emits a warning, printing
glyph X.

\ . 121
\! . 172
\" . 75
\# . 76
\$. 152
\$* . 152
\$^ . 153
\$@ . 152
\$0 . 153
\% . 89
\& . 132
\’ . 123
\) . 132
* . 137
\, . 131
\- . 123
\. 104
\/ . 131
\: . 89
\? . 172
\^ . 157
_ . 123
\‘ . 123
\\ . 103
\{ . 146
\} . 146
\| . 157
\~ . 157
\0 . 157
\a . 100
\A . 69
\b . 163
\B . 68
\c . 110
\C . 122

\d . 156
\D . 160
\e . 103
\E . 103
\f . 114, 119
\F . 116
\g . 81
\h . 156
\H . 128
\k . 158
\l . 159
\L . 159
\m . 178
\M . 178
\n . 79
\N . 123
\o . 158
\O . 176
\p . 85
\r . 156
\R . 77, 78
\RET . 110
\s . 133
\S . 128
\SP . 156
\t . 97
\u . 156
\v . 156
\V . 183
\w . 157
\x . 96
\X . 183
\Y . 183
\z . 158
\Z . 158

247

D Operator Index

!
! . 67

%
% . 67

&
& . 67

(
(. 68

)
) . 68

*
* . 67

+
+ . 67

–
- . 67

/
/ . 67

:
: . 67

<
< . 67
<= . 67
<? . 68

=
= . 67
== . 67

>
> . 67
>= . 67
>? . 68

249

E Register Index

The macro package or program a specific register belongs to is appended in
brackets.

A register name x consisting of exactly one character can be accessed
as ‘\nx’. A register name xx consisting of exactly two characters can be
accessed as ‘\n(xx’. Register names xxx of any length can be accessed as
‘\n[xxx]’.

$
$$. 83

%
% . 112, 113

.

.$. 152

.a . 96

.A . 83

.b . 129

.br . 72

.c . 82

.cdp . 176

.ce . 87

.cht . 176

.color . 177

.cp . 193

.csk . 176

.C . 193

.d . 171

.ev . 175

.f . 118

.fam . 116

.fn . 116

.fp . 118

.F . 81

.g . 83

.h . 171

.height . 128

.hla . 94

.hlc . 94

.hlm . 94

.hy . 90

.hym . 94

.hys . 94

.H . 81

.i . 108

.in . 108

.int . 110

.j . 84

.k . 158

.kern . 131

.l . 109

.lg . 130

.linetabs . 100

.ll . 109

.lt . 112

.L . 96

.m . 178

.M . 178

.n . 176

.ne . 165

.ns . 97

.o . 108

.O . 83

.p . 111

.pe . 166

.pn . 112

.ps . 136

.psr . 136

.pvs . 135

.P . 83

.rj . 88

.R . 81

.s . 133

.slant . 128

.sr . 136

.ss . 86

.sss . 86

.sty . 115

.t . 165

.tabs . 97

.trunc . 166

.T . 83

.u . 83

.U . 81

.v . 135

.vpt . 163

.V . 82

250 The GNU Troff Manual

.w . 176

.warn . 191

.x . 82

.y . 83

.Y . 83

.z . 171

.zoom . 116

C
c. 82
ct . 157

D
DD [ms] . 32
dl . 172
dn . 172
dw . 82
dy . 82

F
FF [ms] . 31
FI [ms] . 31
FL [ms] . 31
FM [ms] . 29
FPD [ms] . 32
FPS [ms] . 32
FVS [ms] . 32

G
GROWPS [ms] . 30
GS [ms] . 51

H
HM [ms] . 29
HORPHANS [ms] . 31
hours . 82
hp . 158
HY [ms] . 30

L
LL [ms] . 29
llx . 186
lly . 186
ln . 82
lsn . 167
lss . 167
LT [ms] . 29

M
MINGW [ms] . 32, 52
minutes . 82
mo . 82

N
nl . 114

O
opmaxx . 176
opmaxy . 176
opminx . 176
opminy . 176

P
PD [ms] . 30
PI [ms] . 30
PO [ms] . 29
PORPHANS [ms] . 31
ps4html [grohtml] . 207
PS [ms] . 29
PSINCR [ms] . 30

Q
QI [ms] . 31

R
rsb . 157
rst . 157

E: Register Index 251

S

sb . 157

seconds . 82

skw . 157

slimit . 190

ssc . 157

st . 157

systat . 181

U
urx . 186
ury . 186

V
VS [ms] . 29

Y
year . 82
yr . 82

253

F Macro Index

The macro package a specific macro belongs to is appended in brackets.
They appear without the leading control character (normally ‘.’).

[
[[ms] . 44

]
] [ms] . 44

1
1C [ms] . 46

2
2C [ms] . 46

A
AB [ms] . 33
AE [ms] . 33
AI [ms] . 33
AM [ms] . 49, 52
AU [ms] . 33

B
B [ms] . 37
B1 [ms] . 43
B2 [ms] . 43
BD [ms] . 42
BI [ms] . 37
BT [man] . 23
BT [ms] . 46
BX [ms] . 38

C
CD [ms] . 42
CT [man] . 23
CW [man] . 24
CW [ms] . 37, 52

D
DA [ms] . 33
De [man] . 24
DE [ms] . 42
Ds [man] . 24
DS [ms] . 42

E
EE [man] . 24
EF [ms] . 45
EH [ms] . 45
EN [ms] . 44
EQ [ms] . 44
EX [man] . 24

F
FE [ms] . 44
FS [ms] . 44

G
G [man] . 24
GL [man] . 24

H
HB [man] . 24
HD [ms] . 45

I
I [ms] . 37
ID [ms] . 42
IP [ms] . 38
IX [ms] . 52

K
KE [ms] . 43
KF [ms] . 43
KS [ms] . 43

254 The GNU Troff Manual

L
LD [ms] . 42
LG [ms] . 38
LP [ms] . 34

M
MC [ms] . 46
MS [man] . 24

N
ND [ms] . 33
NE [man] . 24
NH [ms] . 36
NL [ms] . 38
NT [man] . 24

O
OF [ms] . 45
OH [ms] . 45

P
P1 [ms] . 33
PE [ms] . 43
Pn [man] . 25
PN [man] . 24
PP [ms] . 34
PS [ms] . 43
PT [man] . 23
PT [ms] . 45
PX [ms] . 47

Q
QE [ms] . 35
QP [ms] . 34
QS [ms] . 35

R
R [man] . 25
R [ms] . 37
RD [ms] . 42
RE [ms] . 41
RN [man] . 25
RP [ms] . 32
RS [ms] . 41

S
SH [ms] . 36
SM [ms] . 38

T
TA [ms] . 41
TB [man] . 24
TC [ms] . 47
TE [ms] . 43
TL [ms] . 33
TS [ms] . 43

U
UL [ms] . 38

V
VE [man] . 25
VS [man] . 25

X
XA [ms] . 46
XE [ms] . 46
XP [ms] . 35
XS [ms] . 46

255

G String Index

The macro package or program a specific string belongs to is appended in
brackets.

A string name x consisting of exactly one character can be accessed as
‘*x’. A string name xx consisting of exactly two characters can be accessed
as ‘*(xx’. String names xxx of any length can be accessed as ‘*[xxx]’.

!
! [ms] . 50

’
’ [ms] . 49

*
* [ms] . 44

,
, [ms] . 49

–
- [ms] . 48

.

. [ms] . 49

.T . 137

.T [] . 137

:
: [ms] . 49

<
< [ms] . 38

>
> [ms] . 38

?
? [ms] . 49

^
^ [ms] . 49

_ [ms] . 49

‘
‘ [ms] . 49

{
{ [ms] . 38

}
} [ms] . 38

~
~ [ms] . 49

3
3 [ms] . 50

8
8 [ms] . 50

A
ABSTRACT [ms] . 48
Ae [ms] . 50
ae [ms] . 50

256 The GNU Troff Manual

C
CF [ms] . 45
CH [ms] . 45

D
d- [ms] . 50
D- [ms] . 50

F
FAM [ms] . 30

L
LF [ms] . 45
LH [ms] . 45

M
MONTH1 [ms] . 48
MONTH10 [ms] . 48
MONTH11 [ms] . 48
MONTH12 [ms] . 48
MONTH2 [ms] . 48
MONTH3 [ms] . 48
MONTH4 [ms] . 48
MONTH5 [ms] . 48
MONTH6 [ms] . 48
MONTH7 [ms] . 48
MONTH8 [ms] . 48
MONTH9 [ms] . 48

O
o [ms] . 49

Q
q [ms] . 50
Q [ms] . 49

R
REFERENCES [ms] . 48
RF [ms] . 45
RH [ms] . 45

S
SN [ms] . 36
SN-DOT [ms] . 36
SN-NO-DOT [ms] . 36
SN-STYLE [ms] . 36

T
Th [ms] . 50
th [ms] . 50
TOC [ms] . 48

U
U [ms] . 49

V
v [ms] . 49

W
www-image-template [grohtml] 207

257

H Glyph Name Index

A glyph name xx consisting of exactly two characters can be accessed as
‘\(xx’. Glyph names xxx of any length can be accessed as ‘\[xxx]’.

