
apropos(1) General Commands Manual apropos(1)

NAME
apropos, whatis — search manual page databases

SYNOPSIS
apropos [-afk] [-C file] [-M path] [-m path] [-O outkey] [-S arch] [-s section]

expression . . .

DESCRIPTION
The apropos and whatis utilities query manual page databases generated by makewhatis(8), evaluating
expression for each file in each database. By default, they display the names, section numbers, and de-
scription lines of all matching manuals.

By default, apropos searches for makewhatis(8) databases in the default paths stipulated by man(1) and
uses case-insensitive extended regular expression matching over manual names and descriptions (the Nm
and Nd macro keys). Multiple terms imply pairwise -o.

whatis is a synonym for apropos -f.

The options are as follows:

-a Instead of showing only the title lines, show the complete manual pages, just like man(1) -a
would. If the standard output is a terminal device and -c is not specified, use less(1) to paginate
them. In -a mode, the options -IKOTW described in the mandoc(1) manual are also available.

-C file
Specify an alternative configuration file in man.conf(5) format.

-f Search for all words in expression in manual page names only. The search is case-insensitive
and matches whole words only. In this mode, macro keys, comparison operators, and logical oper-
ators are not available.

-k Support the full expression syntax. It is the default for apropos.

-M path
Use the colon-separated path instead of the default list of paths searched for makewhatis(8) data-
bases. Invalid paths, or paths without manual databases, are ignored.

-m path
Prepend the colon-separated paths to the list of paths searched for makewhatis(8) databases. In-
valid paths, or paths without manual databases, are ignored.

-O outkey
Show the values associated with the key outkey instead of the manual descriptions.

-S arch
Restrict the search to pages for the specified machine(1) architecture. arch is case-insensitive.
By default, pages for all architectures are shown.

-s section
Restrict the search to the specified section of the manual. By default, pages from all sections are
shown. See man(1) for a listing of sections.

The options -chlw are also supported and are documented in man(1). The options -fkl are mutually
exclusive and override each other.

An expression consists of search terms joined by logical operators -a (and) and -o (or). The -a op-
erator has precedence over -o and both are evaluated left-to-right.

(expr)
True if the subexpression expr is true.

expr1 -a expr2
True if both expr1 and expr2 are true (logical ‘and’).

GNU October 1, 2020 1

apropos(1) General Commands Manual apropos(1)

expr1 [-o] expr2
True if expr1 and/or expr2 evaluate to true (logical ‘or’).

term True if term is satisfied. This has syntax [[key[,key . . .]](=|~)]val, where key is an
mdoc(7) macro to query and val is its value. See “Macro Keys” for a list of available keys. Oper-
ator = evaluates a substring, while ~ evaluates a case-sensitive extended regular expression.

-i term
If term is a regular expression, it is evaluated case-insensitively. Has no effect on substring
terms.

Results are sorted first according to the section number in ascending numerical order, then by the page
name in ascending ascii(7) alphabetical order, case-insensitive.

Each output line is formatted as

name[, name...](sec) - description

Where “name” is the manual’s name, “sec” is the manual section, and “description” is the manual’s short
description. If an architecture is specified for the manual, it is displayed as

name(sec/arch) - description

Resulting manuals may be accessed as

$ man -s sec name

If an architecture is specified in the output, use

$ man -s sec -S arch name

Macro Keys
Queries evaluate over a subset of mdoc(7) macros indexed by makewhatis(8). In addition to the macro keys
listed below, the special key any may be used to match any available macro key.

Names and description:
Nm manual name
Nd one-line manual description
arch machine architecture (case-insensitive)
sec manual section number

Sections and cross references:
Sh section header (excluding standard sections)
Ss subsection header
Xr cross reference to another manual page
Rs bibliographic reference

Semantic markup for command line utilities:
Fl command line options (flags)
Cm command modifier
Ar command argument
Ic internal or interactive command
Ev environmental variable
Pa file system path

Semantic markup for function libraries:
Lb function library name
In include file
Ft function return type
Fn function name
Fa function argument type and name

GNU October 1, 2020 2

apropos(1) General Commands Manual apropos(1)

Vt variable type
Va variable name
Dv defined variable or preprocessor constant
Er error constant
Ev environmental variable

Various semantic markup:
An author name
Lk hyperlink
Mt “mailto” hyperlink
Cd kernel configuration declaration
Ms mathematical symbol
Tn tradename

Physical markup:
Em italic font or underline
Sy boldface font
Li typewriter font

Text production:
St reference to a standards document
At AT&T UNIX version reference
Bx BSD version reference
Bsx BSD/OS version reference
Nx NetBSD version reference
Fx FreeBSD version reference
Ox OpenBSD version reference
Dx DragonFly version reference

In general, macro keys are supposed to yield complete results without expecting the user to consider actual
macro usage. For example, results include:

Fa function arguments appearing on Fn lines
Fn function names marked up with Fo macros
In include file names marked up with Fd macros
Vt types appearing as function return types and

types appearing in function arguments in the SYNOPSIS

ENVIRONMENT
MANPAGER Any non-empty value of the environment variable MANPAGER is used instead of the standard

pagination program, less(1); see man(1) for details. Only used if -a or -l is specified.

MANPATH A colon-separated list of directories to search for manual pages; see man(1) for details. Over-
ridden by -M, ignored if -l is specified.

PAGER Specifies the pagination program to use when MANPAGER is not defined. If neither PAGER
nor MANPAGER is defined, less(1) is used. Only used if -a or -l is specified.

FILES
mandoc.db name of the makewhatis(8) keyword database
/etc/man.conf default man(1) configuration file

EXIT STATUS
The apropos utility exits 0 on success, and >0 if an error occurs.

EXAMPLES
Search for ".cf" as a substring of manual names and descriptions:

$ apropos =.cf

GNU October 1, 2020 3

apropos(1) General Commands Manual apropos(1)

Include matches for ".cnf" and ".conf" as well:

$ apropos =.cf =.cnf =.conf

Search in names and descriptions using a case-sensitive regular expression:

$ apropos '~set.?[ug]id'

Search for all manual pages in a given section:

$ apropos -s 9 .

Search for manuals in the library section mentioning both the "optind" and the "optarg" variables:

$ apropos -s 3 Va=optind -a Va=optarg

Do exactly the same as calling whatis with the argument "ssh":

$ apropos -- -i 'Nm~[[:<:]]ssh[[:>:]]'

The following two invocations are equivalent:

$ apropos -S arch -s section expression

$ apropos \(expression \) -a arch~ˆ(arch|any)$ -a sec~ˆsection$

SEE ALSO
man(1), re_format(7), makewhatis(8)

STANDARDS
The apropos utility is compliant with the IEEE Std 1003.1-2008 (“POSIX.1”) specification of man(1)
-k.

All options, the whatis command, support for logical operators, macro keys, substring matching, sorting
of results, the environment variables MANPAGER and MANPATH, the database format, and the configuration
file are extensions to that specification.

HISTORY
Part of the functionality of whatis was already provided by the former manwhere utility in 1BSD. The
apropos and whatis utilities first appeared in 2BSD. They were rewritten from scratch for
OpenBSD 5.6.

The -M option and the MANPATH variable first appeared in 4.3BSD; -m in 4.3BSD-Reno; -C in 4.4BSD
Lite1; and -S and -s in OpenBSD 4.5 for apropos and in OpenBSD 5.6 for whatis. The options
-acfhIKklOTWw appeared in OpenBSD 5.7.

AUTHORS
Bill Joy wrote manwhere in 1977 and the original BSD apropos and whatis in February 1979. The
current version was written by Kristaps Dzonsons <kristaps@bsd.lv> and Ingo Schwarze
<schwarze@openbsd.org>.

GNU October 1, 2020 4

demandoc(1) General Commands Manual demandoc(1)

NAME
demandoc — emit only text of UNIX manuals

SYNOPSIS
demandoc [-w] [file . . .]

DESCRIPTION
The apropos utility emits only the text portions of well-formed mdoc(7) and man(7) Unix manual files.

By default, apropos parses standard input and outputs only text nodes, preserving line and column posi-
tion. Escape sequences are omitted from the output.

Its arguments are as follows:

-w Output a word list. This outputs each word of text on its own line. A "word", in this case, refers to
whitespace-delimited terms beginning with at least two letters and not consisting of any escape se-
quences. Words have their leading and trailing punctuation (double-quotes, sentence punctuation,
etc.) stripped.

file . . .
The input files.

If a document is not well-formed, it is skipped.

The -i, -k, -m, and -p flags are silently discarded for calling compatibility with the historical deroff.

EXIT STATUS
The apropos utility exits with one of the following values:

0 No errors occurred.
6 An operating system error occurred, for example memory exhaustion or an error accessing input

files. Such errors cause apropos to exit at once, possibly in the middle of parsing or formatting a
file. The output databases are corrupt and should be removed .

EXAMPLES
The traditional usage of apropos is for spell-checking manuals on BSD. This is accomplished as follows
(assuming British spelling):

$ demandoc -w file.1 | spell -b

SEE ALSO
mandoc(1), man(7), mdoc(7)

HISTORY
apropos replaces the historical deroff utility for handling modern man(7) and mdoc(7) documents.

AUTHORS
The apropos utility was written by Kristaps Dzonsons <kristaps@bsd.lv>.

GNU September 12, 2014 5

man(1) General Commands Manual man(1)

NAME
man — display manual pages

SYNOPSIS
man [-acfhklw] [-C file] [-M path] [-m path] [-S subsection] [[-s] section] name

. . .

DESCRIPTION
The apropos utility displays the manual page entitled name. Pages may be selected according to a spe-
cific category (section) or machine architecture (subsection).

The options are as follows:

-a Display all matching manual pages.

-C file
Use the specified file instead of the default configuration file. This permits users to configure
their own manual environment. See man.conf(5) for a description of the contents of this file.

-c Copy the manual page to the standard output instead of using less(1) to paginate it. This is done
by default if the standard output is not a terminal device.

When using -c, most terminal devices are unable to show the markup. To print the output of
apropos to the terminal with markup but without using a pager, pipe it to ul(1). To remove the
markup, pipe the output to col(1) -b instead.

-f A synonym for whatis(1). It searches for name in manual page names and displays the header
lines from all matching pages. The search is case insensitive and matches whole words only.

-h Display only the SYNOPSIS lines of the requested manual pages. Implies -a and -c.

-k A synonym for apropos(1). Instead of name, an expression can be provided using the syntax de-
scribed in the apropos(1) manual. By default, it displays the header lines of all matching pages.

-l A synonym for mandoc(1). The name arguments are interpreted as filenames. No search is done
and file, path, section, subsection, and -w are ignored. This option implies -a.

-M path
Override the list of directories to search for manual pages. The supplied path must be a colon
(‘:’) separated list of directories. This option also overrides the environment variable MANPATH
and any directories specified in the man.conf(5) file.

-m path
Augment the list of directories to search for manual pages. The supplied path must be a colon
(‘:’) separated list of directories. These directories will be searched before those specified using
the -M option, the MANPATH environment variable, the man.conf(5) file, or the default directories.

-S subsection
Only show pages for the specified machine(1) architecture. subsection is case insensitive.

By default manual pages for all architectures are installed. Therefore this option can be used to
view pages for one architecture whilst using another.

This option overrides the MACHINE environment variable.

[-s] section
Only select manuals from the specified section. The currently available sections are:

1 General commands (tools and utilities).
2 System calls and error numbers.
3 Library functions.

GNU July 20, 2020 6

man(1) General Commands Manual man(1)

3p perl(1) programmer’s reference guide.
4 Device drivers.
5 File formats.
6 Games.
7 Miscellaneous information.
8 System maintenance and operation commands.
9 Kernel internals.

-w List the pathnames of all matching manual pages instead of displaying any of them. If no name is
given, list the directories that would be searched.

The options -IKOTW are also supported and are documented in mandoc(1). The options -fkl are mutu-
ally exclusive and override each other.

The search starts with the -m argument if provided, then continues with the -M argument, the MANPATH
variable, the manpath entries in the man.conf(5) file, or with
/usr/share/man:/usr/X11R6/man:/usr/local/man by default. Within each of these, directories are searched in
the order provided. Within each directory, the search proceeds according to the following list of sections: 1,
8, 6, 2, 3, 5, 7, 4, 9, 3p. The first match found is shown.

The mandoc.db(5) database is used for looking up manual page entries. In cases where the database is ab-
sent, outdated, or corrupt, apropos falls back to looking for files called name.section. If both a for-
matted and an unformatted version of the same manual page, for example cat1/foo.0 and man1/foo.1, exist
in the same directory, only the unformatted version is used. The database is kept up to date with
makewhatis(8), which is run by the weekly(8) maintenance script.

Guidelines for writing man pages can be found in mdoc(7).

ENVIRONMENT
MACHINE As some manual pages are intended only for specific architectures, apropos searches any

subdirectories, with the same name as the current architecture, in every directory which it
searches. Machine specific areas are checked before general areas. The current machine type
may be overridden by setting the environment variable MACHINE to the name of a specific ar-
chitecture, or with the -S option. MACHINE is case insensitive.

MANPAGER Any non-empty value of the environment variable MANPAGER is used instead of the standard
pagination program, less(1). If less(1) is used, the interactive :t command can be used to go
to the definitions of various terms, for example command line options, command modifiers,
internal commands, environment variables, function names, preprocessor macros, errno(2)
values, and some other emphasized words. Some terms may have defining text at more than
one place. In that case, the less(1) interactive commands t and T can be used to move to the
next and to the previous place providing information about the term last searched for with :t.
The -O tag[=term] option documented in the mandoc(1) manual opens a manual page at
the definition of a specific term rather than at the beginning.

MANPATH Override the standard search path which is either specified in man.conf(5) or the default path.
The format of MANPATH is a colon (‘:’) separated list of directories. Invalid directories are
ignored. Overridden by -M, ignored if -l is specified.

If MANPATH begins with a colon, it is appended to the standard path; if it ends with a colon, it
is prepended to the standard path; or if it contains two adjacent colons, the standard path is in-
serted between the colons.

PAGER Specifies the pagination program to use when MANPAGER is not defined. If neither PAGER
nor MANPAGER is defined, less(1) is used.

FILES
/etc/man.conf default apropos configuration file

GNU July 20, 2020 7

man(1) General Commands Manual man(1)

EXIT STATUS
The man utility exits 0 on success, and >0 if an error occurs. See mandoc(1) for details.

EXAMPLES
Format a page for pasting extracts into an email message — avoid printing any UTF-8 characters, reduce
the width to ease quoting in replies, and remove markup:

$ man -T ascii -O width=65 pledge | col -b

Read a typeset page in a PDF viewer:

$ MANPAGER=mupdf man -T pdf lpd

SEE ALSO
apropos(1), col(1), mandoc(1), ul(1), whereis(1), man.conf(5), mdoc(7)

STANDARDS
The apropos utility is compliant with the IEEE Std 1003.1-2008 (“POSIX.1”) specification.

The flags [-aCcfhIKlMmOSsTWw], as well as the environment variables MACHINE, MANPAGER, and
MANPATH, are extensions to that specification.

HISTORY
A apropos command first appeared in Version 2 AT&T UNIX.

The -w option first appeared in Version 7 AT&T UNIX; -f and -k in 4BSD; -M in 4.3BSD; -a in
4.3BSD-Tahoe; -c and -m in 4.3BSD-Reno; -h in 4.3BSD Net/2; -C in NetBSD 1.0; -s and -S in
OpenBSD 2.3; and -I, -K, -l, -O, and -W in OpenBSD 5.7. The -T option first appeared in AT&T
System III UNIX and was also added in OpenBSD 5.7.

GNU July 20, 2020 8

man.options(1) General Commands Manual man.options(1)

NAME
man.options — assignment of option letters in manual page utilities

DESCRIPTION
This manual page lists option letters used in many different versions of the man, apropos, whatis,
mandoc, makewhatis, mandb, makemandb, catman, and manpath utilities. Option letters used by
groff, nroff, troff, and roff are also included because beginning with Version 7 AT&T UNIX,
many versions of man(1) pass on unrecognized options to these programs.

For each option letter, information is first grouped into paragraphs, each paragraph describing similar func-
tionality and starting with one line briefly summarizing that functionality.

For each program using the letter for that functionality, one line is provided, giving the name of the pro-
gram, a colon, the system where this letter first appeared for this functionality in this program, optionally a
comma and a list of other system versions introducing the same, a semicolon, and a list of current systems
supporting it. If a system appears before the semicolon, it is not repeated afterwards.

Entries are sorted by historical precedence, except that obsolete options are moved to the end. Dates are
commit dates where known, and release dates otherwise.