259

I Font File Keyword Index

#
. 225

–
--- . 225

B
biggestfont . 225

C
charset . 222, 225

F
family . 115, 119, 222
fonts . 119, 128, 222

H
hor . 222

I
image_generator . 223

K
kernpairs . 227

L
ligatures . 225

N
name . 225

P
paperlength . 223
papersize . 223
paperwidth . 223
pass_filenames . 223
postpro . 223
prepro . 223
print . 224

R
res . 224

S
sizes . 224
sizescale . 224
slant . 225
spacewidth . 225
spare1 . 225
spare2 . 225
special . 130, 225
styles 115, 117, 119, 224

T
tcommand . 224

U
unicode . 224
unitwidth . 224
unscaled_charwidths 224
use_charnames_in_special 183, 224

V
vert . 224

261

J Program and File Index

A
an.tmac . 23

C
changebar . 185
col . 201
composite.tmac . 123
cp1047.tmac . 62

D
DESC 115, 117, 119, 123, 128
DESC file format . 222
DESC, and font mounting 118
DESC, and
use_charnames_in_special 183

ditroff . 2
dvipdf . 204
dvips . 204

E
ec.tmac . 63
eqn . 43

F
freeeuro.pfa . 63

G
gchem . 7
geqn . 7
ggrn . 7
gpic . 7
grap . 7
grefer . 7
grodvi . 204
groff . 7
grog . 15
gsoelim . 7
gtbl . 7
gtroff . 7

H
hyphen.us . 93
hyphenex.us . 93

L
latin1.tmac . 62
latin2.tmac . 62
latin5.tmac . 62
latin9.tmac . 63
less . 201

M
makeindex . 21
man-old.tmac . 23
man.local . 23
man.tmac . 23
man.ultrix . 23
more . 201

N
nrchbar . 185

P
papersize.tmac . 14
perl . 181
pic . 43
post-grohtml . 11
pre-grohtml . 11
preconv . 7

R
refer . 43

S
soelim . 188

262 The GNU Troff Manual

T
tbl . 43
trace.tmac . 150, 151
troffrc 10, 14, 93, 94, 106, 108
troffrc-end 10, 93, 94, 106

tty.tmac . 106

U
ul . 201

263

K Concept Index

"
", at end of sentence 57, 124
", in a macro argument 72

%
%, as delimiter . 74

&
&, as delimiter . 74

’
’, as a comment . 75
’, at end of sentence 57, 124
’, delimiting arguments 74

(
(, as delimiter . 74
(, starting a

two-character identifier 70, 74

)
), as delimiter . 74
), at end of sentence 57, 124

*
*, as delimiter . 74
*, at end of sentence 57, 124

+
+, and page motion . 68
+, as delimiter . 74

–
-, and page motion . 68
-, as delimiter . 74

.

., as delimiter . 74

.h register, difference to nl 171

.ps register, in
comparison with .psr 136

.s register, in comparison with .sr . . . 136

.S register, Plan 9 alias for .tabs 99

.t register, and diversions 166

.tabs register, Plan 9 alias (.S) 99

.V register, and vs 135

/
/, as delimiter . 74

:
:, as delimiter . 74

<
<, as delimiter . 74

=
=, as delimiter . 74

>
>, as delimiter . 74

[
[, macro names starting

with, and refer . 69
[, starting an identifier 70, 74

]
], as part of an identifier 69
], at end of sentence 57, 124
], ending an identifier 70, 74
], macro names starting

with, and refer . 69

264 The GNU Troff Manual

\
\!, and copy mode 173
\!, and output request 173
\!, and trnt . 106
\!, in top-level diversion 173
\!, incompatibilities with

AT&T troff 195, 196
\!, used as delimiter 74, 75
\$, when reading text for a macro 151
\%, and translations 104
\%, following \X or \Y 89
\%, in \X . 183
\%, incompatibilities with

AT&T troff . 195
\%, used as delimiter 74, 75
\&, and glyph definitions 125
\&, and translations 105
\&, at end of sentence 56
\&, escaping control characters 71
\&, in \X . 183
\&, incompatibilities with

AT&T troff . 195
\&, used as delimiter 74
\’, and translations 104
\’, incompatibilities with

AT&T troff . 195
\’, used as delimiter 74, 75
\(, and translations 104
\), in \X . 183
\), used as delimiter 74
*, and warnings . 192
*, incompatibilities with

AT&T troff . 193
*, when reading text for a macro 151
\, disabling (eo) . 102
\,, used as delimiter 74
\- glyph, and cflags 124
\-, and translations 104
\-, incompatibilities with

AT&T troff . 195
\-, used as delimiter 74, 75
\/, used as delimiter 74, 75
\:, in \X . 183
\:, used as delimiter 74, 75
\?, and copy mode 144, 173
\?, in top-level diversion 173
\?, incompatibilities with

AT&T troff . 196
\?, used as delimiter 74
\[, and translations 104
\^, incompatibilities with

AT&T troff . 195

\^, used as delimiter 74
_, and translations 104
_, incompatibilities with

AT&T troff . 195
_, used as delimiter 74, 75
\‘, and translations 104
\‘, incompatibilities with

AT&T troff . 195
\‘, used as delimiter 74, 75
\\, when reading text for a macro 151
\{, incompatibilities with

AT&T troff . 195
\{, used as delimiter 74, 75
\}, and warnings . 192
\}, incompatibilities with

AT&T troff . 195
\}, used as delimiter 74, 75
\|, incompatibilities with

AT&T troff . 195
\|, used as delimiter 74
\~, and translations 104
\~, difference to \SP 72
\~, used as delimiter 74
\0, used as delimiter 74
\a, and copy mode 100
\a, and translations 104
\a, used as delimiter 74
\A, allowed delimiters 74
\A, incompatibilities with

AT&T troff . 195
\b, limitations . 163
\b, possible quote characters 74
\B, allowed delimiters 74
\c, and fill mode . 110
\c, and no-fill mode 110
\c, incompatibilities with

AT&T troff . 195
\c, used as delimiter 74, 75
\C, allowed delimiters 74
\C, and translations 104
\d, used as delimiter 74
‘\D’f ...’’ and

horizontal resolution 161
\D, allowed delimiters 74
\e, and glyph definitions 125
\e, and translations 104
\e, incompatibilities with

AT&T troff . 196
\e, used as delimiter 74, 75
\E, and copy mode 103
\E, used as delimiter 74
\f, and font translations 115

K: Concept Index 265

\f, incompatibilities with
AT&T troff . 195

\F, and changing fonts 115
\F, and font positions 119
\h, allowed delimiters 74
\H, allowed delimiters 74
\H, incompatibilities with

AT&T troff . 195
\H, using + and - . 68
\H, with fractional type sizes 136
\l, allowed delimiters 74
\l, and glyph definitions 125
\L, allowed delimiters 74
\L, and glyph definitions 125
\n, and warnings . 192
\n, incompatibilities with

AT&T troff . 193
\n, when reading text for a macro 151
\N, allowed delimiters 74
\N, and translations 104
\o, possible quote characters 74
\p, used as delimiter 74, 75
\r, used as delimiter 74
\R, after \c . 110
\R, allowed delimiters 74
\R, and warnings . 192
\R, difference to nr . 79
\R, using + and - . 68
\RET, when reading text for a macro . . 151
\s, allowed delimiters 74
\s, incompatibilities with

AT&T troff . 195
\s, using + and - . 68
\s, with fractional type sizes 136
\S, allowed delimiters 74
\S, incompatibilities with

AT&T troff . 195
\SP, difference to \~ 72
\SP, incompatibilities with

AT&T troff . 195
\SP, used as delimiter 74
\t, and copy mode . 97
\t, and translations 104
\t, and warnings . 192
\t, used as delimiter 74
\u, used as delimiter 74
\v, allowed delimiters 74
\v, internal representation 187
\V, and copy mode 183
\w, allowed delimiters 74
\x, allowed delimiters 74
\X, and special characters 183

\X, followed by \% . 89
\X, possible quote characters 74
\Y, followed by \% . 89
\Z, allowed delimiters 74

|
|, and page motion . 68

8
8-bit input . 225

A
aborting (ab) . 189
absolute position operator (|) 68
accent marks [ms] . 48
access of postprocessor 183
accessing unnamed glyphs with \N 225
activating kerning (kern) 131
activating ligatures (lg) 130
activating track kerning (tkf) 131
ad request, and hyphenation margin . . . 94
ad request, and hyphenation space 94
additional inter-sentence spacing 86
adjusting and filling, manipulating 83
adjustment mode register (.j) 85
adobe glyph list (AGL) 121
AGL (adobe glyph list) 121
alias, diversion, creating (als) 142
alias, diversion, removing (rm) 143
alias, macro, creating (als) 142
alias, macro, removing (rm) 143
alias, number register, creating (aln) . . . 78
alias, number register,

removing (aln) . 78
alias, string, creating (als) 142
alias, string, removing (rm) 143
als request, and \$0 153
am, am1, ami requests, and warnings . . . 192
annotations . 20
appending to a diversion (da) 170
appending to a file (opena) 182
appending to a macro (am) 151
appending to a string (as) 141
arc, drawing (‘\D’a ...’’) 161
argument delimiting characters 74
arguments to macros, and tabs 72
arguments to requests and macros 72
arguments, and compatibility mode . . . 188
arguments, macro (\$) 152

266 The GNU Troff Manual

arguments, of strings 137
arithmetic operators 67
artificial fonts . 128
as, as1 requests, and comments 75
as, as1 requests, and warnings 192
ASCII approximation output

register (.A) . 8, 83
ASCII, output encoding 11
asciify request, and writem 182
assigning formats (af) 80
assignments, indirect 79
assignments, nested . 79
AT&T troff, ms macro

package differences 50
auto-increment . 79
auto-increment, and ig request 76
available glyphs, list

(groff char(7) man page) 120

B
background color name register (.M) . . 178
backslash, printing (\\,
\e, \E, \[rs]) 75, 196

backspace character 69
backspace character, and

translations . 104
backtrace of input stack

(backtrace) . 190
baseline . 133
basic unit (u) . 66
basics of macros . 17
bd request, and font styles 117
bd request, and font translations 115
bd request, incompatibilities

with AT&T troff 196
begin of conditional block (\{) 146
beginning diversion (di) 170
blank line . 58, 71
blank line (sp) . 18
blank line macro (blm) 58, 71, 167
blank line traps . 167
blank lines, disabling 97
block, conditional, begin (\{) 146
block, conditional, end (\}) 146
blocks, conditional . 146
boldface, imitating (bd) 129
bottom margin . 111
bounding box . 186
box rule glyph (\[br]) 159
box, boxa requests, and warnings 192
boxa request, and dn (dl) 172

bp request, and top-level diversion 113
bp request, and traps (.pe) 166
bp request, causing implicit linebreak . . 83
bp request, using + and - 68
br glyph, and cflags 124
brace escape, closing (\}) 146
brace escape, opening (\}) 146
brace escapes (\}, \}) 146
break . 17, 58, 83
break (br) . 19
break request, in a while loop 148
break, non-printing input (\&) 71
break, non-printing input (\&),

effect on \l escape 159
break, non-printing input (\&),

effect on kerning 131
breaking file names (\:) 89
breaking URLs (\:) 89
breaking without hyphens (\:) 89
built-in registers . 81
bulleted list, example markup [ms] 39

C
c unit . 66
capabilities of groff . 3
case-transforming a string

(stringdown, stringup) 142
ce request, causing implicit linebreak . . 83
ce request, difference to ‘.ad c’ 84
centered text . 84
centering lines (ce) 18, 87
centimeter unit (c) . 66
cf request, and copy mode 179
cf request, causing implicit linebreak . . 83
changing font family (fam, \F) 116
changing font position (\f) 119
changing font style (sty) 117
changing fonts (ft, \f) 115
changing format, and

read-only registers 81
changing the font height (\H) 128
changing the font slant (\S) 128
changing the page number

character (pc) . 112
changing trap location (ch) 165
changing type sizes (ps, \s) 133
changing vertical line spacing (vs) 135
char request, and soft

hyphen character . 89
char request, and translations 104
char request, used with \N 123

K: Concept Index 267

character . 119
character class (class) 126
character classes . 126
character properties (cflags) 123
character translations 101
character, backspace 69
character, backspace, and

translations . 104
character, control (.) 71
character, control, changing (cc) 101
character, defining (char) 125
character, defining fallback (fchar,
fschar, schar) . 125

character, escape, changing (ec) 102
character, escape, while

defining glyph . 125
character, field delimiting (fc) 101
character, field padding (fc) 101
character, horizontal tab 59
character, hyphenation (\%) 89
character, leader repetition (lc) 100
character, leader, and translations 104
character, leader,

non-interpreted (\a) 100
character, named (\C) 122
character, newline . 74
character, newline, and translations . . . 104
character, no-break control (’) 71
character, no-break control,

changing (c2) . 101
character, soft hyphen, setting (shc) . . . 89
character, space . 74
character, special . 104
character, tab . 74
character, tab repetition (tc) 99
character, tab, and translations 104
character, tab, non-interpreted (\t) 97
character, transparent 124
character, whitespace 69
character, zero-width space (sic) (\&) . . 71
characters, argument delimiting 74
characters, end-of-sentence 124
characters, end-of-sentence

transparent . 57
characters, hyphenation 124
characters, input, and output glyphs,

compatibility with AT&T troff 196
characters, invalid for trf request 180
characters, invalid input 69
characters, overlapping 124
characters, special 57, 201

characters, unnamed,
accessing with \N 225

chem, the program . 199
circle, drawing (‘\D’c ...’’) 160
circle, solid, drawing (‘\D’C ...’’) 160
class of characters (class) 126
classes, character . 126
closing brace escape (\}) 146
closing file (close) 182
code page 1047, input encoding 62
code page 1047, output encoding 11
code, hyphenation (hcode) 93
color name, background,

register (.M) . 178
color name, drawing, register (.m) 178
color name, fill, register (.M) 178
color, default . 177
colors . 177
colors, fill, unnamed (\D’F...’) 162
command prefix . 12
command-line options 8
commands, embedded 70
comments . 75
comments in font files 225
comments, lining up with tabs 75
comments, with ds 138
common features . 19
common name space of macros,

diversions, and strings 139
comparison of strings 144
comparison operators 67
compatibility mode 192, 193
compatibility mode, and parameters . . 188
composite glyph names 121
conditional block, begin (\{) 146
conditional block, end (\}) 146
conditional blocks . 146
conditional output for

terminal (TTY) . 144
conditional page break (ne) 113
conditionals and loops 143
consecutive hyphenated lines (hlm) 94
constant glyph space mode (cs) 130
contents, table of 21, 101
continuation, input line (\RET) 110
continuation, output line (\c) 110
continue request, in a while loop 148
continuous underlining (cu) 129
control character . 59
control character (.) 71
control character, changing (cc) 101
control character, no-break 59

268 The GNU Troff Manual

control character, no-break (’) 71
control character, no-break,

changing (c2) . 101
control sequences, for terminals 201
control, line . 109
control, page . 112
conventions for input 63
copy mode . 151
copy mode, and \! 173
copy mode, and \? 144, 173
copy mode, and \a 100
copy mode, and \E 103
copy mode, and \t . 97
copy mode, and \V 183
copy mode, and cf request 179
copy mode, and device request 183
copy mode, and ig request 76
copy mode, and length request 141
copy mode, and macro arguments 152
copy mode, and output request 173
copy mode, and tm request 189
copy mode, and tm1 request 189
copy mode, and tmc request 189
copy mode, and trf request 179
copy mode, and write request 182
copy mode, and writec request 182
copy mode, and writem request 182
copying environment (evc) 175
correction between italic and

roman glyph (\/, \,) 131
correction, italic (\/) 131
correction, left italic (\,) 131
cover page macros, [ms] 32
cp request, and glyph definitions 125
cq glyph, at end of sentence 57, 124
creating alias, for diversion (als) 142
creating alias, for macro (als) 142
creating alias, for number

register (aln) . 78
creating alias, for string (als) 142
creating new characters (char) 125
credits . 5
cs request, and font styles 117
cs request, and font translations 115
cs request, incompatibilities

with AT&T troff 196
cs request, with

fractional type sizes 136
current directory . 13
current input file name register (.F) . . . 81
current page number (%) 113
current time . 181

current time, hours (hours) 82
current time, minutes (minutes) 82
current time, seconds (seconds) 82
current vertical position (nl) 114

D
da request, and dn (dl) 172
da request, and warnings 192
date, day of the month register (dy) 82
date, day of the week register (dw) 82
date, month of the year register (mo) . . . 82
date, year register (year, yr) 82
day of the month register (dy) 82
day of the week register (dw) 82
dd glyph, at end of sentence 57, 124
de request, and while 147
de, de1, dei requests, and warnings . . . 192
debugging . 188
default color . 177
default units . 67
defining character (char) 125
defining character class (class) 126
defining fallback character (fchar,
fschar, schar) . 125

defining glyph (char) 125
defining symbol (char) 125
delayed text . 21
delimited arguments, incompatibilities

with AT&T troff 195
delimiting character, for fields (fc) 101
delimiting characters for arguments 74
depth, of last glyph (.cdp) 176
DESC file, format . 222
device request, and copy mode 183
device resolution . 224
devices for output 5, 201
dg glyph, at end of sentence 57, 124
di request, and warnings 192
differences in implementation 193
digit width space (\0) 157
digits, and delimiters 74
dimensions, line . 107
directories for fonts . 14
directories for macros 13
directory, current . 13
directory, for tmac files 13
directory, home . 13
directory, platform-specific 13
directory, site-specific 13, 14
disabling \ (eo) . 102
disabling hyphenation (\%) 89