-a display all matching manual pages
man: 4.3BSD-Tahoe (June 1988), Eaton (before July 7, 1993; 1990/91?); OpenBSD, FreeBSD,
NetBSD, man-db, man-1.6, illumos, Solaris 9-11
apropos, whatis, mandoc: OpenBSD 5.7 (August 27, 2014)

only display items that match all keywords
apropos: man-db (Aug 29, 2007)

use all directories and files for mandoc.db(5)
makewhatis: OpenBSD 5.6 (April 18, 2014)

[superseded by -T ascii] ASCII output mode
troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

-B use specified browser
man: man-1.6 (June 24, 2005)

-b print a backtrace with each warning or error message
groff: probably before groff-0.4 (before July 14, 1990)

[obsolete hardware] report whether the phototypesetter is busy
troff: Version 7 AT&T UNIX (January 1979)

-C alternate configuration file
apropos, whatis: 4.4BSD Lite1 (April 22, 1994), man-db (Feb 22, 2003); OpenBSD, NetBSD
man: NetBSD 1.0 (Oct 26, 1994), man-1.5e (not before 1993, not after 1998); OpenBSD
mandb, catman, manpath: man-db (Feb 22, 2003)
makemandb: NetBSD (Feb 7, 2012)
makewhatis: OpenBSD 5.6 (April 18, 2014)
mandoc: OpenBSD 5.7 (August 27, 2014)

[obsolete] enable compatibility mode
groff: before groff-0.5 (before August 3, 1990)

-c do not use a pager
man: 4.3BSD-Reno (June 1990); OpenBSD, NetBSD
apropos, whatis, mandoc: OpenBSD 5.7 (August 27, 2014)

process given catpath
makewhatis: (not before 1992, not after 1995)

GNU July 4, 2017 9

man.options(1) General Commands Manual man.options(1)

recreate databases from scratch
mandb: man-db probably before 2.2a4 (before Nov 8, 1994)

produce a catpath as opposed to a manpath
manpath: man-db probably before 2.2a4 (before Nov 8, 1994)

internal option for use by catman(1)
man: man-db probably before 2.2a4 (before Nov 8, 1994)

reformat source page even if cat page exists
man: man-1.5e (not before 1993, not after 1998)

disable terminal color output in grotty(1)
groff: groff-1.18.0 (Oct 4, 2001)

recreate nroff versions from SGML sources
catman: Solaris 9-11

[obsolete] postprocess with col(1)
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983)

-D reset whatever was set with MANOPT
man: man-db probably before 2.2a4 (before Nov 8, 1994)

print debugging info in addition to manual page
man: man-1.5e (not before 1993, not after 1998)

set default input encoding for preconv(1)
groff: groff-1.20 (August 20, 2008)

display all files added to mandoc.db(5)
makewhatis: OpenBSD 5.6 (April 18, 2014)

-d define a user-defined string
groff: probably before groff-0.4 (before July 14, 1990)

print debugging information
man: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db, man-1.6, illumos, Solaris 9-11
manpath: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db
apropos, whatis: man-db probably before 2.2a4 (before Nov 8, 1994); FreeBSD
mandb, catman: man-db probably before 2.2a4 (before Nov 8, 1994)

remove and re-add a file to mandoc.db(5)
makewhatis: OpenBSD 2.7 (Feb 3, 2000)

[superseded by -l] interpret arguments as file names
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983)

-E inhibit all error messages
groff: probably before groff-0.4 (before July 14, 1990)

select output encoding
man: man-db (Dec 23, 2001)

-e preprocess with eqn(7)
man: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

adjust text to left and right margins
nroff: Version 7 AT&T UNIX (January 1979)

use exact matching
apropos, whatis: man-db probably before 2.2a4 (before Nov 8, 1994)

GNU July 4, 2017 10

man.options(1) General Commands Manual man.options(1)

restrict search by section extension
man: man-db-2.3.5 (April 21, 1995)

-F use alternate font directory
troff: 4.2BSD (September 1983)
groff: probably before groff-0.4 (before July 14, 1990)

preformat only, do not display
man: man-1.5g (April 7, 1999)

force searching dirs, do not use index (default)
man: illumos, Solaris 9-11

-f whatis(1) mode
man: 4BSD (November 16, 1980), Eaton (before July 7, 1993; 1990/91?); OpenBSD, FreeBSD,
man-db, man-1.6
apropos, whatis: man-db (Dec 2, 2010), OpenBSD 5.7 (August 27, 2014)
mandoc: OpenBSD 5.7 (August 27, 2014)

set the default font family
groff: probably before groff-0.4 (before July 14, 1990)

force formatting even if cat page is newer
catman: FreeBSD (March 15, 1995)

update only the entries for the given file
mandb: man-db (Feb 21, 2003)

force rebuilding the database from scratch
makemandb: NetBSD (Feb 7, 2012)

locate manual page related to given file name
man: illumos, Solaris 9-11

[obsolete hardware] do not feed out paper nor stop phototypesetter
troff: Version 7 AT&T UNIX (January 1979)

-G preprocess with grap(1)
groff: groff-1.16 (May 1, 2000)

-g produce a global manpath
manpath: man-db-2.2a7 (Nov 16, 1994)

preprocess with grn(1)
groff: groff-1.16 (Feb 20, 2000)

[obsolete hardware] output to a GCOS phototypesetter
troff: Version 7 AT&T UNIX (January 1979)

[obsolete hardware] output to a DASI 300 terminal in 12-pitch mode
man: PWB/UNIX 1.0 (July 1, 1977)

-H read hyphenation patterns from the given file
groff: probably before groff-0.4 (before July 14, 1990)

produce HTML output
man: man-db-1.3.12 to 1.3.17 (not before 1996, not after 2001)

use program to render HTML files as text
man: man-1.6 (June 24, 2005)

-h print a help message and exit
groff: probably before groff-0.4 (before July 14, 1990)
man: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db, man-1.6
manpath: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db

GNU July 4, 2017 11

man.options(1) General Commands Manual man.options(1)

apropos, whatis, mandb, catman: man-db probably before 2.2a4 (before Nov 8, 1994)

display the SYNOPSIS lines only
man: 4.3BSD Net/2 (August 20, 1991); OpenBSD, NetBSD
apropos, whatis, mandoc: OpenBSD 5.7 (Sep 3, 2014)

turn on HTML formatting
apropos: NetBSD (Apr 2, 2013)

[obsolete] replace spaces by tabs in the output
roff, nroff: Version 7 AT&T UNIX (January 1979)

-I input file search path for soelim(1)
groff: groff-1.12 (Sep 11, 1999)

respect case when matching manual page names
man, catman: man-db (Apr 21, 2002)

input options, in particular default operating system name
mandoc: OpenBSD 5.2 (May 24, 2012)
man, apropos, whatis: OpenBSD 5.7 (August 27, 2014)

-i read standard input after the input files are exhausted
nroff, troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

ignore case when matching manual page names
man, catman: man-db (Apr 21, 2002)

turn on terminal escape code formatting
apropos: NetBSD (March 29, 2013)

-J preprocess with gideal(1)
groff: groff-1.22.3 (June 17, 2014)

-j preprocess with chem(1)
groff: groff-1.22 (Jan 22, 2011)

-K source code full text search
man: man-1.5e (not before 1993, not after 1998), man-db (June 28, 2009); Solaris 11

input encoding
groff: groff-1.20 (Dec 31, 2005)
man, apropos, whatis, mandoc: OpenBSD 5.7 (Oct 30, 2014)

-k apropos(1) mode
man: 4BSD (November 16, 1980), Eaton (before July 7, 1993; 1990/91?); POSIX, OpenBSD,
FreeBSD, NetBSD, man-db, man-1.6, illumos, Solaris 9-11
apropos, whatis, mandoc: OpenBSD 5.7 (August 27, 2014)

ignore formatting errors
catman: NetBSD (April 26, 1994)

preprocess with preconv(1)
groff: groff-1.20 (Dec 31, 2005)

[obsolete hardware] display on a Tektronix 4014 terminal
man: Version 7 AT&T UNIX (January 1979)

-L pass argument to the spooler
groff: groff-0.6 (Sep 14, 1990)

use alternate locale(1)
man, apropos, whatis: before man-db-2.2a13 (before Dec 15, 1994)

GNU July 4, 2017 12

man.options(1) General Commands Manual man.options(1)

print list of locales
manpath: FreeBSD (Nov 23, 1999)

use locale(1) specified in the environment
catman: FreeBSD (May 18, 2002)

-l spool the output
groff: probably before groff-0.4 (before July 14, 1990)

interpret arguments as file names
man: before man-2.2a7 (before Nov 16, 1994), OpenBSD 5.7 (Aug 30, 2014)
apropos, whatis, mandoc: OpenBSD 5.7 (Aug 30, 2014)

do not trim output to the terminal width
apropos, whatis: man-db (Aug 19, 2007)

only parse NAME sections
makemandb: NetBSD (Feb 7, 2012)

legacy mode: search Nm,Nd, no context or formatting
apropos: NetBSD (March 29, 2013)

list all manual pages matching name within the search path
man: illumos, Solaris 9-11

-M override manual page search path
man: 4.3BSD (June 1986), Eaton (before July 7, 1993; 1990/91?); OpenBSD, FreeBSD, NetBSD,
man-db, man-1.6, illumos, Solaris 9-11
apropos, whatis: 4.3BSD (June 1986), before man-db-2.2a14 (before Dec 16, 1994); OpenBSD,
illumos
catman: man-db probably before 2.2a4 (before Nov 8, 1994); NetBSD (July 27, 1993), Solaris 9-11
mandoc: OpenBSD 5.7 (August 27, 2014)

prepend to macro file search path
groff: probably before groff-0.4 (before July 14, 1990)

do not show the context of the match
apropos: NetBSD (May 22, 2016)

-m specify input macro language
nroff, troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)
mandoc: OpenBSD 4.8 (April 6, 2009)

augment manual page search path
man, apropos, whatis: 4.3BSD-Reno (June 1990); OpenBSD, NetBSD
catman: NetBSD (Apr 4, 1999)
mandoc: OpenBSD 5.7 (August 27, 2014)

override operating system
man: Eaton (before July 7, 1993; 1990/91?); man-db, man-1.6
apropos, whatis, manpath: man-db probably before 2.2a4 (before Nov 8, 1994)

override architecture
man: FreeBSD (Jan 11, 2002)

show the context of the match
apropos: NetBSD (May 22, 2016)

-N do not allow newlines between eqn(7) delimiters
groff: groff-1.01 (Feb 21, 1991)

GNU July 4, 2017 13

man.options(1) General Commands Manual man.options(1)

-n specify a page number for the first page
troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

nroff(1) output mode
man: Version 7 AT&T UNIX (January 1979)

do not create the whatis(1) database
catman: NetBSD (July 27, 1993)

print commands instead of executing them
catman: FreeBSD (May 18, 2002), Solaris 9-11

limit the number of results
apropos: NetBSD (Feb 7, 2012)

dry run simulating mandoc.db(5) creation
makewhatis: OpenBSD 5.6 (April 18, 2014)

-O output options
mandoc: OpenBSD 4.8 (Oct 27, 2009)
man, apropos, whatis: OpenBSD 5.7 (August 27, 2014)

-o select pages by numbers
nroff, troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

force use of non-localized manual pages
man: FreeBSD (June 7, 1999)

optimize index for speed and disk space
makemandb: NetBSD (Feb 7, 2012)

-P pass argument to postprocessor
groff: groff-0.6 (Sep 14, 1990)

use specified pager
man: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db, man-1.6

turn on pager formatting
apropos: NetBSD (Apr 2, 2013)

-p preprocess with pic(1)
groff: probably before groff-0.4 (before July 14, 1990)

use the given list of preprocessors
man: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db, man-1.6

dry run, display commands instead of executing them
catman: NetBSD (July 27, 1993), FreeBSD (March 15, 1995 to May 18, 2002), Solaris 9-11

print warnings when building mandoc.db(5)
makewhatis: OpenBSD 2.7 (April 23, 2000)

do not look for deleted manual pages
mandb: man-db (June 28, 2001)

print the search path for manual pages
man: NetBSD (June 14, 2011)

turn on pager formatting and pipe through pager
apropos: NetBSD (Feb 7, 2012)

[obsolete hardware] set phototypesetter point size
troff: Version 7 AT&T UNIX (January 1979)

GNU July 4, 2017 14

man.options(1) General Commands Manual man.options(1)

-Q print only fatal error messages
makemandb: NetBSD (Aug 29, 2012)

quick mode of mandoc.db(5) creation
makewhatis: OpenBSD 5.6 (April 18, 2014)

-q invoke the simultaneous input-output mode of the .rd request
nroff, troff: Version 7 AT&T UNIX (January 1979)

issue no warnings
manpath: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db
mandb: man-db probably before 2.2a4 (before Nov 8, 1994)

print only warnings and errors, no status updates
makemandb: NetBSD (Aug 29, 2012)

-R postprocess with refer(1)
groff: groff-1.02 (June 2, 1991)

recode to the specified encoding
man: man-db (Dec 31, 2007)

-r set number register
nroff, troff: Version 7 AT&T UNIX (January 1979)
groff: probably before groff-0.4 (before July 14, 1990)

scan for and remove junk files
catman: FreeBSD (March 31, 1995)

set less(1) prompt
man: man-db-2.3.5 (April 21, 1995)

use regular expression matching
apropos, whatis: man-db-2.3.5 (April 21, 1995)

turn off formatting
apropos: NetBSD (Feb 10, 2013)

check for formatting errors, do not display
man: illumos, Solaris 9-11

-S manual section search list
man: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db, man-1.6

safer mode
groff: groff-1.10 (May 17, 1994)

restrict architecture
man: OpenBSD 2.3 (March 9, 1998), NetBSD (May 27, 2000)
apropos: OpenBSD 4.5 (Dec 24, 2008), NetBSD (May 8, 2009)
whatis: OpenBSD 5.6 (April 18, 2014)
mandoc: OpenBSD 5.7 (August 27, 2014)

-s preprocess with soelim(1)
groff: probably before groff-0.4 (before July 14, 1990)

silent mode, do not echo commands
catman: NetBSD (April 26, 1994)

restrict section
makewhatis: man-1.5g (not before 1993, not after 1999)
man: OpenBSD 2.3 (March 9, 1998), NetBSD (June 12, 2000); illumos, Solaris 9-11
apropos: man-db (Nov 16, 2003), OpenBSD 4.5 (Dec 24, 2008), NetBSD (May 8, 2009); illumos
whatis: man-db (Nov 16, 2003), OpenBSD 5.6 (April 18, 2014); illumos
mandoc: OpenBSD 5.7 (August 27, 2014)

GNU July 4, 2017 15

man.options(1) General Commands Manual man.options(1)

do not look for stray cats
mandb: man-db probably before 2.2a4 (before Nov 8, 1994)

[SysV compat, recommends -S] manual section search list
man: man-db (Jan 1, 2008)

[superseded by -h] display the SYNOPSIS lines only
man: PWB/UNIX 1.0 (July 1, 1977)

[obsolete hardware] pause before each page for paper manipulation
roff: Version 7 AT&T UNIX (January 1979)

[obsolete hardware] troff(1) output mode, small format
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983)

-T select terminal output format
nroff: Version 7 AT&T UNIX (January 1979)
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983), man-db probably
before 2.2a4 (before Nov 8, 1994), OpenBSD 5.7 (August 27, 2014)
groff: probably before groff-0.4 (before July 14, 1990)
mandoc: OpenBSD 4.8 (April 6, 2009)
apropos, whatis: OpenBSD 5.7 (August 27, 2014)

use UTF-8 for mandoc.db(5)
makewhatis: OpenBSD 5.6 (April 18, 2014)

[superseded by -m] use other macro package
man, catman: Solaris 9-11

-t troff(1) output mode
man: PWB/UNIX 1.0 (July 1, 1977), Version 7 AT&T UNIX (January 1979), 2BSD (May 10, 1979),
AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983), Eaton (before July 7,
1993; 1990/91?); FreeBSD, man-db, man-1.6, illumos, Solaris 9-11
catman: Solaris 9-11

preprocess with tbl(7)
groff: probably before groff-0.4 (before July 14, 1990)

check manual pages in the hierarchy
mandb: man-db-1.3.12 to 1.3.17 (not before 1996, not after 2001)

check files for problems related to mandoc.db(5)
makewhatis: OpenBSD 2.7 (April 23, 2000)

-U unsafe mode
groff: groff-1.12 (Dec 13, 1999)

-u update database
makewhatis: (not before 1992, not after 1995)

create user databases only
mandb: man-db probably before 2.2a4 (before Nov 8, 1994)

update database cache (requires suid)
man: before man-db-2.2a10 (before Dec 6, 1994)

remove files from mandoc.db(5)
makewhatis: OpenBSD 3.4 (July 9, 2003)

-V print the pipeline on stdout instead of executing it
groff: groff-0.6 (Sep 2, 1990)

print version information
man, apropos, whatis, mandb, catman, manpath: man-db probably before 2.2a4 (before
Nov 8, 1994)

GNU July 4, 2017 16

man.options(1) General Commands Manual man.options(1)

-v print version number
groff: probably before groff-0.4 (before July 14, 1990)

verbose mode
catman: FreeBSD (March 15, 1995)
makewhatis: man-1.5g (not before 1993, not after 1999)
apropos, whatis: man-db (Dec 29, 2002)

print the name of every parsed file
makemandb: NetBSD (Feb 7, 2012)

[obsolete hardware] produce output on the Versatec printer
man: PWB/UNIX 1.0 (July 1, 1977)