K: Concept Index 269

discardable horizontal space 86
discarded space in traps 96
displays . 20
displays [ms] . 42
displays, and footnotes [ms] 45
distance to next trap register (.t) 165
ditroff, the program 2
diversion name register (.z) 171
diversion trap, setting (dt) 166
diversion traps . 166
diversion, appending (da) 170
diversion, beginning (di) 170
diversion, creating alias (als) 142
diversion, ending (di) 170
diversion, nested . 171
diversion, removing (rm) 142
diversion, removing alias (rm) 143
diversion, renaming (rn) 142
diversion, stripping final newline 140
diversion, top-level 170
diversion, top-level, and \! 173
diversion, top-level, and \? 173
diversion, top-level, and bp 113
diversion, unformatting (asciify) 173
diversion, vertical position in,

register (.d) . 171
diversions . 170
diversions, and traps 166
diversions, shared name space with

macros and strings 139
dl register, and da (boxa) 172
dn register, and da (boxa) 172
documents, multi-file 188
documents, structuring the

source code . 71
double quote, in a macro argument 72
double quotes, trailing, in strings 138
double-spacing (ls) 18, 96
double-spacing (vs, pvs) 135
down-casing a string (stringdown) 142
drawing a circle (‘\D’c ...’’) 160
drawing a line (‘\D’l ...’’) 160
drawing a polygon (‘\D’p ...’’) 161
drawing a solid circle (‘\D’C ...’’) . . . 160
drawing a solid ellipse (‘\D’E ...’’) . . 161
drawing a solid polygon

(‘\D’P ...’’) . 161
drawing a spline (‘\D’~ ...’’) 161
drawing an arc (‘\D’a ...’’) 161
drawing an ellipse (‘\D’e ...’’) 161
drawing color name register (.m) 178
drawing horizontal lines (\l) 159

drawing requests . 159
drawing vertical lines (\L) 159
ds request, and comments 138
ds request, and double quotes 73, 138
ds request, and leading spaces 138
ds, ds1 requests, and comments 75
ds, ds1 requests, and warnings 192
dumping environments (pev) 189
dumping number registers (pnr) 189
dumping symbol table (pm) 189
dumping traps (ptr) 189
DVI output driver . 204

E
EBCDIC encoding of a tab 97
EBCDIC encoding of backspace 69
EBCDIC, input encoding 62
EBCDIC, output encoding 11
el request, and warnings 191
ellipse, drawing (‘\D’e ...’’) 161
ellipse, solid, drawing (‘\D’E ...’’) . . . 161
em glyph, and cflags 124
em unit (m) . 66
embedded commands 70
embedding PDF . 204
embedding PostScript 203
embolding of special fonts 130
empty line . 58
empty line (sp) . 18
en unit (n) . 66
enabling vertical position

traps (vpt) . 163
encoding, input, code page 1047 62
encoding, input, EBCDIC 62
encoding, input, Latin-1

(ISO 8859-1) . 62
encoding, input, Latin-2

(ISO 8859-2) . 62
encoding, input, Latin-5

(ISO 8859-9) . 62
encoding, input, Latin-9

(ISO 8859-15) . 63
encoding, output, ASCII 11
encoding, output, code page 1047 11
encoding, output, EBCDIC 11
encoding, output, ISO 646 11
encoding, output, Latin-1

(ISO 8859-1) . 11
encoding, output, UTF-8 11
end of conditional block (\}) 146
end-of-input macro (em) 168

270 The GNU Troff Manual

end-of-input trap, setting (em) 168
end-of-input traps . 168
end-of-sentence characters 56, 124
end-of-sentence

transparent characters 57
ending diversion (di) 170
environment number/name

register (.ev) . 175
environment variables 12
environment, copying (evc) 175
environment, dimensions of last glyph (.w,
.cht, .cdp, .csk) 176

environment, previous line
length (.n) . 176

environment, switching (ev) 175
environments . 174
environments, dumping (pev) 189
eqn, the program . 199
equations [ms] . 43
escape character, changing (ec) 102
escape character, while

defining glyph . 125
escapes . 73
escapes, brace (\}, \}) 146
escaping newline

characters, in strings 138
ex request, use in debugging 189
ex request, used with nx and rd 180
example markup, bulleted list [ms] 39
example markup,

glossary-style list [ms] 39
example markup,

multi-page table [ms] 44
example markup, numbered list [ms] . . . 39
example markup, title page 33
examples of invocation 15
exiting (ex) . 189
expansion of strings (*) 137
explicit hyphen (\%) 94
expression, limitation of

logical not in . 67
expression, order of evaluation 68
expressions . 67
expressions, and space characters 68
extra post-vertical line space (\x) 135
extra post-vertical line space

register (.a) . 96
extra pre-vertical line space (\x) 135
extra spaces . 58
extremum operators (>?, <?) 68

F
f unit . 66
f unit, and colors . 177
factor, zoom, of a font (fzoom) 116
fallback character, defining (fchar,
fschar, schar) . 125

fallback glyph, removing definition
(rchar, rfschar) 126

fam request, and changing fonts 115
fam request, and font positions 119
families, font . 116
features, common . 19
fi request, causing implicit linebreak . . 83
field delimiting character (fc) 101
field padding character (fc) 101
fields . 101
fields, and tabs . 97
figures [ms] . 43
file formats . 209
file names, breaking (\:) 89
file, appending to (opena) 182
file, closing (close) 182
file, inclusion (so) . 179
file, opening (open) 182
file, processing next (nx) 180
file, writing to (write, writec) 182
files, font . 222
files, macro, searching 13
fill color name register (.M) 178
fill colors, unnamed (\D’F...’) 162
fill mode . 86, 191
fill mode (fi) . 83
fill mode, and \c . 110
filling . 55
filling and adjusting, manipulating 83
final newline, stripping in diversions . . 140
fl request, causing implicit linebreak . . 83
floating keep . 20
flush output (fl) . 190
font description file, format 222, 225
font directories . 14
font families . 116
font family, changing (fam, \F) 116
font file, format . 225
font files . 222
font files, comments 225
font for underlining (uf) 129
font height, changing (\H) 128
font path . 14
font position register (.f) 118
font position, changing (\f) 119
font positions . 118

K: Concept Index 271

font slant, changing (\S) 128
font style, changing (sty) 117
font styles . 116
font translation (ftr) 115
font, magnification (fzoom) 116
font, mounting (fp) 118
font, optical size . 116
font, previous (ft, \f[], \fP) 115
font, zoom factor (fzoom) 116
fonts . 114
fonts, artificial . 128
fonts, changing (ft, \f) 115
fonts, PostScript . 116
fonts, searching . 14
fonts, special . 127
footers . 111, 164
footers [ms] . 45
footnotes . 20
footnotes [ms] . 44
footnotes, and displays [ms] 45
footnotes, and keeps [ms] 45
form letters . 180
format of font description file 222
format of font description files 225
format of font files . 225
format of register (\g) 81
formats, assigning (af) 80
formats, file . 209
fp request, and font translations 115
fp request, incompatibilities

with AT&T troff 196
fractional point sizes 136, 195
fractional type sizes 136, 195
French spacing . 56
fspecial request, and font styles 117
fspecial request, and font

translations . 115
fspecial request, and glyph

search order . 119
fspecial request, and

imitating bold . 130
ft request, and font translations 115

G
gchem, invoking . 199
gchem, the program 199
geqn, invoking . 199
geqn, the program . 199
GGL (groff glyph list) 121, 127
ggrn, invoking . 199
ggrn, the program . 199

glossary-style list, example
markup [ms] . 39

glyph . 119
glyph for line drawing 159
glyph names, composite 121
glyph pile (\b) . 163
glyph properties (cflags) 123
glyph, box rule (\[br]) 159
glyph, constant space 130
glyph, defining (char) 125
glyph, for line drawing 159
glyph, for margins (mc) 185
glyph, italic correction (\/) 131
glyph, last, dimensions (.w,
.cht, .cdp, .csk) 176

glyph, leader repetition (lc) 100
glyph, left italic correction (\,) 131
glyph, numbered (\N) 104, 123
glyph, removing definition

(rchar, rfschar) 126
glyph, soft hyphen (hy) 89
glyph, tab repetition (tc) 99
glyph, underscore (\[ru]) 159
glyphs, available, list

(groff char(7) man page) 120
glyphs, output, and input characters,

compatibility with AT&T troff 196
glyphs, overstriking (\o) 158
glyphs, unnamed . 123
glyphs, unnamed, accessing with \N . . . 225
GNU-specific register (.g) 83
gpic, invoking . 199
gpic, the program . 199
grap, the program . 199
gray shading (‘\D’f ...’’) 161
grefer, invoking . 199
grefer, the program 199
grn, the program . 199
grodvi, invoking . 204
grodvi, the program 204
groff capabilities . 3
groff glyph list (GGL) 121, 127
groff invocation . 7
groff, and pi request 181
groff—what is it? . 1
GROFF_BIN_PATH,

environment variable 12
GROFF_COMMAND_PREFIX,

environment variable 12
GROFF_ENCODING,

environment variable 12

272 The GNU Troff Manual

GROFF_FONT_PATH,
environment variable 12, 14

GROFF_TMAC_PATH,
environment variable 13

GROFF_TMPDIR, environment variable . . . 13
GROFF_TYPESETTER,

environment variable 13
grohtml, invoking . 206
grohtml, registers and strings 207
grohtml, the program 11, 206
grolbp, invoking . 205
grolbp, the program 205
grolj4, invoking . 205
grolj4, the program 205
gropdf, invoking . 203
gropdf, the program 203
grops, invoking . 202
grops, the program 202
grotty, invoking . 201
grotty, the program 201
gsoelim, invoking . 199
gsoelim, the program 199
gtbl, invoking . 199
gtbl, the program . 199
gtroff, identification register (.g) 83
gtroff, interactive use 190
gtroff, output . 209
gtroff, process ID register ($$) 83
gtroff, reference . 55
gxditview, invoking 208
gxditview, the program 208

H
hcode request, and glyph definitions . . 125
headers . 111, 164
headers [ms] . 45
height, font, changing (\H) 128
height, of last glyph (.cht) 176
high-water mark register (.h) 171
history . 1
home directory . 13
horizontal discardable space 86
horizontal input line position

register (hp) . 158
horizontal input line

position, saving (\k) 158
horizontal line, drawing (\l) 159
horizontal motion (\h) 156
horizontal output line position

register (.k) . 158
horizontal resolution 222

horizontal resolution register (.H) 81
horizontal space (\h) 156
horizontal space, unformatting 140
horizontal tab character 59
hours, current time (hours) 82
hpf request, and

hyphenation language 94
hw request, and hy restrictions 88
hw request, and

hyphenation language 94
hy glyph, and cflags 124
hyphen, explicit (\%) 94
hyphenated lines, consecutive (hlm) 94
hyphenating characters 124
hyphenation . 57
hyphenation character (\%) 89
hyphenation code (hcode) 93
hyphenation consecutive line count

register (.hlc) . 94
hyphenation consecutive line limit

register (.hlm) . 94
hyphenation exceptions 88
hyphenation language register (.hla) . . 94
hyphenation margin (hym) 94
hyphenation margin register (.hym) 94
hyphenation mode register (.hy) 92
hyphenation pattern files 91
hyphenation patterns (hpf) 92
hyphenation space (hys) 94
hyphenation space

adjustment threshold 94
hyphenation space adjustment

threshold register (.hys) 95
hyphenation, automatic 90
hyphenation, disabling (\%) 89
hyphenation, incompatibilities

with AT&T troff 193
hyphenation, manipulating 88

I
i unit . 66
i/o . 178
IBM code page 1047 input encoding . . . 62
IBM code page 1047 output encoding . . 11
identifiers . 69
identifiers, undefined 70
ie request, and font translations 115
ie request, and warnings 191
ie request, operators to use with 143
if request, and font translations 115
if request, and the ‘!’ operator 67

K: Concept Index 273

if request, operators to use with 143
if-else . 146
if-then . 145
ig request, and auto-increment 76
ig request, and copy mode 76
imitating boldface (bd) 129
implementation differences 193
implicit line break . 58
in request, causing implicit linebreak . . 83
in request, using + and - 68
inch unit (i) . 66
including a file (so) 179
incompatibilities with AT&T troff . . . 193
increment value without

changing the register 80
increment, automatic 79
indentation (in) . 107
index, in macro package 21
indicator, scaling . 66
indirect assignments 79
input and output requests 178
input break, non-printing (\&) 71
input break, non-printing (\&),

effect on \l escape 159
input break, non-printing (\&),

effect on kerning 131
input characters and output glyphs,

compatibility with AT&T troff 196
input characters, invalid 69
input conventions . 63
input encoding, code page 1047 62
input encoding, EBCDIC 62
input encoding, Latin-1 (ISO 8859-1) . . 62
input encoding, Latin-2 (ISO 8859-2) . . 62
input encoding, Latin-5 (ISO 8859-9) . . 62
input encoding, Latin-9

(ISO 8859-15) . 63
input file name, current, register (.F) . . 81
input level in delimited arguments 195
input line continuation (\RET) 110
input line number register (.c, c.) 82
input line number, setting (lf) 188
input line position,

horizontal, saving (\k) 158
input line trap, setting (it) 167
input line traps . 167
input line traps and

interrupted lines (itc) 167
input line, horizontal position,

register (hp) . 158
input stack, backtrace (backtrace) . . . 190
input stack, setting limit 190

input token . 186
input, 8-bit . 225
input, standard, reading from (rd) 180
inserting horizontal space (\h) 156
installation . 229
inter-sentence spacing, additional 86
inter-word spacing, minimal 86
interactive use of gtroff 190
intermediate output 209
interpolating registers (\n) 79
interpolation . 60
interpolation of strings (*) 137
interpretation mode 152
interrupted line . 110
interrupted line register (.int) 111
interrupted lines and input

line traps (itc) . 167
introduction . 1
invalid characters for trf request 180
invalid input characters 69
invocation examples 15
invoking gchem . 199
invoking geqn . 199
invoking ggrn . 199
invoking gpic . 199
invoking grefer . 199
invoking grodvi . 204
invoking groff . 7
invoking grohtml . 206
invoking grolbp . 205
invoking grolj4 . 205
invoking gropdf . 203
invoking grops . 202
invoking grotty . 201
invoking gsoelim . 199
invoking gtbl . 199
invoking gxditview 208
invoking preconv . 200
ISO 6429 SGR . 201
ISO 8859-1 (Latin-1), input encoding . . 62
ISO 8859-1 (Latin-1),

output encoding . 11
ISO 8859-15 (Latin-9),

input encoding . 63
ISO 8859-2 (Latin-2), input encoding . . 62
ISO 8859-9 (Latin-5), input encoding . . 62
ISO 646, output encoding 11
italic correction (\/) 131
italic glyph, correction after

roman glyph (\,) 131
italic glyph, correction before

roman glyph (\/) 131

274 The GNU Troff Manual

J
justifying text . 83
justifying text (rj) . 88

K
keep . 20
keep, floating . 20
keeps [ms] . 42
keeps, and footnotes [ms] 45
kerning and ligatures 130
kerning enabled register (.kern) 131
kerning, activating (kern) 131
kerning, track . 131

L
landscape page orientation 14
last glyph, dimensions (.w,
.cht, .cdp, .csk) 176

last-requested point size
registers (.psr, .sr) 136

Latin-1 (ISO 8859-1), input encoding . . 62
Latin-1 (ISO 8859-1),

output encoding . 11
Latin-2 (ISO 8859-2), input encoding . . 62
Latin-5 (ISO 8859-9), input encoding . . 62
Latin-9 (ISO 8859-15),

input encoding . 63
layout, line . 107
layout, page . 111
lc request, and glyph definitions 125
leader character . 100
leader character, and translations 104
leader character,

non-interpreted (\a) 100
leader repetition character (lc) 100
leaders . 100
leading . 133
leading spaces . 58
leading spaces macro (lsm) 58, 167
leading spaces traps 167
leading spaces with ds 138
left italic correction (\,) 131
left margin (po) . 107
length of a string (length) 141
length of line (ll) . 107
length of page (pl) 111
length of previous line (.n) 176
length of title line (lt) 112
length request, and copy mode 141

letters, form . 180
level of warnings (warn) 191
ligature . 119
ligatures and kerning 130
ligatures enabled register (.lg) 130
ligatures, activating (lg) 130
limitations of \b escape 163
line break . 17, 83
line break (br) . 19
line break, output . 58
line control . 109
line dimensions . 107
line drawing glyph . 159
line indentation (in) 107
line layout . 107
line length (ll) . 107
line length register (.l) 109
line length, previous (.n) 176
line number, input, register (.c, c.) 82
line number, output, register (ln) 82
line numbers, printing (nm) 184
line space, extra post-vertical (\x) 135
line space, extra pre-vertical (\x) 135
line spacing register (.L) 96
line spacing, post-vertical (pvs) 135
line thickness (‘\D’t ...’’) 162
line, blank . 58
line, drawing (‘\D’l ...’’) 160
line, empty (sp) . 18
line, horizontal, drawing (\l) 159
line, input, continuation (\RET) 110
line, input, horizontal

position, register (hp) 158
line, input, horizontal

position, saving (\k) 158
line, interrupted . 110
line, output, continuation (\c) 110
line, output, horizontal

position, register (.k) 158
line, vertical, drawing (\L) 159
line-tabs mode . 100
lines, blank, disabling 97
lines, centering (ce) 18, 87
lines, consecutive hyphenated (hlm) 94
lines, interrupted, and input

line traps (itc) . 167
list . 20
list of available glyphs

(groff char(7) man page) 120
ll request, using + and - 68
location, vertical, page,

marking (mk) . 154

K: Concept Index 275

location, vertical, page, returning
to marked (rt) . 154

logical not, limitation in expression 67
logical operators . 67
long names . 193
loops and conditionals 143
lowercasing a string (stringdown) 142
ls request, alternative to (pvs) 135
lt request, using + and - 68