-W disable the named warning
groff: groff-0.5 (August 14, 1990)

list pathnames without additional information
man: man-1.5e (not before 1993, not after 1998)

list pathnames of cat files
man: man-db (Aug 13, 2002)

minimum message level to display
mandoc: OpenBSD 4.8 (April 6, 2009)
man, apropos, whatis: OpenBSD 5.7 (August 27, 2014)

-w list pathnames
man: Version 7 AT&T UNIX (January 1979), AT&T System III UNIX (June 1980), AT&T System V
UNIX (January 1983), Eaton (before July 7, 1993; 1990/91?); OpenBSD, FreeBSD, NetBSD, man-db,
man-1.6
apropos, whatis, mandoc: OpenBSD 5.7 (August 27, 2014)

enable the named warning
groff: groff-0.5 (August 14, 1990)

only create the whatis(1) database
catman: NetBSD (July 27, 1993), Solaris 9-11

use wildcard matching
apropos, whatis: man-db-2.3.5 (April 21, 1995)

use manpath obtained from man --path
makewhatis: man-1.5g (not before 1993, not after 1999)

update the whatis(1) database
man: illumos

[obsolete hardware] wait until the phototypesetter is available
troff: Version 7 AT&T UNIX (January 1979)

-X display with gxditview(1)
groff: groff-1.06 (Sep 1, 1992)
man: man-db probably before 2.2a4 (before Nov 8, 1994)

-y use the non-compacted version of the macros
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983)

-Z do not run preprocessors
groff: probably before groff-0.4 (before July 14, 1990)
man: man-db-2.2a5 (Nov 10, 1994)

GNU July 4, 2017 17

man.options(1) General Commands Manual man.options(1)

-z suppress formatted output from troff(1), print only error messages
groff: probably before groff-0.4 (before July 14, 1990)

-7 ASCII output mode
man: man-db-2.3.5 (April 21, 1995)

-? print a help message and exit
groff: probably before groff-0.4 (before July 14, 1990)
man, manpath: Eaton (before July 7, 1993; 1990/91?); FreeBSD, man-db
apropos, whatis, mandb, catman: man-db probably before 2.2a4 (before Nov 8, 1994)

Multi-letter options:

-hp [obsolete hardware] output to a Hewlett Packard terminal
man: PWB/UNIX 1.0 (July 1, 1977)

-12 [obsolete hardware] use 12-pitch for certain terminals
man: AT&T System III UNIX (June 1980), AT&T System V UNIX (January 1983)

-450 [obsolete hardware] output to a DASI 450 terminal
man: PWB/UNIX 1.0 (July 1, 1977)

In Version 3 AT&T UNIX, man(1) had no options.
The syntax was: man name [section]

In Version 4 AT&T UNIX,
the syntax changed to: man [section] [name . . .]

AUTHORS
This information was assembled by Ingo Schwarze <schwarze@openbsd.org> using
• the Unix Archive of the Unix Heritage Society
• the CSRG Archive CD-ROMs
• the FreeBSD SVN repository
• the OpenBSD CVS repository
• the NetBSD CVS repository
• the GNU roff (groff) git repository
• the 4.3BSD-Net/2 groff CHANGES file (Oct 1990 to March 1991)
• the 4.3BSD-Net/2 groff ChangeLog file (July 1990 to March 1991)
• the man-db CVS and git repositories (since April 2001)
• the man-db NEWS file (April 1995 to Dec 2016)
• the man-db ChangeLog-2013 file (Nov 1994 to Dec 2013)
• release tarballs man-1.5g (July 1998) to man-1.5p (Jan 2005), man-1.6 (June 2005), and man-1.6a to

man-1.6g (Dec 2010)
• a makewhatis release tarball without version number from 1995
• the illumos manual pages on the WWW
• and Solaris 11, SunOS 5.10, and SunOS 5.9 machines at opencsw.org.

GNU July 4, 2017 18

mandoc(1) General Commands Manual mandoc(1)

NAME
mandoc — format manual pages

SYNOPSIS
mandoc [-ac] [-I os=name] [-K encoding] [-mdoc | -man] [-O options] [-T output]

[-W level] [file . . .]

DESCRIPTION
The apropos utility formats manual pages for display.

By default, apropos reads mdoc(7) or man(7) text from stdin and produces -T locale output.

The options are as follows:

-a If the standard output is a terminal device and -c is not specified, use less(1) to paginate the out-
put, just like man(1) would.

-c Copy the formatted manual pages to the standard output without using less(1) to paginate them.
This is the default. It can be specified to override -a.

-I os=name
Override the default operating system name for the mdoc(7) Os and for the man(7) TH macro.

-K encoding
Specify the input encoding. The supported encoding arguments are us-ascii,
iso-8859-1, and utf-8. If not specified, autodetection uses the first match in the following
list:

1. If the first three bytes of the input file are the UTF-8 byte order mark (BOM, 0xefbbbf), input
is interpreted as utf-8.

2. If the first or second line of the input file matches the emacs mode line format

.\" -∗- [...;] coding: encoding; -∗-

then input is interpreted according to encoding.

3. If the first non-ASCII byte in the file introduces a valid UTF-8 sequence, input is interpreted
as utf-8.

4. Otherwise, input is interpreted as iso-8859-1.

-mdoc | -man
With -mdoc, all input files are interpreted as mdoc(7). With -man, all input files are interpreted
as man(7). By default, the input language is automatically detected for each file: if the first macro
is Dd or Dt, the mdoc(7) parser is used; otherwise, the man(7) parser is used. With other argu-
ments, -m is silently ignored.

-O options
Comma-separated output options. See the descriptions of the individual output formats for sup-
ported options.

-T output
Select the output format. Supported values for the output argument are ascii, html, the de-
fault of locale, man, markdown, pdf, ps, tree, and utf8.

The special -T lint mode only parses the input and produces no output. It implies -W all
and redirects parser messages, which usually appear on standard error output, to standard output.

-W level
Specify the minimum message level to be reported on the standard error output and to affect the
exit status. The level can be base, style, warning, error, or unsupp. The base level
automatically derives the operating system from the contents of the Os macro, from the -Ios
command line option, or from the uname(3) return value. The levels openbsd and netbsd are
variants of base that bypass autodetection and request validation of base system conventions for a

GNU August 14, 2021 19

mandoc(1) General Commands Manual mandoc(1)

particular operating system. The level all is an alias for base. By default, apropos is silent.
See “EXIT STATUS” and “DIAGNOSTICS” for details.

The special option -W stop tells apropos to exit after parsing a file that causes warnings or er-
rors of at least the requested level. No formatted output will be produced from that file. If both a
level and stop are requested, they can be joined with a comma, for example -W
error,stop.

file Read from the given input file. If multiple files are specified, they are processed in the given order.
If unspecified, apropos reads from standard input.

The options -fhklw are also supported and are documented in man(1). In -f and -k mode, apropos
also supports the options -CMmOSs described in the apropos(1) manual. The options -fkl are mutually
exclusive and override each other.

ASCII Output
Use -T ascii to force text output in 7-bit ASCII character encoding documented in the ascii(7) manual
page, ignoring the locale(1) set in the environment.

Font styles are applied by using back-spaced encoding such that an underlined character ‘c’ is rendered as
‘_\[bs]c’, where ‘\[bs]’ is the back-space character number 8. Emboldened characters are rendered as
‘c\[bs]c’. This markup is typically converted to appropriate terminal sequences by the pager or ul(1). To
remove the markup, pipe the output to col(1) -b instead.

The special characters documented in mandoc_char(7) are rendered best-effort in an ASCII equivalent. In
particular, opening and closing ‘single quotes’ are represented as characters number 0x60 and 0x27, respec-
tively, which agrees with all ASCII standards from 1965 to the latest revision (2012) and which matches the
traditional way in which roff(7) formatters represent single quotes in ASCII output. This correct ASCII
rendering may look strange with modern Unicode-compatible fonts because contrary to ASCII, Unicode
uses the code point U+0060 for the grave accent only, never for an opening quote.

The following -O arguments are accepted:

indent=indent
The left margin for normal text is set to indent blank characters instead of the default of five for
mdoc(7) and seven for man(7). Increasing this is not recommended; it may result in degraded for-
matting, for example overfull lines or ugly line breaks. When output is to a pager on a terminal
that is less than 66 columns wide, the default is reduced to three columns.

mdoc Format man(7) input files in mdoc(7) output style. This prints the operating system name rather
than the page title on the right side of the footer line, and it implies -O indent=5. One useful
application is for checking that -T man output formats in the same way as the mdoc(7) source it
was generated from.

tag[=term]
If the formatted manual page is opened in a pager, go to the definition of the term rather than
showing the manual page from the beginning. If no term is specified, reuse the first command
line argument that is not a section number. If that argument is in apropos(1) key=val format,
only the val is used rather than the argument as a whole. This is useful for commands like man
-akO tag Ic=ulimit to search for a keyword and jump right to its definition in the matching
manual pages.

width=width
The output width is set to width instead of the default of 78. When output is to a pager on a ter-
minal that is less than 79 columns wide, the default is reduced to one less than the terminal width.
In any case, lines that are output in literal mode are never wrapped and may exceed the output
width.

GNU August 14, 2021 20

mandoc(1) General Commands Manual mandoc(1)

HTML Output
Output produced by -T html conforms to HTML5 using optional self-closing tags. Default styles use
only CSS1. Equations rendered from eqn(7) blocks use MathML.

The file /usr/share/misc/mandoc.css documents style-sheet classes available for customising output. If a
style-sheet is not specified with -O style, -T html defaults to simple output (via an embedded style-
sheet) readable in any graphical or text-based web browser.

Non-ASCII characters are rendered as hexadecimal Unicode character references.

The following -O arguments are accepted:

fragment
Omit the <!DOCTYPE> declaration and the <html>, <head>, and <body> elements and only emit
the subtree below the <body> element. The style argument will be ignored. This is useful
when embedding manual content within existing documents.

includes=fmt
The string fmt, for example, ../src/%I.html, is used as a template for linked header files
(usually via the In macro). Instances of ‘%I’ are replaced with the include filename. The default
is not to present a hyperlink.

man=fmt[;fmt]
The string fmt, for example, ../html%S/%N.%S.html, is used as a template for linked manu-
als (usually via the Xr macro). Instances of ‘%N’ and ‘%S’ are replaced with the linked manual’s
name and section, respectively. If no section is included, section 1 is assumed. The default is not
to present a hyperlink. If two formats are given and a file %N.%S exists in the current directory,
the first format is used; otherwise, the second format is used.

style=style.css
The file style.css is used for an external style-sheet. This must be a valid absolute or relative
URI.

tag[=term]
Same syntax and semantics as for “ASCII Output”. This is implemented by passing a file://
URI ending in a fragment identifier to the pager rather than passing merely a file name. When us-
ing this argument, use a pager supporting such URIs, for example

MANPAGER=’lynx -force_html’ man -T html -O tag=MANPAGER man
MANPAGER=’w3m -T text/html’ man -T html -O tag=toc mandoc

Consequently, for HTML output, this argument does not work with more(1) or less(1). For exam-
ple, MANPAGER=less man -T html -O tag=toc mandoc does not work because
less(1) does not support file:// URIs.

toc If an input file contains at least two non-standard sections, print a table of contents near the begin-
ning of the output.

Locale Output
By default, apropos automatically selects UTF-8 or ASCII output according to the current locale(1). If
any of the environment variables LC_ALL, LC_CTYPE, or LANG are set and the first one that is set selects
the UTF-8 character encoding, it produces “UTF-8 Output”; otherwise, it falls back to “ASCII Output”.
This output mode can also be selected explicitly with -T locale.

Man Output
Use -T man to translate mdoc(7) input into man(7) output format. This is useful for distributing manual
sources to legacy systems lacking mdoc(7) formatters. Embedded eqn(7) and tbl(7) code is not supported.

If the input format of a file is man(7), the input is copied to the output. The parser is also run, and as usual,
the -W level controls which “DIAGNOSTICS” are displayed before copying the input to the output.

GNU August 14, 2021 21

mandoc(1) General Commands Manual mandoc(1)

Markdown Output
Use -T markdown to translate mdoc(7) input to the markdown format conforming to John Gruber’s
2004 specification: http://daringfireball.net/projects/markdown/syntax.text. The output also almost con-
forms to the CommonMark: http://commonmark.org/ specification.

The character set used for the markdown output is ASCII. Non-ASCII characters are encoded as HTML
entities. Since that is not possible in literal font contexts, because these are rendered as code spans and
code blocks in the markdown output, non-ASCII characters are transliterated to ASCII approximations in
these contexts.

Markdown is a very weak markup language, so all semantic markup is lost, and even part of the presenta-
tional markup may be lost. Do not use this as an intermediate step in converting to HTML; instead, use -T
html directly.

The man(7), tbl(7), and eqn(7) input languages are not supported by -T markdown output mode.

PDF Output
PDF-1.1 output may be generated by -T pdf. See “PostScript Output” for -O arguments and defaults.

PostScript Output
PostScript "Adobe-3.0" Level-2 pages may be generated by -T ps. Output pages default to letter sized
and are rendered in the Times font family, 11-point. Margins are calculated as 1/9 the page length and
width. Line-height is 1.4m.

Special characters are rendered as in “ASCII Output”.

The following -O arguments are accepted:

paper=name
The paper size name may be one of a3, a4, a5, legal, or letter. You may also manually
specify dimensions as NNxNN, width by height in millimetres. If an unknown value is encoun-
tered, letter is used.

UTF-8 Output
Use -T utf8 to force text output in UTF-8 multi-byte character encoding, ignoring the locale(1) settings
in the environment. See “ASCII Output” regarding font styles and -O arguments.

On operating systems lacking locale or wide character support, and on those where the internal character
representation is not UCS-4, apropos always falls back to “ASCII Output”.

Syntax tree output
Use -T tree to show a human readable representation of the syntax tree. It is useful for debugging the
source code of manual pages. The exact format is subject to change, so don’t write parsers for it.

The first paragraph shows meta data found in the mdoc(7) prologue, on the man(7) TH line, or the fallbacks
used.

In the tree dump, each output line shows one syntax tree node. Child nodes are indented with respect to
their parent node. The columns are:

1. For macro nodes, the macro name; for text and tbl(7) nodes, the content. There is a special format for
eqn(7) nodes.

2. Node type (text, elem, block, head, body, body-end, tail, tbl, eqn).
3. Flags:

- An opening parenthesis if the node is an opening delimiter.
- An asterisk if the node starts a new input line.
- The input line number (starting at one).
- A colon.
- The input column number (starting at one).
- A closing parenthesis if the node is a closing delimiter.

GNU August 14, 2021 22

mandoc(1) General Commands Manual mandoc(1)

- A full stop if the node ends a sentence.
- BROKEN if the node is a block broken by another block.
- NOSRC if the node is not in the input file, but automatically generated from macros.
- NOPRT if the node is not supposed to generate output for any output format.

The following -O argument is accepted:

noval Skip validation and show the unvalidated syntax tree. This can help to find out whether a given be-
haviour is caused by the parser or by the validator. Meta data is not available in this case.

ENVIRONMENT
LC_CTYPE The character encoding locale(1). When “Locale Output” is selected, it decides whether to

use ASCII or UTF-8 output format. It never affects the interpretation of input files.

MANPAGER Any non-empty value of the environment variable MANPAGER is used instead of the standard
pagination program, less(1); see man(1) for details. Only used if -a or -l is specified.

PAGER Specifies the pagination program to use when MANPAGER is not defined. If neither PAGER
nor MANPAGER is defined, less(1) is used. Only used if -a or -l is specified.

EXIT STATUS
The apropos utility exits with one of the following values, controlled by the message level associated
with the -W option:

0 No base system convention violations, style suggestions, warnings, or errors occurred, or those that
did were ignored because they were lower than the requested level.

1 At least one base system convention violation or style suggestion occurred, but no warning or er-
ror, and -W base or -W style was specified.

2 At least one warning occurred, but no error, and -W warning or a lower level was requested.
3 At least one parsing error occurred, but no unsupported feature was encountered, and -W error

or a lower level was requested.
4 At least one unsupported feature was encountered, and -W unsupp or a lower level was re-

quested.
5 Invalid command line arguments were specified. No input files have been read.
6 An operating system error occurred, for example exhaustion of memory, file descriptors, or process

table entries. Such errors may cause apropos to exit at once, possibly in the middle of parsing or
formatting a file.

Note that selecting -T lint output mode implies -W all.