M
m unit . 66
M unit . 66
machine unit (u) . 66
macro . 60
macro arguments . 72
macro arguments, and

compatibility mode 188
macro arguments, and tabs 72
macro basics . 17
macro directories . 13
macro files, searching 13
macro name register (\$0) 153
macro names, starting with [or
], and refer . 69

macro package . 60
macro packages . 4, 23
macro packages, structuring

the source code . 71
macro, appending (am) 151
macro, arguments (\$) 152
macro, creating alias (als) 142
macro, end-of-input (em) 168
macro, removing (rm) 142
macro, removing alias (rm) 143
macro, renaming (rn) 142
macros . 73
macros, recursive . 148
macros, searching . 13
macros, shared name space with

strings and diversions 139
macros, tutorial for users 17
macros, writing . 148
magnification of a font (fzoom) 116
major quotes . 20
major version number register (.x) 82
man macros, custom headers

and footers . 23
man macros, Ultrix-specific 23
man pages . 23
manipulating filling and adjusting 83

manipulating hyphenation 88
manipulating spacing 95
manual pages . 23
margin for hyphenation (hym) 94
margin glyph (mc) . 185
margin, bottom . 111
margin, left (po) . 107
margin, top . 111
mark, high-water, register (.h) 171
marking vertical page location (mk) . . . 154
MathML . 207
maximum values of Roman numerals . . . 81
mdoc macros . 25
me macro package . 25
measurement unit . 66
measurements . 66
measurements, specifying safely 67
minimal inter-word spacing 86
minimum values of Roman numerals . . . 81
minor version number register (.y) 83
minutes, current time (minutes) 82
mm macro package . 26
mode for constant glyph space (cs) . . . 130
mode, compatibility 193
mode, compatibility, and

parameters . 188
mode, copy . 151
mode, copy, and \! 173
mode, copy, and \? 144, 173
mode, copy, and \a 100
mode, copy, and \E 103
mode, copy, and \t . 97
mode, copy, and \V 183
mode, copy, and cf request 179
mode, copy, and device request 183
mode, copy, and ig request 76
mode, copy, and length request 141
mode, copy, and macro arguments 152
mode, copy, and output request 173
mode, copy, and tm request 189
mode, copy, and tm1 request 189
mode, copy, and tmc request 189
mode, copy, and trf request 179
mode, copy, and write request 182
mode, copy, and writec request 182
mode, copy, and writem request 182
mode, fill . 86, 191
mode, fill (fi) . 83
mode, fill, and \c . 110
mode, interpretation 152
mode, line-tabs . 100
mode, no-fill (nf) . 84

276 The GNU Troff Manual

mode, no-fill, and \c 110
mode, no-space (ns) 97
mode, nroff . 106
mode, safer 10, 13, 81, 179, 181, 182
mode, troff . 106
mode, unsafe 11, 13, 81, 179, 181, 182
modifying requests . 72
mom macro package . 26
month of the year register (mo) 82
motion operators . 68
motion, horizontal (\h) 156
motion, vertical (\v) 156
motions, page . 154
mounting font (fp) 118
ms macros . 26
ms macros, accent marks 48
ms macros, body text 34
ms macros, cover page 32
ms macros, creating table of contents . . . 46
ms macros, differences from AT&T 50
ms macros, displays . 42
ms macros, document control settings . . 28
ms macros, equations 43
ms macros, figures . 43
ms macros, footers . 45
ms macros, footnotes 44
ms macros, general structure 27
ms macros, headers . 45
ms macros, headings 36
ms macros, highlighting 37
ms macros, keeps . 42
ms macros, lists . 38
ms macros, margins . 46
ms macros, multiple columns 46
ms macros, naming conventions 52
ms macros, nested lists 40
ms macros, page layout 45
ms macros, paragraph handling 34
ms macros, references 43
ms macros, special characters 48
ms macros, strings . 48
ms macros, tables . 43
multi-file documents 188
multi-line strings . 138
multi-page table, example

markup [ms] . 44
multiple columns [ms] 46

N
n unit . 66
name space, common, of macros,

diversions, and strings 139
name, background color,

register (.M) . 178
name, drawing color, register (.m) 178
name, fill color, register (.M) 178
named character (\C) 122
names, long . 193
naming conventions, ms macros 52
ne request, and the .trunc register . . . 166
ne request, comparison with sv 113
negating register values 78
nested assignments . 79
nested diversions . 171
nested lists [ms] . 40
new page (bp) . 18, 113
newline character 69, 74
newline character, and translations . . . 104
newline character, in

strings, escaping 138
newline, final, stripping

in diversions . 140
next file, processing (nx) 180
next free font position register (.fp) . . 118
nf request, causing implicit linebreak . . 83
nl register, and .d 171
nl register, difference to .h 171
nm request, using + and - 68
no-break control character 59
no-break control character (’) 71
no-break control character,

changing (c2) . 101
no-fill mode (nf) . 84
no-fill mode, and \c 110
no-space mode (ns) . 97
node, output . 186
non-printing break point (\:) 89
non-printing input break (\&) 71
non-printing input break (\&),

effect on \l escape 159
non-printing input break (\&),

effect on kerning 131
nr request, and warnings 192
nr request, using + and - 68
nroff mode . 106
nroff, the program . 2
number of arguments register (.$) 152
number of registers register (.R) 81
number register, creating alias (aln) . . . 78
number register, removing (rr) 78

K: Concept Index 277

number register, removing alias (aln) . . 78
number register, renaming (rnn) 78
number registers, dumping (pnr) 189
number, input line, setting (lf) 188
number, page (pn) . 112
numbered glyph (\N) 104, 123
numbered list, example markup [ms] . . . 39
numbers, and delimiters 74
numbers, line, printing (nm) 184
numerals, Roman . 80
numeric expression, valid 68

O
object creation . 151
offset, page (po) . 107
open request, and safer mode 10
opena request, and safer mode 10
opening brace escape (\}) 146
opening file (open) 182
operator, scaling . 68
operators, arithmetic 67
operators, as delimiters 74
operators, comparison 67
operators, extremum (>?, <?) 68
operators, logical . 67
operators, motion . 68
operators, unary . 67
optical size of a font 116
options . 7
order of evaluation in expressions 68
orientation, landscape 14
orphan lines, preventing with ne 113
os request, and no-space mode 113
output and input requests 178
output device name string

register (.T) . 11, 137
output device usage number

register (.T) . 11
output devices . 5, 201
output encoding, ASCII 11
output encoding, code page 1047 11
output encoding, EBCDIC 11
output encoding, ISO 646 11
output encoding, Latin-1

(ISO 8859-1) . 11
output encoding, UTF-8 11
output glyphs, and input

characters,compatibility with AT&T

troff . 196
output line break . 58
output line number register (ln) 82

output line, continuation (\c) 110
output line, horizontal

position, register (.k) 158
output node . 186
output request, and \! 173
output request, and copy mode 173
output, flush (fl) . 190
output, gtroff . 209
output, intermediate 209
output, suppressing (\O) 176
output, transparent (\!, \?) 172
output, transparent (cf, trf) 179
output, transparent, incompatibilities

with AT&T troff 196
output, troff . 209
overlapping characters 124
overstriking glyphs (\o) 158

P
p unit . 66
P unit . 66
package (macro) . 60
packages, macros . 23
padding character, for fields (fc) 101
page break, conditional (ne) 113
page control . 112
page ejecting register (.pe) 166
page footers . 164
page headers . 164
page layout . 111
page layout [ms] . 45
page length (pl) . 111
page length register (.p) 111
page location traps 163
page location, vertical, marking (mk) . . 154
page location, vertical, returning

to marked (rt) . 154
page motions . 154
page number (pn) . 112
page number character (%) 111
page number character,

changing (pc) . 112
page number register (%) 113
page offset (po) . 107
page orientation, landscape 14
page, new (bp) . 113
paper formats . 21
paper size . 14
paragraphs . 19
parameters . 152
parameters, and compatibility mode . . 188

278 The GNU Troff Manual

parentheses . 68
path, for font files . 14
path, for tmac files . 13
pattern files, for hyphenation 91
patterns for hyphenation (hpf) 92
PDF, embedding . 204
pi request, and groff 181
pi request, and safer mode 10
pic, the program . 199
pica unit (P) . 66
pile, glyph (\b) . 163
pl request, using + and - 68
planting a trap . 163
platform-specific directory 13
pm request, incompatibilities

with AT&T troff 196
pn request, using + and - 68
PNG image generation

from PostScript . 223
po request, using + and - 68
point size registers (.s, .ps) 134
point size registers,

last-requested (.psr, .sr) 136
point sizes, changing (ps, \s) 133
point sizes, fractional 136, 195
point unit (p) . 66
polygon, drawing (‘\D’p ...’’) 161
polygon, solid, drawing

(‘\D’P ...’’) . 161
position of lowest text line (.h) 171
position, absolute, operator (|) 68
position, horizontal input

line, saving (\k) . 158
position, horizontal, in input

line, register (hp) 158
position, horizontal, in output

line, register (.k) 158
position, vertical, current (nl) 114
position, vertical, in diversion,

register (.d) . 171
positions, font . 118
post-vertical line spacing 135
post-vertical line spacing

register (.pvs) . 135
post-vertical line spacing,

changing (pvs) . 135
postprocessor access 183
postprocessors . 5
PostScript fonts . 116
PostScript, bounding box 186
PostScript, embedding 203
PostScript, PNG image generation 223

preconv, invoking . 200
preconv, the program 200
prefix, for commands 12
preprocessors . 4, 199
previous font (ft, \f[], \fP) 115
previous line length (.n) 176
print current page register (.P) 10
printing backslash (\\, \e,
\E, \[rs]) . 75, 196

printing line numbers (nm) 184
printing to stderr (tm, tm1, tmc) 189
printing, zero-width (\z, \Z) 158
process ID of gtroff register ($$) 83
processing next file (nx) 180
properties of characters (cflags) 123
properties of glyphs (cflags) 123
ps request, and constant

glyph space mode 130
ps request, incompatibilities

with AT&T troff 195
ps request, using + and - 68
ps request, with

fractional type sizes 136
pso request, and safer mode 10
pvs request, using + and - 68

Q
quotes, major . 20

R
radicalex glyph, and cflags 124
ragged-left . 84
ragged-right . 84
rc request, and glyph definitions 125
read-only register, changing format 81
reading from standard input (rd) 180
recursive macros . 148
refer, and macro names

starting with [or] 69
refer, the program 199
reference, gtroff . 55
references [ms] . 43
register, creating alias (aln) 78
register, format (\g) 81
register, removing (rr) 78
register, removing alias (aln) 78
register, renaming (rnn) 78
registers . 76
registers specific to grohtml 207
registers, built-in . 81

K: Concept Index 279

registers, interpolating (\n) 79
registers, number of, register (.R) 81
registers, setting (nr, \R) 76
removing alias, for diversion (rm) 143
removing alias, for macro (rm) 143
removing alias, for number

register (aln) . 78
removing alias, for string (rm) 143
removing diversion (rm) 142
removing glyph definition

(rchar, rfschar) 126
removing macro (rm) 142
removing number register (rr) 78
removing request (rm) 142
removing string (rm) 142
renaming diversion (rn) 142
renaming macro (rn) 142
renaming number register (rnn) 78
renaming request (rn) 142
renaming string (rn) 142
request . 59
request arguments . 72
request arguments, and

compatibility mode 188
request, removing (rm) 142
request, renaming (rn) 142
request, undefined . 75
requests . 71
requests for drawing 159
requests for input and output 178
requests, modifying . 72
resolution, device . 224
resolution, horizontal 222
resolution, horizontal, register (.H) 81
resolution, vertical . 224
resolution, vertical, register (.V) 82
returning to marked vertical

page location (rt) 154
revision number register (.Y) 83
rf, the program . 1
right-justifying (rj) . 88
rj request, causing implicit linebreak . . 83
rn glyph, and cflags 124
roff, the program . 2
roman glyph, correction after

italic glyph (\/) . 131
roman glyph, correction before

italic glyph (\,) . 131
Roman numerals . 80
Roman numerals, maximum

and minimum . 81
rq glyph, at end of sentence 57, 124

rt request, using + and - 68
ru glyph, and cflags 124
RUNOFF, the program . 1

S
s unit . 66, 136
safer mode 10, 13, 81, 179, 181, 182
saving horizontal input line

position (\k) . 158
scaling indicator . 66
scaling operator . 68
searching fonts . 14
searching macro files 13
searching macros . 13
seconds, current time (seconds) 82
sentence space . 56
sentence space size register (.sss) 86
sentences . 56
setting diversion trap (dt) 166
setting end-of-input trap (em) 168
setting input line number (lf) 188
setting input line trap (it) 167
setting registers (nr, \R) 76
shading filled objects (‘\D’f ...’’) . . . 161
shc request, and translations 104
site-specific directory 13, 14
size of sentence space register (.sss) . . . 86
size of type . 133
size of word space register (.ss) 86
size, optical, of a font 116
size, paper . 14
sizes . 133
sizes, fractional 136, 195
skew, of last glyph (.csk) 176
slant, font, changing (\S) 128
soelim, the program 199
soft hyphen character, setting (shc) 89
soft hyphen glyph (hy) 89
solid circle, drawing (‘\D’C ...’’) 160
solid ellipse, drawing (‘\D’E ...’’) 161
solid polygon, drawing (‘\D’P ...’’) . . 161
SOURCE_DATE_EPOCH,

environment variable 13
sp request, and no-space mode 97
sp request, and traps 96
sp request, causing implicit linebreak . . 83
space between sentences 56
space between sentences

register (.sss) . 86
space between words register (.ss) 86
space character . 74

280 The GNU Troff Manual

space character, zero-width (sic) (\&) . . 71
space characters, in expressions 68
space, between sentences 86
space, between words 86
space, discardable, horizontal 86
space, discarded, in traps 96
space, horizontal (\h) 156
space, horizontal, unformatting 140
space, unbreakable 156
space, vertical, unit (v) 66
space, width of a digit (\0) 157
spaces with ds . 138
spaces, in a macro argument 72
spaces, leading and trailing 58
spacing . 18
spacing, manipulating 95
spacing, vertical . 133
special characters 57, 104, 201
special characters [ms] 48
special fonts 119, 127, 225
special fonts, emboldening 130
special request, and font

translations . 115
special request, and glyph

search order . 119
spline, drawing (‘\D’~ ...’’) 161
springing a trap . 163
sqrtex glyph, and cflags 124
ss request, incompatibilities

with AT&T troff 196
stacking glyphs (\b) 163
standard input, reading from (rd) 180
stderr, printing to (tm, tm1, tmc) 189
stops, tab . 59
string arguments . 137
string comparison . 144
string expansion (*) 137
string interpolation (*) 137
string, appending (as) 141
string, creating alias (als) 142
string, length of (length) 141
string, removing (rm) 142
string, removing alias (rm) 143
string, renaming (rn) 142
strings . 137
strings [ms] . 48
strings specific to grohtml 207
strings, multi-line . 138
strings, shared name space with

macros and diversions 139
stripping final newline in diversions . . . 140

structuring source code of documents
or macro packages 71

sty request, and changing fonts 115
sty request, and font positions 119
sty request, and font translations 115
styles, font . 116
substring (substring) 141
suppressing output (\O) 176
sv request, and no-space mode 113
switching environments (ev) 175
sy request, and safer mode 10
symbol . 119
symbol table, dumping (pm) 189
symbol, defining (char) 125
symbols, using . 119
system() return value

register (systat) 182

T
tab character . 59, 74
tab character, and translations 104
tab character, non-interpreted (\t) 97
tab repetition character (tc) 99
tab settings register (.tabs) 99
tab stops . 59
tab stops, for TTY output devices 99
tab, line-tabs mode 100
table of contents 21, 101
table of contents, creating [ms] 46
tables [ms] . 43
tabs, and fields . 97
tabs, and macro arguments 72
tabs, before comments 75
tbl, the program . 199
Teletype . 201
terminal control sequences 201
terminal, conditional output for 144
TEX Device-Independent

(DVI) format . 3
text line, position of lowest (.h) 171
text, GNU troff processing 55
text, justifying . 83
text, justifying (rj) . 88
thickness of lines (‘\D’t ...’’) 162
three-part title (tl) 111
ti request, causing implicit linebreak . . 83
ti request, using + and - 68
time, current . 181
time, current, hours (hours) 82
time, current, minutes (minutes) 82
time, current, seconds (seconds) 82