EXAMPLES
To page manuals to the terminal:

$ mandoc -l mandoc.1 man.1 apropos.1 makewhatis.8

To produce HTML manuals with /usr/share/misc/mandoc.css as the style-sheet:

$ mandoc -T html -O style=/usr/share/misc/mandoc.css mdoc.7 >
mdoc.7.html

To check over a large set of manuals:

$ mandoc -T lint `find /usr/src -name \∗\.[1-9]`

To produce a series of PostScript manuals for A4 paper:

$ mandoc -T ps -O paper=a4 mdoc.7 man.7 > manuals.ps

Convert a modern mdoc(7) manual to the older man(7) format, for use on systems lacking an mdoc(7)
parser:

$ mandoc -T man foo.mdoc > foo.man

GNU August 14, 2021 23

mandoc(1) General Commands Manual mandoc(1)

DIAGNOSTICS
Messages displayed by apropos follow this format:

apropos: file:line:column: level: message: macro arguments (os)

The first three fields identify the file name, line number, and column number of the input file where
the message was triggered. The line and column numbers start at 1. Both are omitted for messages refer-
ring to an input file as a whole. All level and message strings are explained below. The name of the
macro triggering the message and its arguments are omitted where meaningless. The os operating sys-
tem specifier is omitted for messages that are relevant for all operating systems. Fatal messages about in-
valid command line arguments or operating system errors, for example when memory is exhausted, may
also omit the file and level fields.

Message levels have the following meanings:

syserr An operating system error occurred. There isn’t necessarily anything wrong with the input
files. Output may all the same be missing or incomplete.

badarg Invalid command line arguments were specified. No input files have been read and no output is
produced.

unsupp An input file uses unsupported low-level roff(7) features. The output may be incomplete and/or
misformatted, so using GNU troff instead of apropos to process the file may be preferable.

error Indicates a risk of information loss or severe misformatting, in most cases caused by serious
syntax errors.

warning Indicates a risk that the information shown or its formatting may mismatch the author’s intent in
minor ways. Additionally, syntax errors are classified at least as warnings, even if they do not
usually cause misformatting.

style An input file uses dubious or discouraged style. This is not a complaint about the syntax, and
probably neither formatting nor portability are in danger. While great care is taken to avoid
false positives on the higher message levels, the style level tries to reduce the probability that
issues go unnoticed, so it may occasionally issue bogus suggestions. Please use your good
judgement to decide whether any particular style suggestion really justifies a change to the
input file.

base A convention used in the base system of a specific operating system is not adhered to. These
are not markup mistakes, and neither the quality of formatting nor portability are in danger.
Messages of the base level are printed with the more intuitive style level tag.

Messages of the base, style, warning, error, and unsupp levels are hidden unless their level, or a
lower level, is requested using a -W option or -T lint output mode.

As indicated below, all base and some style checks are only performed if a specific operating system
name occurs in the arguments of the -W command line option, of the Os macro, of the -Ios command
line option, or, if neither are present, in the return value of the uname(3) function.

Conventions for base system manuals
Mdocdate found
(mdoc, NetBSD) The Dd macro uses CVS Mdocdate keyword substitution, which is not supported by the
NetBSD base system. Consider using the conventional “Month dd, yyyy” format instead.

Mdocdate missing
(mdoc, OpenBSD) The Dd macro does not use CVS Mdocdate keyword substitution, but using it is con-
ventionally expected in the OpenBSD base system.

unknown architecture
(mdoc, OpenBSD, NetBSD) The third argument of the Dt macro does not match any of the architectures
this operating system is running on.

GNU August 14, 2021 24

mandoc(1) General Commands Manual mandoc(1)

operating system explicitly specified
(mdoc, OpenBSD, NetBSD) The Os macro has an argument. In the base system, it is conventionally left
blank.

RCS id missing
(OpenBSD, NetBSD) The manual page lacks the comment line with the RCS identifier generated by CVS
OpenBSD or NetBSD keyword substitution as conventionally used in these operating systems.

Style suggestions
legacy man(7) date format
(mdoc) The Dd macro uses the legacy man(7) date format “yyyy-dd-mm”. Consider using the conventional
mdoc(7) date format “Month dd, yyyy” instead.

normalizing date format to: . . .
(mdoc, man) The Dd or TH macro provides an abbreviated month name or a day number with a leading
zero. In the formatted output, the month name is written out in full and the leading zero is omitted.

lower case character in document title
(mdoc, man) The title is still used as given in the Dt or TH macro.

duplicate RCS id
A single manual page contains two copies of the RCS identifier for the same operating system. Consider
deleting the later instance and moving the first one up to the top of the page.

possible typo in section name
(mdoc) Fuzzy string matching revealed that the argument of an Sh macro is similar, but not identical to a
standard section name.

unterminated quoted argument
(roff) Macro arguments can be enclosed in double quote characters such that space characters and macro
names contained in the quoted argument need not be escaped. The closing quote of the last argument of a
macro can be omitted. However, omitting it is not recommended because it makes the code harder to read.

useless macro
(mdoc) A Bt, Tn, or Ud macro was found. Simply delete it: it serves no useful purpose.

consider using OS macro
(mdoc) A string was found in plain text or in a Bx macro that could be represented using Ox, Nx, Fx, or
Dx.

errnos out of order
(mdoc, NetBSD) The Er items in a Bl list are not in alphabetical order.

duplicate errno
(mdoc, NetBSD) A Bl list contains two consecutive It entries describing the same Er number.

referenced manual not found
(mdoc) An Xr macro references a manual page that was not found. When running with -W base, the
search is restricted to the base system, by default to /usr/share/man:/usr/X11R6/man. This path can be con-
figured at compile time using the MANPATH_BASE preprocessor macro. When running with -W style,
the search is done along the full search path as described in the man(1) manual page, respecting the -m and
-M command line options, the MANPATH environment variable, the man.conf(5) file and falling back to the
default of /usr/share/man:/usr/X11R6/man:/usr/local/man, also configurable at compile time using the
MANPATH_DEFAULT preprocessor macro.

trailing delimiter
(mdoc) The last argument of an Ex, Fo, Nd, Nm, Os, Sh, Ss, St, or Sx macro ends with a trailing
delimiter. This is usually bad style and often indicates typos. Most likely, the delimiter can be removed.

GNU August 14, 2021 25

mandoc(1) General Commands Manual mandoc(1)

no blank before trailing delimiter
(mdoc) The last argument of a macro that supports trailing delimiter arguments is longer than one byte and
ends with a trailing delimiter. Consider inserting a blank such that the delimiter becomes a separate argu-
ment, thus moving it out of the scope of the macro.

fill mode already enabled, skipping
(man) A fi request occurs even though the document is still in fill mode, or already switched back to fill
mode. It has no effect.

fill mode already disabled, skipping
(man) An nf request occurs even though the document already switched to no-fill mode and did not switch
back to fill mode yet. It has no effect.

input text line longer than 80 bytes
Consider breaking the input text line at one of the blank characters before column 80.

verbatim "--", maybe consider using \(em
(mdoc) Even though the ASCII output device renders an em-dash as "--", that is not a good way to write it
in an input file because it renders poorly on all other output devices.

function name without markup
(mdoc) A word followed by an empty pair of parentheses occurs on a text line. Consider using an Fn or Xr
macro.

whitespace at end of input line
(mdoc, man, roff) Whitespace at the end of input lines is almost never semantically significant — but in the
odd case where it might be, it is extremely confusing when reviewing and maintaining documents.

bad comment style
(roff) Comment lines start with a dot, a backslash, and a double-quote character. The apropos utility
treats the line as a comment line even without the backslash, but leaving out the backslash might not be
portable.

Warnings related to the document prologue
missing manual title, using UNTITLED
(mdoc) A Dt macro has no arguments, or there is no Dt macro before the first non-prologue macro.

missing manual title, using ""
(man) There is no TH macro, or it has no arguments.

missing manual section, using ""
(mdoc, man) A Dt or TH macro lacks the mandatory section argument.

unknown manual section
(mdoc) The section number in a Dt line is invalid, but still used.

filename/section mismatch
(mdoc, man) The name of the input file being processed is known and its file name extension starts with a
non-zero digit, but the Dt or TH macro contains a section argument that starts with a different non-zero
digit. The section argument is used as provided anyway. Consider checking whether the file name or
the argument need a correction.

missing date, using ""
(mdoc, man) The document was parsed as mdoc(7) and it has no Dd macro, or the Dd macro has no argu-
ments or only empty arguments; or the document was parsed as man(7) and it has no TH macro, or the TH
macro has less than three arguments or its third argument is empty.

cannot parse date, using it verbatim
(mdoc, man) The date given in a Dd or TH macro does not follow the conventional format.

GNU August 14, 2021 26

mandoc(1) General Commands Manual mandoc(1)

date in the future, using it anyway
(mdoc, man) The date given in a Dd or TH macro is more than a day ahead of the current system time(3).

missing Os macro, using ""
(mdoc) The default or current system is not shown in this case.

late prologue macro
(mdoc) A Dd or Os macro occurs after some non-prologue macro, but still takes effect.

prologue macros out of order
(mdoc) The prologue macros are not given in the conventional order Dd, Dt, Os. All three macros are used
even when given in another order.

Warnings regarding document structure
.so is fragile, better use ln(1)
(roff) Including files only works when the parser program runs with the correct current working directory.

no document body
(mdoc, man) The document body contains neither text nor macros. An empty document is shown, consist-
ing only of a header and a footer line.

content before first section header
(mdoc, man) Some macros or text precede the first Sh or SH section header. The offending macros and text
are parsed and added to the top level of the syntax tree, outside any section block.

first section is not NAME
(mdoc) The argument of the first Sh macro is not ‘NAME’. This may confuse makewhatis(8) and
apropos(1).

NAME section without Nm before Nd
(mdoc) The NAME section does not contain any Nm child macro before the first Nd macro.

NAME section without description
(mdoc) The NAME section lacks the mandatory Nd child macro.

description not at the end of NAME
(mdoc) The NAME section does contain an Nd child macro, but other content follows it.

bad NAME section content
(mdoc) The NAME section contains plain text or macros other than Nm and Nd.

missing comma before name
(mdoc) The NAME section contains an Nm macro that is neither the first one nor preceded by a comma.

missing description line, using ""
(mdoc) The Nd macro lacks the required argument. The title line of the manual will end after the dash.

description line outside NAME section
(mdoc) An Nd macro appears outside the NAME section. The arguments are printed anyway and the fol-
lowing text is used for apropos(1), but none of that behaviour is portable.

sections out of conventional order
(mdoc) A standard section occurs after another section it usually precedes. All section titles are used as
given, and the order of sections is not changed.

duplicate section title
(mdoc) The same standard section title occurs more than once.

unexpected section
(mdoc) A standard section header occurs in a section of the manual where it normally isn’t useful.

GNU August 14, 2021 27

mandoc(1) General Commands Manual mandoc(1)

cross reference to self
(mdoc) An Xr macro refers to a name and section matching the section of the present manual page and a
name mentioned in an Nm macro in the NAME or SYNOPSIS section, or in an Fn or Fo macro in the
SYNOPSIS. Consider using Nm or Fn instead of Xr.

unusual Xr order
(mdoc) In the SEE ALSO section, an Xr macro with a lower section number follows one with a higher
number, or two Xr macros referring to the same section are out of alphabetical order.

unusual Xr punctuation
(mdoc) In the SEE ALSO section, punctuation between two Xr macros differs from a single comma, or
there is trailing punctuation after the last Xr macro.

AUTHORS section without An macro
(mdoc) An AUTHORS sections contains no An macros, or only empty ones. Probably, there are author
names lacking markup.

Warnings related to macros and nesting
obsolete macro
(mdoc) See the mdoc(7) manual for replacements.

macro neither callable nor escaped
(mdoc) The name of a macro that is not callable appears on a macro line. It is printed verbatim. If the in-
tention is to call it, move it to its own input line; otherwise, escape it by prepending ‘\&’.

skipping paragraph macro
In mdoc(7) documents, this happens
- at the beginning and end of sections and subsections
- right before non-compact lists and displays
- at the end of items in non-column, non-compact lists
- and for multiple consecutive paragraph macros.
In man(7) documents, it happens
- for empty P, PP, and LP macros
- for IP macros having neither head nor body arguments
- for br or sp right after SH or SS

moving paragraph macro out of list
(mdoc) A list item in a Bl list contains a trailing paragraph macro. The paragraph macro is moved after the
end of the list.

skipping no-space macro
(mdoc) An input line begins with an Ns macro, or the next argument after an Ns macro is an isolated clos-
ing delimiter. The macro is ignored.

blocks badly nested
(mdoc) If two blocks intersect, one should completely contain the other. Otherwise, rendered output is
likely to look strange in any output format, and rendering in SGML-based output formats is likely to be
outright wrong because such languages do not support badly nested blocks at all. Typical examples of
badly nested blocks are "Ao Bo Ac Bc" and "Ao Bq Ac". In these examples, Ac breaks Bo and Bq,
respectively.

nested displays are not portable
(mdoc) A Bd, D1, or Dl display occurs nested inside another Bd display. This works with apropos, but
fails with most other implementations.

moving content out of list
(mdoc) A Bl list block contains text or macros before the first It macro. The offending children are
moved before the beginning of the list.

GNU August 14, 2021 28

mandoc(1) General Commands Manual mandoc(1)

first macro on line
Inside a Bl -column list, a Ta macro occurs as the first macro on a line, which is not portable.

line scope broken
(man) While parsing the next-line scope of the previous macro, another macro is found that prematurely
terminates the previous one. The previous, interrupted macro is deleted from the parse tree.

Warnings related to missing arguments
skipping empty request
(roff, eqn) The macro name is missing from a macro definition request, or an eqn(7) control statement or
operation keyword lacks its required argument.

conditional request controls empty scope
(roff) A conditional request is only useful if any of the following follows it on the same logical input line:
- The ‘\{’ keyword to open a multi-line scope.
- A request or macro or some text, resulting in a single-line scope.
- The immediate end of the logical line without any intervening whitespace, resulting in next-line scope.
Here, a conditional request is followed by trailing whitespace only, and there is no other content on its logi-
cal input line. Note that it doesn’t matter whether the logical input line is split across multiple physical in-
put lines using ‘\’ line continuation characters. This is one of the rare cases where trailing whitespace is
syntactically significant. The conditional request controls a scope containing whitespace only, so it is un-
likely to have a significant effect, except that it may control a following el clause.

skipping empty macro
(mdoc) The indicated macro has no arguments and hence no effect.

empty block
(mdoc, man) A Bd, Bk, Bl, D1, Dl, MT, RS, or UR block contains nothing in its body and will produce no
output.

empty argument, using 0n
(mdoc) The required width is missing after Bd or Bl -offset or -width.

missing display type, using -ragged
(mdoc) The Bd macro is invoked without the required display type.

list type is not the first argument
(mdoc) In a Bl macro, at least one other argument precedes the type argument. The apropos utility
copes with any argument order, but some other mdoc(7) implementations do not.

missing -width in -tag list, using 8n
(mdoc) Every Bl macro having the -tag argument requires -width, too.

missing utility name, using ""
(mdoc) The Ex -std macro is called without an argument before Nm has first been called with an argu-
ment.

missing function name, using ""
(mdoc) The Fo macro is called without an argument. No function name is printed.

empty head in list item
(mdoc) In a Bl -diag, -hang, -inset, -ohang, or -tag list, an It macro lacks the required argu-
ment. The item head is left empty.

empty list item
(mdoc) In a Bl -bullet, -dash, -enum, or -hyphen list, an It block is empty. An empty list item
is shown.

missing argument, using next line
(mdoc) An It macro in a Bd -column list has no arguments. While apropos uses the text or macros
of the following line, if any, for the cell, other formatters may misformat the list.

GNU August 14, 2021 29

mandoc(1) General Commands Manual mandoc(1)

missing font type, using \fR
(mdoc) A Bf macro has no argument. It switches to the default font.

unknown font type, using \fR
(mdoc) The Bf argument is invalid. The default font is used instead.

nothing follows prefix
(mdoc) A Pf macro has no argument, or only one argument and no macro follows on the same input line.
This defeats its purpose; in particular, spacing is not suppressed before the text or macros following on the
next input line.

empty reference block
(mdoc) An Rs macro is immediately followed by an Re macro on the next input line. Such an empty block
does not produce any output.

missing section argument
(mdoc) An Xr macro lacks its second, section number argument. The first argument, i.e. the name, is
printed, but without subsequent parentheses.

missing -std argument, adding it
(mdoc) An Ex or Rv macro lacks the required -std argument. The apropos utility assumes -std even
when it is not specified, but other implementations may not.

missing option string, using ""
(man) The OP macro is invoked without any argument. An empty pair of square brackets is shown.

missing resource identifier, using ""
(man) The MT or UR macro is invoked without any argument. An empty pair of angle brackets is shown.

missing eqn box, using ""
(eqn) A diacritic mark or a binary operator is found, but there is nothing to the left of it. An empty box is
inserted.

Warnings related to bad macro arguments
duplicate argument
(mdoc) A Bd or Bl macro has more than one -compact, more than one -offset, or more than one
-width argument. All but the last instances of these arguments are ignored.

skipping duplicate argument
(mdoc) An An macro has more than one -split or -nosplit argument. All but the first of these argu-
ments are ignored.

skipping duplicate display type
(mdoc) A Bd macro has more than one type argument; the first one is used.

skipping duplicate list type
(mdoc) A Bl macro has more than one type argument; the first one is used.

skipping -width argument
(mdoc) A Bl -column, -diag, -ohang, -inset, or -item list has a -width argument. That has
no effect.

wrong number of cells
In a line of a Bl -column list, the number of tabs or Ta macros is less than the number expected from
the list header line or exceeds the expected number by more than one. Missing cells remain empty, and all
cells exceeding the number of columns are joined into one single cell.

unknown AT&T UNIX version
(mdoc) An At macro has an invalid argument. It is used verbatim, with "AT&T UNIX " prefixed to it.