K: Concept Index 281

title line (tl) . 111
title line length register (.lt) 112
title line, length (lt) 112
title page, example markup 33
titles . 111
tkf request, and font styles 117
tkf request, and font translations 115
tkf request, with

fractional type sizes 136
tl request, and mc . 185
tm request, and copy mode 189
tm1 request, and copy mode 189
tmac, directory . 13
tmac, path . 13
tmc request, and copy mode 189
TMPDIR, environment variable 13
token, input . 186
top margin . 111
top-level diversion . 170
top-level diversion, and \! 173
top-level diversion, and \? 173
top-level diversion, and bp 113
tr request, and glyph definitions 125
tr request, and soft hyphen character . . 89
tr request, incompatibilities

with AT&T troff 196
track kerning . 131
track kerning, activating (tkf) 131
trailing double quotes in strings 138
trailing spaces . 58
translations of characters 101
transparent characters 124
transparent output (\!, \?) 172
transparent output (cf, trf) 179
transparent output, incompatibilities

with AT&T troff 196
trap, changing location (ch) 165
trap, distance, register (.t) 165
trap, diversion, setting (dt) 166
trap, end-of-input, setting (em) 168
trap, input line, setting (it) 167
trap, planting . 163
trap, springing . 163
traps . 163
traps, and discarded space 96
traps, and diversions 166
traps, blank line . 167
traps, diversion . 166
traps, dumping (ptr) 189
traps, end-of-input 168
traps, input line . 167

traps, input line, and
interrupted lines (itc) 167

traps, leading spaces 167
traps, page location 163
traps, sprung by bp request (.pe) 166
trf request, and copy mode 179
trf request, and invalid characters 180
trf request, causing

implicit linebreak . 83
trin request, and asciify 173
troff mode . 106
troff output . 209
truncated vertical space

register (.trunc) 166
TTY, conditional output for 144
tutorial for macro users 17
type size . 133
type size registers (.s, .ps) 134
type sizes, changing (ps, \s) 133
type sizes, fractional 136, 195

U
u unit . 66
uf request, and font styles 117
ul glyph, and cflags 124
ul request, and font translations 115
Ultrix-specific man macros 23
unary operators . 67
unbreakable space . 156
undefined identifiers 70
undefined request . 75
underline font (uf) 129
underlining (ul) . 129
underlining, continuous (cu) 129
underscore glyph (\[ru]) 159
unformatting diversions (asciify) 173
unformatting horizontal space 140
Unicode . 69, 123
unit, c . 66
unit, f . 66
unit, f, and colors . 177
unit, i . 66
unit, m . 66
unit, M . 66
unit, n . 66
unit, p . 66
unit, P . 66
unit, s . 66, 136
unit, u . 66
unit, v . 66
unit, z . 66, 136

282 The GNU Troff Manual

units of measurement 66
units, default . 67
unnamed fill colors (\D’F...’) 162
unnamed glyphs . 123
unnamed glyphs, accessing with \N . . . 225
unsafe mode 11, 13, 81, 179, 181, 182
up-casing a string (stringup) 142
uppercasing a string (stringup) 142
URLs, breaking (\:) 89
user’s macro tutorial 17
user’s tutorial for macros 17
using symbols . 119
UTF-8, output encoding 11

V
v unit . 66
valid numeric expression 68
value, incrementing without

changing the register 80
variables in environment 12
version number, major, register (.x) . . . 82
version number, minor, register (.y) . . . 83
vertical line drawing (\L) 159
vertical line spacing register (.v) 135
vertical line spacing, changing (vs) . . . 135
vertical line spacing, effective value . . . 135
vertical motion (\v) 156
vertical page location, marking (mk) . . . 154
vertical page location, returning

to marked (rt) . 154
vertical position in diversion

register (.d) . 171
vertical position trap enable

register (.vpt) . 163
vertical position traps,

enabling (vpt) . 163
vertical position, current (nl) 114
vertical resolution . 224

vertical resolution register (.V) 82
vertical space unit (v) 66
vertical spacing . 133

W
warnings . 191
warnings, level (warn) 191
what is groff? . 1
while . 147
while request, and font translations . . 115
while request, and the ‘!’ operator 67
while request, confusing with br 148
while request, operators to use with . . 143
whitespace characters 69
width escape (\w) . 157
width, of last glyph (.w) 176
word space size register (.ss) 86
word, definition of . 55
write request, and copy mode 182
writec request, and copy mode 182
writem request, and copy mode 182
writing macros . 148
writing to file (write, writec) 182

X
X Window System (X11) 3

Y
year, current, register (year, yr) 82

Z
z unit . 66, 136
zero-width printing (\z, \Z) 158
zero-width space character (sic) (\&) . . . 71
zoom factor of a font (fzoom) 116

	1 Introduction
	What Is groff?
	History
	groff Capabilities
	Macro Packages
	Preprocessors
	Output Devices
	Credits

	2 Invoking groff
	Options
	Environment
	Macro Directories
	Font Directories
	Paper Size
	Invocation Examples
	grog

	3 Tutorial for Macro Users
	Basics
	Common Features
	Paragraphs
	Sections and Chapters
	Headers and Footers
	Page Layout
	Displays
	Footnotes and Annotations
	Table of Contents
	Indices
	Paper Formats
	Multiple Columns
	Font and Size Changes
	Predefined Strings
	Preprocessor Support
	Configuration and Customization

	4 Macro Packages
	man
	Optional man extensions
	Custom headers and footers
	Ultrix-specific man macros
	Simple example

	mdoc
	me
	mm
	mom
	ms
	Introduction to ms
	General structure of an ms document
	Document control settings
	Margin Settings
	Text Settings
	Paragraph Settings
	Footnote Settings
	Miscellaneous Registers

	Cover page macros
	Body text
	Paragraphs
	Headings
	Highlighting
	Lists
	Indentation values
	Tab Stops
	Displays and keeps
	Tables, figures, equations, and references
	An example multi-page table
	Footnotes

	Page layout
	Headers and footers
	Margins
	Multiple columns
	Creating a table of contents
	Strings and Special Characters

	Differences from AT&T ms
	troff macros not appearing in groff
	groff macros not appearing in AT&T troff

	ms Naming Conventions

	5 gtroff Reference
	Text
	Filling
	Sentences
	Hyphenation
	Breaking
	Adjustment
	Tab Stops
	Requests and Macros
	Input Encodings
	Input Conventions

	Measurements
	Default Units

	Expressions
	Identifiers
	Embedded Commands
	Requests
	Request and Macro Arguments

	Macros
	Escapes
	Comments

	Registers
	Setting Registers
	Interpolating Registers
	Auto-increment
	Assigning Formats
	Built-in Registers

	Manipulating Filling and Adjustment
	Manipulating Hyphenation
	Manipulating Spacing
	Tabs and Fields
	Leaders
	Fields

	Character Translations
	Troff and Nroff Mode
	Line Layout
	Line Control
	Page Layout
	Page Control
	Fonts and Symbols
	Changing Fonts
	Font Families
	Font Positions
	Using Symbols
	Character Classes
	Special Fonts
	Artificial Fonts
	Ligatures and Kerning

	Sizes
	Changing Type Sizes
	Fractional Type Sizes

	Strings
	Conditionals and Loops
	Operators in Conditionals
	if-then
	if-else
	Conditional Blocks
	while

	Writing Macros
	Copy Mode
	Parameters

	Page Motions
	Drawing Requests
	Traps
	Page Location Traps
	Diversion Traps
	Input Line Traps
	Blank Line Traps
	Leading Spaces Traps
	End-of-input Traps

	Diversions
	Environments
	Suppressing output
	Colors
	I/O
	Postprocessor Access
	Miscellaneous
	gtroff Internals
	Debugging
	Warnings

	Implementation Differences

	6 Preprocessors
	geqn
	Invoking geqn

	gtbl
	Invoking gtbl

	gpic
	Invoking gpic

	ggrn
	Invoking ggrn

	grap
	gchem
	Invoking gchem

	grefer
	Invoking grefer

	gsoelim
	Invoking gsoelim

	preconv
	Invoking preconv

	7 Output Devices
	Special Characters
	grotty
	Invoking grotty

	grops
	Invoking grops
	Embedding PostScript

	gropdf
	Invoking gropdf
	Embedding PDF

	grodvi
	Invoking grodvi

	grolj4
	Invoking grolj4

	grolbp
	Invoking grolbp

	grohtml
	Invoking grohtml
	grohtml specific registers and strings

	gxditview
	Invoking gxditview

	8 File formats
	gtroff Output
	Language Concepts
	Separation
	Argument Units
	Document Parts

	Command Reference
	Comment Command
	Simple Commands
	Graphics Commands
	Device Control Commands
	Obsolete Command

	Intermediate Output Examples
	Output Language Compatibility

	Device and Font Files
	DESC File Format
	Font File Format

	9 Installation
	A Copying This Manual
	B Request Index
	C Escape Index
	D Operator Index
	E Register Index
	F Macro Index
	G String Index
	H Glyph Name Index
	I Font File Keyword Index
	J Program and File Index
	K Concept Index