GNU August 14, 2021 30

mandoc(1) General Commands Manual mandoc(1)

comma in function argument
(mdoc) An argument of an Fa or Fn macro contains a comma; it should probably be split into two argu-
ments.

parenthesis in function name
(mdoc) The first argument of an Fc or Fn macro contains an opening or closing parenthesis; that’s proba-
bly wrong, parentheses are added automatically.

unknown library name
(mdoc, not on OpenBSD) An Lb macro has an unknown name argument and will be rendered as "library
“name”".

invalid content in Rs block
(mdoc) An Rs block contains plain text or non-% macros. The bogus content is left in the syntax tree. For-
matting may be poor.

invalid Boolean argument
(mdoc) An Sm macro has an argument other than on or off. The invalid argument is moved out of the
macro, which leaves the macro empty, causing it to toggle the spacing mode.

argument contains two font escapes
(roff) The second argument of a char request contains more than one font escape sequence. A wrong font
may remain active after using the character.

unknown font, skipping request
(man, tbl) A roff(7) ft request or a tbl(7) f layout modifier has an unknown font argument.

odd number of characters in request
(roff) A tr request contains an odd number of characters. The last character is mapped to the blank char-
acter.

Warnings related to plain text
blank line in fill mode, using .sp
(mdoc) The meaning of blank input lines is only well-defined in non-fill mode: In fill mode, line breaks of
text input lines are not supposed to be significant. However, for compatibility with groff, blank lines in fill
mode are formatted like sp requests. To request a paragraph break, use Pp instead of a blank line.

tab in filled text
(mdoc, man) The meaning of tab characters is only well-defined in non-fill mode: In fill mode, whitespace
is not supposed to be significant on text input lines. As an implementation dependent choice, tab characters
on text lines are passed through to the formatters in any case. Given that the text before the tab character
will be filled, it is hard to predict which tab stop position the tab will advance to.

new sentence, new line
(mdoc) A new sentence starts in the middle of a text line. Start it on a new input line to help formatters
produce correct spacing.

invalid escape sequence
(roff) An escape sequence has an invalid opening argument delimiter, lacks the closing argument delimiter,
the argument is of an invalid form, or it is a character escape sequence with an invalid name. If the argu-
ment is incomplete, \∗ and \n expand to an empty string, \B to the digit ‘0’, and \w to the length of the
incomplete argument. All other invalid escape sequences are ignored.

undefined escape, printing literally
(roff) In an escape sequence, the first character right after the leading backslash is invalid. That character is
printed literally, which is equivalent to ignoring the backslash.

undefined string, using ""
(roff) If a string is used without being defined before, its value is implicitly set to the empty string. How-
ever, defining strings explicitly before use keeps the code more readable.

GNU August 14, 2021 31

mandoc(1) General Commands Manual mandoc(1)

Warnings related to tables
tbl line starts with span
(tbl) The first cell in a table layout line is a horizontal span (‘s’). Data provided for this cell is ignored, and
nothing is printed in the cell.

tbl column starts with span
(tbl) The first line of a table layout specification requests a vertical span (‘ˆ’). Data provided for this cell is
ignored, and nothing is printed in the cell.

skipping vertical bar in tbl layout
(tbl) A table layout specification contains more than two consecutive vertical bars. A double bar is printed,
all additional bars are discarded.

Errors related to tables
non-alphabetic character in tbl options
(tbl) The table options line contains a character other than a letter, blank, or comma where the beginning of
an option name is expected. The character is ignored.

skipping unknown tbl option
(tbl) The table options line contains a string of letters that does not match any known option name. The
word is ignored.

missing tbl option argument
(tbl) A table option that requires an argument is not followed by an opening parenthesis, or the opening
parenthesis is immediately followed by a closing parenthesis. The option is ignored.

wrong tbl option argument size
(tbl) A table option argument contains an invalid number of characters. Both the option and the argument
are ignored.

empty tbl layout
(tbl) A table layout specification is completely empty, specifying zero lines and zero columns. As a fall-
back, a single left-justified column is used.

invalid character in tbl layout
(tbl) A table layout specification contains a character that can neither be interpreted as a layout key charac-
ter nor as a layout modifier, or a modifier precedes the first key. The invalid character is discarded.

unmatched parenthesis in tbl layout
(tbl) A table layout specification contains an opening parenthesis, but no matching closing parenthesis. The
rest of the input line, starting from the parenthesis, has no effect.

ignoring excessive spacing in tbl layout
(tbl) A spacing modifier in a table layout is unreasonably large. The default spacing of 3n is used instead.

tbl without any data cells
(tbl) A table does not contain any data cells. It will probably produce no output.

ignoring data in spanned tbl cell
(tbl) A table cell is marked as a horizontal span (‘s’) or vertical span (‘ˆ’) in the table layout, but it con-
tains data. The data is ignored.

ignoring extra tbl data cells
(tbl) A data line contains more cells than the corresponding layout line. The data in the extra cells is ig-
nored.

data block open at end of tbl
(tbl) A data block is opened with T{, but never closed with a matching T}. The remaining data lines of the
table are all put into one cell, and any remaining cells stay empty.

GNU August 14, 2021 32

mandoc(1) General Commands Manual mandoc(1)

Errors related to roff, mdoc, and man code
duplicate prologue macro
(mdoc) One of the prologue macros occurs more than once. The last instance overrides all previous ones.

skipping late title macro
(mdoc) The Dt macro appears after the first non-prologue macro. Traditional formatters cannot handle this
because they write the page header before parsing the document body. Even though this technical restric-
tion does not apply to apropos, traditional semantics is preserved. The late macro is discarded including
its arguments.

input stack limit exceeded, infinite loop?
(roff) Explicit recursion limits are implemented for the following features, in order to prevent infinite loops:
- expansion of nested escape sequences including expansion of strings and number registers,
- expansion of nested user-defined macros,
- and so file inclusion.
When a limit is hit, the output is incorrect, typically losing some content, but the parser can continue.

skipping bad character
(mdoc, man, roff) The input file contains a byte that is not a printable ascii(7) character. The message men-
tions the character number. The offending byte is replaced with a question mark (‘?’). Consider editing the
input file to replace the byte with an ASCII transliteration of the intended character.

skipping unknown macro
(mdoc, man, roff) The first identifier on a request or macro line is neither recognized as a roff(7) request,
nor as a user-defined macro, nor, respectively, as an mdoc(7) or man(7) macro. It may be mistyped or un-
supported. The request or macro is discarded including its arguments.

skipping request outside macro
(roff) A shift or return request occurs outside any macro definition and has no effect.

skipping insecure request
(roff) An input file attempted to run a shell command or to read or write an external file. Such attempts are
denied for security reasons.

skipping item outside list
(mdoc, eqn) An It macro occurs outside any Bl list, or an eqn(7) above delimiter occurs outside any
pile. It is discarded including its arguments.

skipping column outside column list
(mdoc) A Ta macro occurs outside any Bl -column block. It is discarded including its arguments.

skipping end of block that is not open
(mdoc, man, eqn, tbl, roff) Various syntax elements can only be used to explicitly close blocks that have
previously been opened. An mdoc(7) block closing macro, a man(7) ME, RE or UE macro, an eqn(7) right
delimiter or closing brace, or the end of an equation, table, or roff(7) conditional request is encountered but
no matching block is open. The offending request or macro is discarded.

fewer RS blocks open, skipping
(man) The RE macro is invoked with an argument, but less than the specified number of RS blocks is open.
The RE macro is discarded.

inserting missing end of block
(mdoc, tbl) Various mdoc(7) macros as well as tables require explicit closing by dedicated macros. A block
that doesn’t support bad nesting ends before all of its children are properly closed. The open child nodes
are closed implicitly.

appending missing end of block
(mdoc, man, eqn, tbl, roff) At the end of the document, an explicit mdoc(7) block, a man(7) next-line scope
or MT, RS or UR block, an equation, table, or roff(7) conditional or ignore block is still open. The open
block is closed implicitly.

GNU August 14, 2021 33

mandoc(1) General Commands Manual mandoc(1)

escaped character not allowed in a name
(roff) Macro, string and register identifiers consist of printable, non-whitespace ASCII characters. Escape
sequences and characters and strings expressed in terms of them cannot form part of a name. The first ar-
gument of an am, as, de, ds, nr, or rr request, or any argument of an rm request, or the name of a re-
quest or user defined macro being called, is terminated by an escape sequence. In the cases of as, ds, and
nr, the request has no effect at all. In the cases of am, de, rr, and rm, what was parsed up to this point is
used as the arguments to the request, and the rest of the input line is discarded including the escape se-
quence. When parsing for a request or a user-defined macro name to be called, only the escape sequence is
discarded. The characters preceding it are used as the request or macro name, the characters following it
are used as the arguments to the request or macro.

using macro argument outside macro
(roff) The escape sequence \$ occurs outside any macro definition and expands to the empty string.

argument number is not numeric
(roff) The argument of the escape sequence \$ is not a digit; the escape sequence expands to the empty
string.

NOT IMPLEMENTED: Bd -file
(mdoc) For security reasons, the Bd macro does not support the -file argument. By requesting the in-
clusion of a sensitive file, a malicious document might otherwise trick a privileged user into inadvertently
displaying the file on the screen, revealing the file content to bystanders. The argument is ignored including
the file name following it.

skipping display without arguments
(mdoc) A Bd block macro does not have any arguments. The block is discarded, and the block content is
displayed in whatever mode was active before the block.

missing list type, using -item
(mdoc) A Bl macro fails to specify the list type.

argument is not numeric, using 1
(roff) The argument of a ce request is not a number.

argument is not a character
(roff) The first argument of a char request is neither a single ASCII character nor a single character escape
sequence. The request is ignored including all its arguments.

missing manual name, using ""
(mdoc) The first call to Nm, or any call in the NAME section, lacks the required argument.

uname(3) system call failed, using UNKNOWN
(mdoc) The Os macro is called without arguments, and the uname(3) system call failed. As a workaround,
apropos can be compiled with -DOSNAME="\"string\"".

unknown standard specifier
(mdoc) An St macro has an unknown argument and is discarded.

skipping request without numeric argument
(roff, eqn) An it request or an eqn(7) size or gsize statement has a non-numeric or negative argument
or no argument at all. The invalid request or statement is ignored.

excessive shift
(roff) The argument of a shift request is larger than the number of arguments of the macro that is cur-
rently being executed. All macro arguments are deleted and \n(.$ is set to zero.

NOT IMPLEMENTED: .so with absolute path or ".."
(roff) For security reasons, apropos allows so file inclusion requests only with relative paths and only
without ascending to any parent directory. By requesting the inclusion of a sensitive file, a malicious docu-
ment might otherwise trick a privileged user into inadvertently displaying the file on the screen, revealing
the file content to bystanders. apropos only shows the path as it appears behind so.

GNU August 14, 2021 34

mandoc(1) General Commands Manual mandoc(1)

.so request failed
(roff) Servicing a so request requires reading an external file, but the file could not be opened. apropos
only shows the path as it appears behind so.

skipping all arguments
(mdoc, man, eqn, roff) An mdoc(7) Bt, Ed, Ef, Ek, El, Lp, Pp, Re, Rs, or Ud macro, an It macro in a
list that don’t support item heads, a man(7) LP, P, or PP macro, an eqn(7) EQ or EN macro, or a roff(7) br,
fi, or nf request or ‘..’ block closing request is invoked with at least one argument. All arguments are ig-
nored.

skipping excess arguments
(mdoc, man, roff) A macro or request is invoked with too many arguments:

- Fo, MT, PD, RS, UR, ft, or sp with more than one argument
- An with another argument after -split or -nosplit
- RE with more than one argument or with a non-integer argument
- OP or a request of the de family with more than two arguments
- Dt with more than three arguments
- TH with more than five arguments
- Bd, Bk, or Bl with invalid arguments

The excess arguments are ignored.

Unsupported features
input too large
(mdoc, man) Currently, apropos cannot handle input files larger than its arbitrary size limit of 2ˆ31 bytes
(2 Gigabytes). Since useful manuals are always small, this is not a problem in practice. Parsing is aborted
as soon as the condition is detected.

unsupported control character
(roff) An ASCII control character supported by other roff(7) implementations but not by apropos was
found in an input file. It is replaced by a question mark.

unsupported escape sequence
(roff) An input file contains an escape sequence supported by GNU troff or Heirloom troff but not by
apropos, and it is likely that this will cause information loss or considerable misformatting.

unsupported roff request
(roff) An input file contains a roff(7) request supported by GNU troff or Heirloom troff but not by
apropos, and it is likely that this will cause information loss or considerable misformatting.

eqn delim option in tbl
(eqn, tbl) The options line of a table defines equation delimiters. Any equation source code contained in
the table will be printed unformatted.

unsupported table layout modifier
(tbl) A table layout specification contains an ‘m’ modifier. The modifier is discarded.

ignoring macro in table
(tbl, mdoc, man) A table contains an invocation of an mdoc(7) or man(7) macro or of an undefined macro.
The macro is ignored, and its arguments are handled as if they were a text line.

skipping tbl in -Tman mode
(mdoc, tbl) An input file contains the TS macro. This message is only generated in -T man output mode,
where tbl(7) input is not supported.

skipping eqn in -Tman mode
(mdoc, eqn) An input file contains the EQ macro. This message is only generated in -T man output
mode, where eqn(7) input is not supported.

GNU August 14, 2021 35

mandoc(1) General Commands Manual mandoc(1)

Bad command line arguments
bad command line argument
The argument following one of the -IKMmOTW command line options is invalid, or a file given as a
command line argument cannot be opened.

duplicate command line argument
The -I command line option was specified twice.

option has a superfluous value
An argument to the -O option has a value but does not accept one.

missing option value
An argument to the -O option has no argument but requires one.

bad option value
An argument to the -O indent or width option has an invalid value.

duplicate option value
The same -O option is specified more than once.

no such tag
The -O tag option was specified but the tag was not found in any of the displayed manual pages.

-Tmarkdown unsupported for man(7) input
(man) The -T markdown option was specified but an input file uses the man(7) language. No output is
produced for that input file.

SEE ALSO
apropos(1), man(1), eqn(7), man(7), mandoc_char(7), mdoc(7), roff(7), tbl(7)

HISTORY
The apropos utility first appeared in OpenBSD 4.8. The option -I appeared in OpenBSD 5.2, and
-aCcfhKklMSsw in OpenBSD 5.7.

AUTHORS
The apropos utility was written by Kristaps Dzonsons <kristaps@bsd.lv> and is maintained by Ingo
Schwarze <schwarze@openbsd.org>.

GNU August 14, 2021 36

soelim(1) General Commands Manual soelim(1)

NAME
soelim — interpret .so requests in manpages

SYNOPSIS
apropos [-Crtv] [-I dir] [files . . .]

DESCRIPTION
apropos reads files lines by lines.

If a line starts by: “.so anotherfile” it replace the line by processing “anotherfile”. Otherwise the line is
printed to stdout.

-C Recognise .so when not followed by a space character.

-r Compatibility with GNU groff’s soelim (does nothing).

-t Compatibility with GNU groff’s soelim (does nothing).

-v Compatibility with GNU groff’s soelim (does nothing).

-I dir
This option specify directories where apropos searches for files (both those on the command
line and those named in “.so” directive.) This options may be specified multiple times. The di-
rectories will be searched in the order specified.

The files are always searched first in the current directory.

A file specified with an absolute path will be opened directly without performing a search.

SEE ALSO
mandoc(1)

AUTHORS
This version of the apropos utility was written by Baptiste Daroussin <bapt@freebsd.org>.

GNU July 4, 2017 37

man.cgi(3) Library Functions Manual man.cgi(3)

NAME
man.cgi — internals of the CGI program to search and display manual pages

DESCRIPTION
The source code of man.cgi(8) is organized in four levels:

1. “Top level”
2. “Page generators”
3. “Result generators”
4. “Utility routines”

Top level
The top level of man.cgi(8) consists of the main() program and a few parser routines.

int main(void)
The main program
- limits execution time;
- changes to MAN_DIR, the data directory containing all the manual trees;
- calls parse_manpath_conf();
- if PATH_INFO is empty, calls parse_query_string(); otherwise, calls

parse_path_info();
- validates the manpath and the architecture;
- calls the appropriate one among the “Page generators”.

void parse_manpath_conf(struct req ∗req)
Parses and validates manpath.conf and fills req->p and req->psz.

void parse_path_info(struct req ∗req , const char ∗path)
Parses and validates PATH_INFO, clears req->isquery, and fills req->q.

void parse_query_string(struct req ∗req , const char ∗qs)
Parses and validates QUERY_STRING, sets req->isquery, and fills req->q. This function is the only user
of the utility functions http_decode() and set_query_attr().

Page generators
The purpose of each page generator is to print a complete HTML page, starting with the HTTP headers and
continuing to the page footer. Before starting HTML output with resp_begin_html(), some page gen-
erators do some preparatory work, for example to decide which page to show. Each page generator ends
with a call to resp_end_html().

void pg_show(struct req ∗req , const char ∗fullpath)
This page generator is used when PATH_INFO contains the complete path to a manual page including
manpath, section directory, optional architecture subdirectory, manual name and section number suffix.
It validates the manpath, changes into it, validate the filename, and then calls resp_begin_html(),
resp_searchform(), resp_show(), and resp_end_html() in that order.

void pg_search(const struct req ∗req)
This page generator is used when PATH_INFO contains a search query in short format or when
PATH_INFO is empty and a QUERY_STRING is provided. If possible, requests using QUERY_STRING
are redirected to URIs using PATH_INFO by calling pg_redirect(). Otherwise, it changes into the
manpath and calls mansearch(3). Depending on the result, it calls either pg_noresult() or
pg_searchres().

void pg_redirect(const struct req ∗req , const char ∗name)
This function is special in so far as it does not print an HTML page, but only an HTTP 303 response with
a Location: of the form: http://host/[scriptname/][manpath/][arch/]name[.sec]

void pg_noresult(const struct req ∗req , const char ∗msg)
This function calls resp_begin_html(), resp_searchform(), prints the msg passed to it, and
calls resp_end_html().

GNU March 15, 2017 38

man.cgi(3) Library Functions Manual man.cgi(3)

void pg_searchres(const struct req ∗req , struct manpage ∗r , size_t sz)
This function first validates the filenames found. If QUERY_STRING was used and there is exactly one
result, it writes an HTTP redirect to that result. Otherwise, it writes an HTML result page beginning
with resp_begin_html() and resp_searchform(). If there is more than one result, it writes a
list of links to all the results. If it was a man(1) rather than an apropos(1) query or if there is only one
single result, it calls resp_show(). Finally, it calls resp_end_html().

void pg_index(const struct req ∗req)
This page generator is used when PATH_INFO and QUERY_STRING are both empty. It calls
resp_begin_html() and resp_searchform(), writes links to help pages, and calls
resp_end_html().

void pg_error_badrequest(const char ∗msg)
This page generator is used when main() or pg_show() detect an invalid URI. It calls
resp_begin_html(), prints the msg provided, and calls resp_end_html().

void pg_error_internal(void)
This page generator is used by various functions when errors are detected in the manpath.conf configura-
tion file, in mandoc.db(5) databases, in the mandoc(3) parser, in file system permissions, or when setting
up timeouts. It calls resp_begin_html(), prints "Internal Server Error", and calls
resp_end_html(). Before calling pg_error_internal(), call warn(3) or warnx(3) to log the
reason of the error to the httpd(8) server log file.

Result generators
The purpose of result generators is to print a chunk of HTML code. When they print untrusted strings or
characters, html_print() and html_putchar() are used. The highest level result generators are:

void resp_begin_html(int code , const char ∗msg , const char ∗file)
This generator calls resp_begin_http() to print the HTTP headers, then prints the HTML header up
to the opening tag of the <body> element, then copies the file header.html to the output, if it exists and is
readable. If file is not NULL, it is used for the <title> element.

void resp_searchform(const struct req ∗req , enum focus focus)
This generator prints a search form, filling it with data from the provided request object. If the focus
argument is FOCUS_QUERY, it sets the document’s autofocus to the query input box.

void resp_show(const struct req ∗req , const char ∗file)
This wrapper dispatches to either resp_catman() or resp_format(), depending on whether file
starts with cat or man, respectively.

void resp_catman(const struct req ∗req , const char ∗file)
This generator translates a preformatted, backspace-encoded manual page to HTML and prints it to the
output.

void resp_format(const struct req ∗req , const char ∗file)
This generator formats a manual page on the standard output, using the functions documented in
mchars_alloc(3) and mandoc(3).

void resp_end_html(void)
This generator copies the file footer.html to the output, if it exists and is readable, and closes the <body>
and <html> elements.

Utility routines
These functions take a string and return 1 if it is valid, or 0 otherwise.

int validate_urifrag(const char ∗frag)
Checks that the string only contains alphanumeric ASCII characters, dashes, dots, slashes, and under-
scores.

GNU March 15, 2017 39

man.cgi(3) Library Functions Manual man.cgi(3)

int validate_manpath(const struct req ∗req , const char∗ manpath)
Checks that the string is either "mandoc" or one of the manpaths configured in manpath.conf.

int validate_filename(const char ∗file)
Checks that the string starts with "man" or "cat" and does not ascend to parent directories.

SEE ALSO
mandoc(3), mansearch(3), mchars_alloc(3), mandoc.db(5), man.cgi(8)

GNU March 15, 2017 40

mandoc(3) Library Functions Manual mandoc(3)

NAME
mandoc, deroff, mparse_alloc, mparse_copy, mparse_free, mparse_open, mparse_readfd, mparse_reset,
mparse_result — mandoc macro compiler library

SYNOPSIS
#include <sys/types.h>
#include <stdio.h>
#include <mandoc.h>

#define ASCII_NBRSP
#define ASCII_HYPH
#define ASCII_BREAK

struct mparse ∗
mparse_alloc(int options , enum mandoc_os oe_e , char ∗os_s);

void
mparse_free(struct mparse ∗parse);

void
mparse_copy(const struct mparse ∗parse);

int
mparse_open(struct mparse ∗parse , const char ∗fname);

void
mparse_readfd(struct mparse ∗parse , int fd , const char ∗fname);

void
mparse_reset(struct mparse ∗parse);

struct roff_meta ∗
mparse_result(struct mparse ∗parse);

#include <roff.h>

void
deroff(char ∗∗dest , const struct roff_node ∗node);

#include <sys/types.h>
#include <mandoc.h>
#include <mdoc.h>

extern const char ∗ const ∗ mdoc_argnames;
extern const char ∗ const ∗ mdoc_macronames;

#include <sys/types.h>
#include <mandoc.h>
#include <man.h>

extern const char ∗ const ∗ man_macronames;

DESCRIPTION
The mandoc library parses a Unix manual into an abstract syntax tree (AST). Unix manuals are composed
of mdoc(7) or man(7), and may be mixed with roff(7), tbl(7), and eqn(7) invocations.

The following describes a general parse sequence:

1. initiate a parsing sequence with mchars_alloc(3) and mparse_alloc();

2. open a file with open(2) or mparse_open();

3. parse it with mparse_readfd();

GNU December 30, 2018 41

mandoc(3) Library Functions Manual mandoc(3)

4. close it with close(2);

5. retrieve the syntax tree with mparse_result();

6. if information about the validity of the input is needed, fetch it with mparse_updaterc();

7. iterate over parse nodes with starting from the first member of the returned struct
roff_meta;

8. free all allocated memory with mparse_free() and mchars_free(3), or invoke mparse_reset()
and go back to step 2 to parse new files.

REFERENCE
This section documents the functions, types, and variables available via <mandoc.h>, with the exception of
those documented in mandoc_escape(3) and mchars_alloc(3).

Types
enum mandocerr
An error or warning message during parsing.

enum mandoclevel
A classification of an enum mandocerr as regards system operation. See the DIAGNOSTICS section in
mandoc(1) regarding the meanings of the levels.

struct mparse
An opaque pointer to a running parse sequence. Created with mparse_alloc() and freed with
mparse_free(). This may be used across parsed input if mparse_reset() is called between parses.

Functions
deroff()
Obtain a text-only representation of a struct roff_node, including text contained in its child nodes.
To be used on children of the first member of struct roff_meta. When it is no longer needed, the
pointer returned from deroff() can be passed to free(3).

mparse_alloc()
Allocate a parser. The arguments have the following effect:

options When the MPARSE_MDOC or MPARSE_MAN bit is set, only that parser is used. Other-
wise, the document type is automatically detected.

When the MPARSE_SO bit is set, roff(7) so file inclusion requests are always honoured.
Otherwise, if the request is the only content in an input file, only the file name is remem-
bered, to be returned in the sodest field of struct roff_meta.

When the MPARSE_QUICK bit is set, parsing is aborted after the NAME section. This is
for example useful in makewhatis(8) -Q to quickly build minimal databases.

When the MARSE_VALIDATE bit is set, mparse_result() runs the validation func-
tions before returning the syntax tree. This is almost always required, except in certain
debugging scenarios, for example to dump unvalidated syntax trees.

os_e Operating system to check base system conventions for. If MANDOC_OS_OTHER, the
system is automatically detected from Os, -Ios, or uname(3).

os_s A default string for the mdoc(7) Os macro, overriding the OSNAME preprocessor defini-
tion and the results of uname(3). Passing NULL sets no default.

The same parser may be used for multiple files so long as mparse_reset() is called between parses.
mparse_free() must be called to free the memory allocated by this function. Declared in <mandoc.h>,
implemented in read.c.

mparse_free()
Free all memory allocated by mparse_alloc(). Declared in <mandoc.h>, implemented in read.c.

GNU December 30, 2018 42

mandoc(3) Library Functions Manual mandoc(3)

mparse_copy()
Dump a copy of the input to the standard output; used for -man -Tman. Declared in <mandoc.h>, im-
plemented in read.c.

mparse_open()
Open the file for reading. If that fails and fname does not already end in .gz, try again after appending
.gz. Save the information whether the file is zipped or not. Return a file descriptor open for reading or -1
on failure. It can be passed to mparse_readfd() or used directly. Declared in <mandoc.h>, imple-
mented in read.c.

mparse_readfd()
Parse a file descriptor opened with open(2) or mparse_open(). Pass the associated filename in fname.
This function may be called multiple times with different parameters; however, close(2) and
mparse_reset() should be invoked between parses. Declared in <mandoc.h>, implemented in read.c.

mparse_reset()
Reset a parser so that mparse_readfd() may be used again. Declared in <mandoc.h>, implemented in
read.c.

mparse_result()
Obtain the result of a parse. Declared in <mandoc.h>, implemented in read.c.

Variables
man_macronames
The string representation of a man(7) macro as indexed by enum mant.

mdoc_argnames
The string representation of an mdoc(7) macro argument as indexed by enum mdocargt.

mdoc_macronames
The string representation of an mdoc(7) macro as indexed by enum mdoct.

IMPLEMENTATION NOTES
This section consists of structural documentation for mdoc(7) and man(7) syntax trees and strings.

Man and Mdoc Strings
Strings may be extracted from mdoc and man meta-data, or from text nodes (MDOC_TEXT and
MAN_TEXT, respectively). These strings have special non-printing formatting cues embedded in the text
itself, as well as roff(7) escapes preserved from input. Implementing systems will need to handle both situ-
ations to produce human-readable text. In general, strings may be assumed to consist of 7-bit ASCII char-
acters.

The following non-printing characters may be embedded in text strings:

ASCII_NBRSP
A non-breaking space character.

ASCII_HYPH
A soft hyphen.

ASCII_BREAK
A breakable zero-width space.

Escape characters are also passed verbatim into text strings. An escape character is a sequence of charac-
ters beginning with the backslash (‘\’). To construct human-readable text, these should be intercepted with
mandoc_escape(3) and converted with one the functions described in mchars_alloc(3).

Man Abstract Syntax Tree
This AST is governed by the ontological rules dictated in man(7) and derives its terminology accordingly.

The AST is composed of struct roff_node nodes with element, root and text types as declared by
the type field. Each node also provides its parse point (the line, pos, and sec fields), its position in the tree
(the parent, child, next and prev fields) and some type-specific data.

GNU December 30, 2018 43

mandoc(3) Library Functions Manual mandoc(3)

The tree itself is arranged according to the following normal form, where capitalised non-terminals repre-
sent nodes.

ROOT ← mnode+
mnode ← ELEMENT | TEXT | BLOCK
BLOCK ← HEAD BODY
HEAD ← mnode∗
BODY ← mnode∗
ELEMENT ← ELEMENT | TEXT∗
TEXT ← [[:ascii:]]∗

The only elements capable of nesting other elements are those with next-line scope as documented in
man(7).

Mdoc Abstract Syntax Tree
This AST is governed by the ontological rules dictated in mdoc(7) and derives its terminology accordingly.
"In-line" elements described in mdoc(7) are described simply as "elements".

The AST is composed of struct roff_node nodes with block, head, body, element, root and text
types as declared by the type field. Each node also provides its parse point (the line, pos, and sec fields), its
position in the tree (the parent, child, last, next and prev fields) and some type-specific data, in particular,
for nodes generated from macros, the generating macro in the tok field.

The tree itself is arranged according to the following normal form, where capitalised non-terminals repre-
sent nodes.

ROOT ← mnode+
mnode ← BLOCK | ELEMENT | TEXT
BLOCK ← HEAD [TEXT] (BODY [TEXT])+ [TAIL [TEXT]]
ELEMENT ← TEXT∗
HEAD ← mnode∗
BODY ← mnode∗ [ENDBODY mnode∗]
TAIL ← mnode∗
TEXT ← [[:ascii:]]∗

Of note are the TEXT nodes following the HEAD, BODY and TAIL nodes of the BLOCK production:
these refer to punctuation marks. Furthermore, although a TEXT node will generally have a non-zero-
length string, in the specific case of ‘.Bd -literal’, an empty line will produce a zero-length string. Multiple
body parts are only found in invocations of ‘Bl -column’, where a new body introduces a new phrase.

The mdoc(7) syntax tree accommodates for broken block structures as well. The ENDBODY node is avail-
able to end the formatting associated with a given block before the physical end of that block. It has a non-
null end field, is of the BODY type, has the same tok as the BLOCK it is ending, and has a pending field
pointing to that BLOCK’s BODY node. It is an indirect child of that BODY node and has no children of its
own.

An ENDBODY node is generated when a block ends while one of its child blocks is still open, like in the
following example:

.Ao ao

.Bo bo ac

.Ac bc

.Bc end

This example results in the following block structure:

BLOCK Ao
HEAD Ao
BODY Ao

TEXT ao
BLOCK Bo, pending -> Ao

GNU December 30, 2018 44

mandoc(3) Library Functions Manual mandoc(3)

HEAD Bo
BODY Bo

TEXT bo
TEXT ac
ENDBODY Ao, pending -> Ao
TEXT bc

TEXT end

Here, the formatting of the Ao block extends from TEXT ao to TEXT ac, while the formatting of the Bo
block extends from TEXT bo to TEXT bc. It renders as follows in -Tascii mode:

<ao [bo ac> bc] end

Support for badly-nested blocks is only provided for backward compatibility with some older mdoc(7) im-
plementations. Using badly-nested blocks is strongly discouraged; for example, the -Thtml front-end to
mandoc(1) is unable to render them in any meaningful way. Furthermore, behaviour when encountering
badly-nested blocks is not consistent across troff implementations, especially when using multiple levels of
badly-nested blocks.

SEE ALSO
mandoc(1), man.cgi(3), mandoc_escape(3), mandoc_headers(3), mandoc_malloc(3), mansearch(3),
mchars_alloc(3), tbl(3), eqn(7), man(7), mandoc_char(7), mdoc(7), roff(7), tbl(7)

AUTHORS
The apropos library was written by Kristaps Dzonsons <kristaps@bsd.lv> and is maintained by Ingo
Schwarze <schwarze@openbsd.org>.

GNU December 30, 2018 45

mandoc_escape(3) Library Functions Manual mandoc_escape(3)

NAME
mandoc_escape — parse roff escape sequences

SYNOPSIS
#include <sys/types.h>
#include <mandoc.h>

enum mandoc_esc
mandoc_escape(const char ∗∗end , const char ∗∗start , int ∗sz);

DESCRIPTION
This function scans a roff(7) escape sequence.

An escape sequence consists of
- an initial backslash character (‘\’),
- a single ASCII character called the escape sequence identifier,
- and, with only a few exceptions, an argument.

Arguments can be given in the following forms; some escape sequence identifiers only accept some of these
forms as specified below. The first three forms are called the standard forms.

In brackets: [argument]
The argument starts after the initial ‘[’, ends before the final ‘]’, and the escape sequence ends with the
final ‘]’.

Two-character argument short form: (ar
This form can only be used for arguments consisting of exactly two characters. It has the same effect as
[ar].

One-character argument short form: a
This form can only be used for arguments consisting of exactly one character. It has the same effect as
[a].

Delimited form: CargumentC
The argument starts after the initial delimiter character C, ends before the next occurrence of the delim-
iter character C, and the escape sequence ends with that second C. Some escape sequences allow arbi-
trary characters C as quoting characters, some restrict the range of characters that can be used as quot-
ing characters.

Upon function entry, end is expected to point to the escape sequence identifier. The values passed in as
start and sz are ignored and overwritten.

By design, this function cannot handle those roff(7) escape sequences that require in-place expansion, in
particular user-defined strings \∗, number registers \n, width measurements \w, and numerical expression
control \B. These are handled by roff_res(), a private preprocessor function called from
roff_parseln(), see the file roff.c.

The function mandoc_escape() is used
- recursively by itself, because some escape sequence arguments can in turn contain other escape se-

quences,
- for error detection internally by the roff(7) parser part of the mandoc(3) library, see the file roff.c,
- above all externally by the mandoc(1) formatting modules, in particular -Tascii and -Thtml, for

formatting purposes, see the files term.c and html.c,
- and rarely externally by high-level utilities using the mandoc library, for example makewhatis(8), to

purge escape sequences from text.

RETURN VALUES
Upon function return, the pointer end is set to the character after the end of the escape sequence, such that
the calling higher-level parser can easily continue.

For escape sequences taking an argument, the pointer start is set to the beginning of the argument and
sz is set to the length of the argument. For escape sequences not taking an argument, start is set to the

GNU July 4, 2017 46

mandoc_escape(3) Library Functions Manual mandoc_escape(3)

character after the end of the sequence and sz is set to 0. Both start and sz may be NULL; in that case,
the argument and the length are not returned.

For sequences taking an argument, the function mandoc_escape() returns one of the following values:

ESCAPE_FONT
The escape sequence \f taking an argument in standard form: \f[, \f(, \fa. Two-character argu-
ments starting with the character ‘C’ are reduced to one-character arguments by skipping the ‘C’. More
specific values are returned for the most commonly used arguments:

argument return value
R or 1 ESCAPE_FONTROMAN
I or 2 ESCAPE_FONTITALIC
B or 3 ESCAPE_FONTBOLD
P ESCAPE_FONTPREV
BI ESCAPE_FONTBI

ESCAPE_SPECIAL
The escape sequence \C taking an argument delimited with the single quote character and, as a special
exception, the escape sequences not having an identifier, that is, those where the argument, in standard
form, directly follows the initial backslash: \C’, \[, \(, \a. Note that the one-character argument
short form can only be used for argument characters that do not clash with escape sequence identifiers.

If the argument matches one of the forms described below under ESCAPE_UNICODE, that value is re-
turned instead.

The ESCAPE_SPECIAL special character escape sequences can be rendered using the functions
mchars_spec2cp() and mchars_spec2str() described in the mchars_alloc(3) manual.

ESCAPE_UNICODE
Escape sequences of the same format as described above under ESCAPE_SPECIAL, but with an argu-
ment of the forms uXXXX, uYXXXX, or u10XXXX where X and Y are hexadecimal digits and Y is not
zero: \C’u, \[u. As a special exception, start is set to the character after the u, and the sz return
value does not include the u either.

Such Unicode character escape sequences can be rendered using the function mchars_num2uc() de-
scribed in the mchars_alloc(3) manual.

ESCAPE_NUMBERED
The escape sequence \N followed by a delimited argument. The delimiter character is arbitrary except
that digits cannot be used. If a digit is encountered instead of the opening delimiter, that digit is consid-
ered to be the argument and the end of the sequence, and ESCAPE_IGNORE is returned.

Such ASCII character escape sequences can be rendered using the function mchars_num2char() de-
scribed in the mchars_alloc(3) manual.

ESCAPE_OVERSTRIKE
The escape sequence \o followed by an argument delimited by an arbitrary character.

ESCAPE_IGNORE

• The escape sequence \s followed by an argument in standard form or by an argument delimited by
the single quote character: \s’, \s[, \s(, \sa. As a special exception, an optional ‘+’ or ‘-’
character is allowed after the ‘s’ for all forms.

• The escape sequences \F, \g, \k, \M, \m, \n, \V, and \Y followed by an argument in standard
form.

• The escape sequences \A, \b, \D, \R, \X, and \Z followed by an argument delimited by an arbi-
trary character.

GNU July 4, 2017 47

mandoc_escape(3) Library Functions Manual mandoc_escape(3)

• The escape sequences \H, \h, \L, \l, \S, \v, and \x followed by an argument delimited by a
character that cannot occur in numerical expressions. However, if any character that can occur in
numerical expressions is found instead of a delimiter, the sequence is considered to end with that
character, and ESCAPE_ERROR is returned.

ESCAPE_ERROR
Escape sequences taking an argument but not matching any of the above patterns. In particular, that
happens if the end of the logical input line is reached before the end of the argument.

For sequences that do not take an argument, the function mandoc_escape() returns one of the following
values:

ESCAPE_SKIPCHAR
The escape sequence "\z".

ESCAPE_NOSPACE
The escape sequence "\c".

ESCAPE_IGNORE
The escape sequences "\d" and "\u".

FILES
This function is implemented in mandoc.c.

SEE ALSO
mchars_alloc(3), mandoc_char(7), roff(7)

HISTORY
This function has been available since mandoc 1.11.2.

AUTHORS
Kristaps Dzonsons <kristaps@bsd.lv>
Ingo Schwarze <schwarze@openbsd.org>

BUGS
The function doesn’t cleanly distinguish between sequences that are valid and supported, valid and ignored,
valid and unsupported, syntactically invalid, or undefined. For sequences that are ignored or unsupported, it
doesn’t tell whether that deficiency is likely to cause major formatting problems and/or loss of document
content. The function is already rather complicated and still parses some sequences incorrectly.

GNU July 4, 2017 48

mandoc_headers(3) Library Functions Manual mandoc_headers(3)

NAME
mandoc_headers — ordering of mandoc include files

DESCRIPTION
To support a cleaner coding style, the mandoc header files do not contain any include directives and do not
guard against multiple inclusion. The application developer has to make sure that the headers are included
in a proper order, and that no header is included more than once.

The headers and functions form three major groups: “Parser interface”, “Parser internals”, and “Formatter
interface”.

Various rules are given below prohibiting the inclusion of certain combinations of headers into the same
file. The intention is to keep the following functional components separate from each other:

- roff(7) parser
- mdoc(7) parser
- man(7) parser
- tbl(7) parser
- eqn(7) parser
- terminal formatters
- HTML formatters
- search tools
- main programs

Note that mere usage of an opaque struct type does not require inclusion of the header where that type is
defined.

Parser interface
Each of the following headers can be included without including any other mandoc header. These headers
should be included before any other mandoc headers.

"mandoc_aux.h"
Memory allocation utility functions; can be used everywhere.

Requires <sys/types.h> for size_t.

Provides the functions documented in mandoc_malloc(3).

"mandoc_ohash.h"
Hashing utility functions; can be used everywhere.

Requires <stddef.h> for ptrdiff_t and <stdint.h> for uint32_t.

Includes <ohash.h> and provides mandoc_ohash_init().

"mandoc.h"
Error handling, escape sequence, and character utilities; can be used everywhere.

Requires <sys/types.h> for size_t and <stdio.h> for FILE.

Provides enum mandoc_esc, enum mandocerr, enum mandoclevel, the function
mandoc_escape(3), the functions described in mchars_alloc(3), and the mandoc_msg∗() func-
tions.

"roff.h" Common data types for all syntax trees and related functions; can be used everywhere.

Provides enum mandoc_os, enum mdoc_endbody, enum roff_macroset, enum
roff_sec, enum roff_tok, enum roff_type, struct roff_man, struct
roff_meta, struct roff_node, the constant array roff_name and the function deroff().

Uses pointers to the types struct ohash from "mandoc_ohash.h", struct mdoc_arg and
union mdoc_data from "mdoc.h", struct tbl_span from "tbl.h", and struct
eqn_box from "eqn.h" as opaque struct members.

GNU August 10, 2021 49

mandoc_headers(3) Library Functions Manual mandoc_headers(3)

"tbl.h" Data structures for the tbl(7) parse tree; can be used everywhere.

Requires <sys/types.h> for size_t and "mandoc.h" for enum mandoc_esc.

Provides enum tbl_cellt, enum tbl_datt, enum tbl_spant, struct tbl_opts,
struct tbl_cell, struct tbl_row, struct tbl_dat, and struct tbl_span.

"eqn.h"
Data structures for the eqn(7) parse tree; can be used everywhere.

Requires <sys/types.h> for size_t.

Provides enum eqn_boxt, enum eqn_fontt, enum eqn_post, and struct eqn_box.

"mandoc_parse.h"
Top level parser interface, for use in the main program and in the main parser, but not in format-
ters.

Requires "mandoc.h" for enum mandocerr and enum mandoclevel and "roff.h" for enum
mandoc_os.

Uses the opaque type struct mparse from read.c for function prototypes. Uses struct
roff_meta from "roff.h" as an opaque type for function prototypes.

"mandoc_xr.h"
Cross reference validation; intended for use in the main program and in parsers, but not in format-
ters.

Provides struct mandoc_xr and the functions mandoc_xr_reset(), mandoc_xr_add(),
mandoc_xr_get(), and mandoc_xr_free().

"tag.h" Internal interfaces to tag syntax tree nodes, for use by validation modules only.

Requires <limits.h> for INT_MAX.

Provides the functions tag_alloc(), tag_put(), tag_check(), and tag_free() and some
TAG_∗ constants.

Uses the type struct roff_node from "roff.h" as an opaque type for function prototypes.

The following two require "roff.h" but no other mandoc headers. Afterwards, any other mandoc headers
can be included as needed.

"mdoc.h"
Requires <sys/types.h> for size_t.

Provides enum mdocargt, enum mdoc_auth, enum mdoc_disp, enum mdoc_font,
enum mdoc_list, struct mdoc_argv, struct mdoc_arg, struct mdoc_an,
struct mdoc_bd, struct mdoc_bf, struct mdoc_bl, struct mdoc_rs, union
mdoc_data, and the functions mdoc_∗() described in mandoc(3).

Uses the types struct roff_node from "roff.h" and struct roff_man from "roff_int.h"
as opaque types for function prototypes.

When this header is included, the same file should not include internals of different parsers.

"man.h"
Provides the functions man_∗() described in mandoc(3).

Uses the type struct roff_man from "roff.h" as an opaque type for function prototypes.

When this header is included, the same file should not include internals of different parsers.

Parser internals
Most of the following headers require inclusion of a parser interface header before they can be included.
All parser interface headers should precede all parser internal headers. When any parser internal headers
are included, the same file should not include any formatter headers.

GNU August 10, 2021 50

mandoc_headers(3) Library Functions Manual mandoc_headers(3)

"libmandoc.h"
Requires <sys/types.h> for size_t and "mandoc.h" for enum mandocerr.

Provides struct buf, utility functions needed by multiple parsers, and the top-level functions
to call the parsers.

Uses the opaque type struct roff from roff.c for function prototypes. Uses the type struct
roff_man from "roff.h" as an opaque type for function prototypes.

"roff_int.h"
Parser internals shared by multiple parsers. Can be used in all parsers, but not in main programs or
formatters.

Requires "roff.h" for enum roff_type and enum roff_tok.

Provides enum roff_next, struct roff_man, functions named roff_∗() to handle roff
nodes, roffhash_alloc(), roffhash_find(), roffhash_free(), and
roff_validate(), and the two special functions man_breakscope() and
mdoc_argv_free() because the latter two are needed by roff.c.

Uses the types struct ohash from "mandoc_ohash.h", struct roff_node and struct
roff_meta from "roff.h", struct roff from roff.c, and struct mdoc_arg from
"mdoc.h" as opaque types for function prototypes.

"libmdoc.h"
Requires "roff.h" for enum roff_tok and enum roff_sec.

Provides enum margserr, enum mdelim, struct mdoc_macro, and many functions in-
ternal to the mdoc(7) parser.

Uses the types struct roff_node from "roff.h", struct roff_man from "roff_int.h", and
struct mdoc_arg from "mdoc.h" as opaque types for function prototypes.

When this header is included, the same file should not include interfaces of different parsers.

"libman.h"
Requires "roff.h" for enum roff_tok.

Provides struct man_macro and some functions internal to the man(7) parser.

Uses the types struct roff_node from "roff.h" and struct roff_man from "roff_int.h"
as opaque types for function prototypes.

When this header is included, the same file should not include interfaces of different parsers.

"eqn_parse.h"
External interface of the eqn(7) parser, for use in the roff(7) and eqn(7) parsers only.

Requires <sys/types.h> for size_t.

Provides struct eqn_node and the functions eqn_alloc(), eqn_box_new(),
eqn_box_free(), eqn_free(), eqn_parse(), eqn_read(), and eqn_reset().

Uses the type struct eqn_box from "mandoc.h" as an opaque type for function prototypes.
Uses the types struct roff_node from "roff.h" and struct eqn_def from eqn.c as
opaque struct members.

When this header is included, the same file should not include internals of different parsers.

"tbl_parse.h"
External interface of the tbl(7) parser, for use in the roff(7) and tbl(7) parsers only.

Provides the functions documented in tbl(3).

Uses the types struct tbl_span from "tbl.h" and struct tbl_node from "tbl_int.h" as
opaque types for function prototypes.

GNU August 10, 2021 51

mandoc_headers(3) Library Functions Manual mandoc_headers(3)

When this header is included, the same file should not include internals of different parsers.

"tbl_int.h"
Internal interfaces of the tbl(7) parser, for use inside the tbl(7) parser only.

Requires "tbl.h" for struct tbl_opts.

Provides enum tbl_part, struct tbl_node, and the functions tbl_option(),
tbl_layout(), tbl_data(), tbl_cdata(), and tbl_reset().

When this header is included, the same file should not include interfaces of different parsers.

Formatter interface
These headers should be included after any parser interface headers. No parser internal headers should be
included by the same file.

"out.h" Requires <sys/types.h> for size_t.

Provides enum roffscale, struct roffcol, struct roffsu, struct rofftbl,
a2roffsu(), and tblcalc().

Uses struct tbl_span from "mandoc.h" as an opaque type for function prototypes.

When this header is included, the same file should not include "mansearch.h".

"term.h"
Requires <sys/types.h> for size_t and "out.h" for struct roffsu and struct rofftbl.

Provides enum termenc, enum termfont, enum termtype, struct termp_tbl,
struct termp, roff_term_pre(), and many terminal formatting functions.

Uses the opaque type struct termp_ps from term_ps.c. Uses struct tbl_span and
struct eqn_box from "mandoc.h" and struct roff_meta and struct roff_node
from "roff.h" as opaque types for function prototypes.

When this header is included, the same file should not include "html.h" or "mansearch.h".

"tag_term.h"
Requires <sys/types.h> for size_t and <stdio.h> for FILE.

Provides an interface to generate ctags(1) files for the :t functionality mentioned in man(1).

Uses the type struct roff_node from "roff.h" as an opaque type for function prototypes.

When this header is included, the same file should not include "html.h" or "mansearch.h".

"html.h"
Requires <sys/types.h> for size_t, "mandoc.h" for enum mandoc_esc, "roff.h" for enum
roff_tok, and "out.h" for struct roffsu and struct rofftbl.

Provides enum htmltag, enum htmlattr, enum htmlfont, struct tag, struct
tagq, struct htmlpair, struct html, roff_html_pre(), and many HTML format-
ting functions.

Uses struct tbl_span and struct eqn_box from "mandoc.h" and struct
roff_node from "roff.h" as opaque types for function prototypes.

When this header is included, the same file should not include "term.h", "tab_term.h", or
"mansearch.h".

"main.h"
Provides the top level steering functions for all formatters.

Uses the type struct roff_meta from "roff.h" as an opaque type for function prototypes.

"manconf.h"
Requires <sys/types.h> for size_t.

GNU August 10, 2021 52

mandoc_headers(3) Library Functions Manual mandoc_headers(3)

Provides struct manconf, struct manpaths, struct manoutput, and the functions
manconf_parse(), manconf_output(), manconf_free(), and manpath_base().

"mansearch.h"
Requires <sys/types.h> for size_t and <stdint.h> for uint64_t.

Provides enum argmode, struct manpage, struct mansearch, and the functions
mansearch() and mansearch_free().

Uses struct manpaths from "manconf.h" as an opaque type for function prototypes.

When this header is included, the same file should not include "out.h", "term.h", "tab_term.h", or
"html.h".

GNU August 10, 2021 53

mandoc_html(3) Library Functions Manual mandoc_html(3)

NAME
mandoc_html — internals of the mandoc HTML formatter

SYNOPSIS
#include <sys/types.h>
#include "mandoc.h"
#include "roff.h"
#include "out.h"
#include "html.h"

void
print_gen_decls(struct html ∗h);

void
print_gen_comment(struct html ∗h , struct roff_node ∗n);

void
print_gen_head(struct html ∗h);

struct tag ∗
print_otag(struct html ∗h , enum htmltag tag , const char ∗fmt , . . .);

void
print_tagq(struct html ∗h , const struct tag ∗until);

void
print_stagq(struct html ∗h , const struct tag ∗suntil);

void
html_close_paragraph(struct html ∗h);

enum roff_tok
html_fillmode(struct html ∗h , enum roff_tok tok);

int
html_setfont(struct html ∗h , enum mandoc_esc font);

void
print_text(struct html ∗h , const char ∗word);

void
print_tagged_text(struct html ∗h , const char ∗word , struct roff_node ∗n);

char ∗
html_make_id(const struct roff_node ∗n , int unique);

struct tag ∗
print_otag_id(struct html ∗h , enum htmltag tag , const char ∗cattr ,

struct roff_node ∗n);

void
print_endline(struct html ∗h);

DESCRIPTION
The mandoc HTML formatter is not a formal library. However, as it is compiled into more than one pro-
gram, in particular mandoc(1) and man.cgi(8), and because it may be security-critical in some contexts,
some documentation is useful to help to use it correctly and to prevent XSS vulnerabilities.

The formatter produces HTML output on the standard output. Since proper escaping is usually required
and best taken care of at one central place, the language-specific formatters (∗_html.c, see “FILES”) are not
supposed to print directly to stdout using functions like printf(3), putc(3), puts(3), or write(2). Instead,
they are expected to use the output functions declared in html.h and implemented as part of the main
HTML formatting engine in html.c.

GNU April 24, 2020 54

mandoc_html(3) Library Functions Manual mandoc_html(3)

Data structures
These structures are declared in html.h.

struct html
Internal state of the HTML formatter.

struct tag
One entry for the LIFO stack of HTML elements. Members include enum htmltag tag and
struct tag ∗next.

Private interface functions
The function print_gen_decls() prints the opening 〈!DOCTYPE〉 declaration.

The function print_gen_comment() prints the leading comments, usually containing a Copyright no-
tice and license, as an HTML comment. It is intended to be called right after opening the 〈HTML〉 element.
Pass the first ROFFT_COMMENT node in n.

The function print_gen_head() prints the opening 〈META〉 and 〈LINK〉 elements for the document
〈HEAD〉, using the style member of h unless that is NULL. It uses print_otag() which takes care of
properly encoding attributes, which is relevant for the style link in particular.

The function print_otag() prints the start tag of an HTML element with the name tag, optionally in-
cluding the attributes specified by fmt. If fmt is the empty string, no attributes are written. Each letter of
fmt specifies one attribute to write. Most attributes require one char ∗ argument which becomes the value
of the attribute. The arguments have to be given in the same order as the attribute letters. If an argument is
NULL, the respective attribute is not written.

c
Print a class attribute.

h
Print a href attribute. This attribute letter can optionally be followed by a modifier letter. If fol-
lowed by R, it formats the link as a local one by prefixing a ‘#’ character. If followed by I, it in-
terpretes the argument as a header file name and generates a link using the mandoc(1) -O
includes option. If followed by M, it takes two arguments instead of one, a manual page name
and section, and formats them as a link to a manual page using the mandoc(1) -O man option.

i
Print an id attribute.

?
Print an arbitrary attribute. This format letter requires two char ∗ arguments, the attribute
name and the value. The name must not be NULL.

s
Print a style attribute. If present, it must be the last format letter. It requires two char ∗ argu-
ments. The first is the name of the style property, the second its value. The name must not be
NULL. The s fmt letter can be repeated, each repetition requiring an additional pair of char ∗ ar-
guments.

print_otag() uses the private function print_encode() to take care of HTML encoding. If required
by the element type, it remembers in h that the element is open. The function print_tagq() is used to
close out all open elements up to and including until; print_stagq() is a variant to close out all open
elements up to but excluding suntil. The function html_close_paragraph() closes all open ele-
ments that establish phrasing context, thus returning to the innermost flow context.

The function html_fillmode() switches to fill mode if want is ROFF_fi or to no-fill mode if want is
ROFF_nf. Switching from fill mode to no-fill mode closes the current paragraph and opens a 〈PRE〉 ele-
ment. Switching in the opposite direction closes the 〈PRE〉 element, but does not open a new paragraph. If
want matches the mode that is already active, no elements are closed nor opened. If want is
TOKEN_NONE, the mode remains as it is.

GNU April 24, 2020 55

mandoc_html(3) Library Functions Manual mandoc_html(3)

The function html_setfont() selects the font, which can be ESCAPE_FONTROMAN,
ESCAPE_FONTBOLD, ESCAPE_FONTITALIC, ESCAPE_FONTBI, or ESCAPE_FONTCW, for future
text output and internally remembers the font that was active before the change. If the font argument is
ESCAPE_FONTPREV, the current and the previous font are exchanged. This function only changes the in-
ternal state of the h object; no HTML elements are written yet. Subsequent text output will write font ele-
ments when needed.

The function print_text() prints HTML element content. It uses the private function
print_encode() to take care of HTML encoding. If the document has requested a non-standard font,
for example using a roff(7) \f font escape sequence, print_text() wraps word in an HTML font selec-
tion element using the print_otag() and print_tagq() functions.

The function print_tagged_text() is a variant of print_text() that wraps word in an 〈A〉 element
of class "permalink" if n is not NULL and yields a segment identifier when passed to html_make_id().

The function html_make_id() allocates a string to be used for the id attribute of an HTML element
and/or as a segment identifier for a URI in an 〈A〉 element. If n contains a tag attribute, it is used; other-
wise, child nodes are used. If n is an Sh, Ss, Sx, SH, or SS node, the resulting string is the concatenation
of the child strings; for other node types, only the first child is used. Bytes not permitted in URI-fragment
strings are replaced by underscores. If any of the children to be used is not a text node, no string is gener-
ated and NULL is returned instead. If the unique argument is non-zero, deduplication is performed by ap-
pending an underscore and a decimal integer, if necessary. If the unique argument is 1, this is assumed to
be the first call for this tag at this location, typically for use by NODE_ID, so the integer is incremented be-
fore use. If the unique argument is 2, this is ssumed to be the second call for this tag at this location, typ-
ically for use by NODE_HREF, so the existing integer, if any, is used without incrementing it.

The function print_otag_id() opens a tag element of class cattr for the node n. If the flag
NODE_ID is set in n, it attempts to generate an id attribute with html_make_id(). If the flag
NODE_HREF is set in n, an 〈A〉 element of class "permalink" is added: outside if n generates an element
that can only occur in phrasing context, or inside otherwise. This function is a wrapper around
html_make_id() and print_otag(), automatically chosing the unique argument appropriately and
setting the fmt arguments to "chR" and "ci", respectively.

The function print_endline() makes sure subsequent output starts on a new HTML output line. If
nothing was printed on the current output line yet, it has no effect. Otherwise, it appends any buffered text
to the current output line, ends the line, and updates the internal state of the h object.

The functions print_eqn(), print_tbl(), and print_tblclose() are not yet documented.

RETURN VALUES
The functions print_otag() and print_otag_id() return a pointer to a new element on the stack of
HTML elements. When print_otag_id() opens two elements, a pointer to the outer one is returned.
The memory pointed to is owned by the library and is automatically free(3)d when print_tagq() is
called on it or when print_stagq() is called on a parent element.

The function html_fillmode() returns ROFF_fi if fill mode was active before the call or ROFF_nf
otherwise.

The function html_make_id() returns a newly allocated string or NULL if n lacks text data to create the
attribute from. The caller is responsible for free(3)ing the returned string after using it.

In case of malloc(3) failure, these functions do not return but call err(3).

FILES
main.h declarations of public functions for use by the main program, not yet documented
html.h declarations of data types and private functions for use by language-specific HTML for-

matters
html.c main HTML formatting engine and utility functions

GNU April 24, 2020 56

mandoc_html(3) Library Functions Manual mandoc_html(3)

mdoc_html.c mdoc(7) HTML formatter
man_html.c man(7) HTML formatter
tbl_html.c tbl(7) HTML formatter
eqn_html.c eqn(7) HTML formatter
roff_html.c roff(7) HTML formatter, handling requests like br, ce, fi, ft, nf, rj, and sp.
out.h declarations of data types and private functions for shared use by all mandoc formatters,

not yet documented
out.c private functions for shared use by all mandoc formatters
mandoc_aux.h declarations of common mandoc utility functions, see mandoc(3)
mandoc_aux.c implementation of common mandoc utility functions

SEE ALSO
mandoc(1), mandoc(3), man.cgi(8)

AUTHORS
The mandoc HTML formatter was written by Kristaps Dzonsons <kristaps@bsd.lv>. It is maintained by
Ingo Schwarze <schwarze@openbsd.org>, who also wrote this manual.

GNU April 24, 2020 57

mandoc_malloc(3) Library Functions Manual mandoc_malloc(3)

NAME
mandoc_malloc, mandoc_realloc, mandoc_reallocarray, mandoc_calloc, mandoc_recallocarray,
mandoc_strdup, mandoc_strndup, mandoc_asprintf — memory allocation function wrappers used in the
mandoc library

SYNOPSIS
#include <sys/types.h>
#include <mandoc_aux.h>

void ∗
mandoc_malloc(size_t size);

void ∗
mandoc_realloc(void ∗ptr , size_t size);

void ∗
mandoc_reallocarray(void ∗ptr , size_t nmemb , size_t size);

void ∗
mandoc_calloc(size_t nmemb , size_t size);

void ∗
mandoc_recallocarray(void ∗ptr , size_t oldnmemb , size_t nmemb ,

size_t size);

char ∗
mandoc_strdup(const char ∗s);

char ∗
mandoc_strndup(const char ∗s , size_t maxlen);

int
mandoc_asprintf(char ∗∗ret , const char ∗format , . . .);

DESCRIPTION
These functions call the libc functions of the same names, passing through their return values when suc-
cessful. In case of failure, they do not return, but instead call err(3). They can be used both internally by
any code in the mandoc libraries and externally by programs using that library, for example mandoc(1),
man(1), apropos(1), makewhatis(8), and man.cgi(8).

The function mandoc_malloc() allocates one new object, leaving the memory uninitialized. The func-
tions mandoc_realloc(), mandoc_reallocarray(), and mandoc_recallocarray() change
the size of an existing object or array, possibly moving it. When shrinking the size, existing data is trun-
cated; when growing, only mandoc_recallocarray() initializes the new elements to zero. The func-
tion mandoc_calloc() allocates a new array, initializing it to zero.

The argument size is the size of each object. The argument nmemb is the new number of objects in the
array. The argument oldnmemb is the number of objects in the array before the call. The argument ptr
is a pointer to the existing object or array to be resized; if it is NULL, a new object or array is allocated.

The functions mandoc_strdup() and mandoc_strndup() copy a string into newly allocated memory.
For mandoc_strdup(), the string pointed to by s needs to be NUL-terminated. For
mandoc_strndup(), at most maxlen bytes are copied. The function mandoc_asprintf() writes
output formatted according to format into newly allocated memory and returns a pointer to the result in
ret. For all three string functions, the result is always NUL-terminated.

When the objects and strings are no longer needed, the pointers returned by these functions can be passed
to free(3).

RETURN VALUES
The function mandoc_asprintf() always returns the number of characters written, excluding the final
NUL byte. It never returns -1.

GNU September 17, 2021 58

mandoc_malloc(3) Library Functions Manual mandoc_malloc(3)

The other functions always return a valid pointer; they never return NULL.

FILES
These functions are implemented in mandoc_aux.c.

SEE ALSO
asprintf(3), err(3), malloc(3), strdup(3)

STANDARDS
The functions malloc(), realloc(), and calloc() are required by ANSI X3.159-1989 (“ANSI C89”).
The functions strdup() and strndup() are required by IEEE Std 1003.1-2008 (“POSIX.1”). The func-
tion asprintf() is a widespread extension that first appeared in the GNU C library.

The function reallocarray() is an extension that first appeared in OpenBSD 5.6, and
recallocarray() in OpenBSD 6.1. If these two are not provided by the operating system, the mandoc
build system uses bundled portable implementations.

HISTORY
The functions mandoc_malloc(), mandoc_realloc(), mandoc_calloc(), and
mandoc_strdup() have been available since mandoc 1.9.12, mandoc_strndup() since 1.11.5,
mandoc_asprintf() since 1.12.4, mandoc_reallocarray() since 1.13.0, and
mandoc_recallocarray() since 1.14.2.

AUTHORS
Kristaps Dzonsons <kristaps@bsd.lv>
Ingo Schwarze <schwarze@openbsd.org>

GNU September 17, 2021 59

mansearch(3) Library Functions Manual mansearch(3)

NAME
mansearch — search manual page databases

SYNOPSIS
#include <stdint.h>
#include <manconf.h>
#include <mansearch.h>

int
mansearch(const struct mansearch ∗search , const struct manpaths ∗paths ,

int argc , char ∗argv[] , struct manpage ∗∗res , size_t ∗sz);

DESCRIPTION
The mansearch() function returns information about manuals matching a search query from a
mandoc.db(5) database.

The query arguments are as follows:

const struct mansearch ∗search
Search options, defined in <mansearch.h>.

const struct manpaths ∗paths
Directories to be searched, defined in <manconf.h>.

int argc, char ∗argv[]
Search criteria, usually taken from the command line.

The output arguments are as follows:

struct manpage ∗∗res
Returns a pointer to an array of result structures defined in <mansearch.h>. The user is expected
to call free(3) on the file, names, and output fields of all structures, as well as the res array itself.

size_t ∗sz
Returns the number of result structures contained in res.

IMPLEMENTATION NOTES
For each manual page tree, the search is done in two steps. In the first step, a list of pages matching the
search criteria is built. In the second step, the requested information about these pages is retrieved from the
database and assembled into the res array.

All function mentioned here are defined in the file mansearch.c.

Finding matches
Command line parsing is done by the function exprcomp() building a singly linked list of expr struc-
tures, using the helper functions expr_and() and exprterm().

Assembling the results
The names, sections, and architectures of the manuals found are assembled into the names field of the result
structure by the function buildnames().

FILES
mandoc.db The manual page database.

SEE ALSO
apropos(1), mandoc.db(5), makewhatis(8)

HISTORY
The mansearch() subsystem first appeared in OpenBSD 5.6.

AUTHORS
A module to search manual page databases was first written by Kristaps Dzonsons <kristaps@bsd.lv> in
2011, at first using the Berkeley DB; he rewrote it for SQLite3 in 2012, and Ingo Schwarze
<schwarze@openbsd.org> removed the dependency on SQLite3 in 2016.

GNU March 30, 2017 60

mchars_alloc(3) Library Functions Manual mchars_alloc(3)

NAME
mchars_alloc, mchars_free, mchars_num2char, mchars_num2uc, mchars_spec2cp, mchars_spec2str,
mchars_uc2str — character table for mandoc

SYNOPSIS
#include <sys/types.h>
#include <mandoc.h>

void
mchars_alloc(void);

void
mchars_free(void);

char
mchars_num2char(const char ∗decimal , size_t sz);

int
mchars_num2uc(const char ∗hexadecimal , size_t sz);

int
mchars_spec2cp(const char ∗name , size_t sz);

const char ∗
mchars_spec2str(const char ∗name , size_t sz , size_t ∗rsz);

const char ∗
mchars_uc2str(int codepoint);

DESCRIPTION
These functions translate Unicode character numbers and roff(7) character names into glyphs. See
mandoc_char(7) for a list of roff(7) special characters. These functions are intended for external use by
programs formatting mdoc(7) and man(7) pages for output, for example the mandoc(1) output formatter
modules and makewhatis(8). The decimal, hexadecimal, name, and size input arguments are usu-
ally obtained from the mandoc_escape(3) parser function.

The function mchars_num2char() converts a decimal string representation of a character number
consisting of sz digits into a printable ASCII character. If the input string is non-numeric or does not rep-
resent a printable ASCII character, the NUL character (‘\0’) is returned. For example, the mandoc(1)
-Tascii, -Tutf8, and -Thtml output modules use this function to render roff(7) \N escape se-
quences.

The function mchars_num2uc() converts a hexadecimal string representation of a Unicode codepoint
consisting of sz digits into an integer representation. If the input string is non-numeric or represents an
ASCII character, the NUL character (‘\0’) is returned. For example, the mandoc(1) -Tutf8 and -Thtml
output modules use this function to render roff(7) \[uXXXX] and \C'uXXXX' escape sequences.

The function mchars_alloc() initializes a static struct ohash object for subsequent use by the fol-
lowing two lookup functions. When no longer needed, this object can be destroyed with mchars_free().

The function mchars_spec2cp() looks up a roff(7) special character name consisting of sz characters
and returns the corresponding Unicode codepoint. If the name is not recognized, -1 is returned. For ex-
ample, the mandoc(1) -Tutf8 and -Thtml output modules use this function to render roff(7) \[name]
and \C'name' escape sequences.

The function mchars_spec2str() looks up a roff(7) special character name consisting of sz characters
and returns an ASCII string representation. The length of the representation is returned in rsz. In many
cases, the meaning of such ASCII representations is not quite obvious, so using roff(7) special characters in
documents intended for ASCII rendering is usually a bad idea. If the name is not recognized, NULL is re-
turned. For example, makewhatis(8) and the mandoc(1) -Tascii output module use this function to ren-
der roff(7) \[name] and \C'name' escape sequences.

GNU July 7, 2016 61

mchars_alloc(3) Library Functions Manual mchars_alloc(3)

The function mchars_uc2str() performs a reverse lookup of the Unicode codepoint and returns an
ASCII string representation, or the string "<?>" if none is available.

FILES
These funtions are implemented in the file chars.c.

SEE ALSO
mandoc(1), mandoc_escape(3), ohash_init(3), mandoc_char(7), roff(7)

HISTORY
These functions and their predecessors have been available since the following mandoc versions:

function since predecessor since
mchars_alloc() 1.11.3 ascii2htab() 1.5.3
mchars_free() 1.11.2 asciifree() 1.6.0
mchars_num2char() 1.11.2 chars_num2char()1.10.10
mchars_num2uc() 1.11.3 — —
mchars_spec2cp() 1.11.2 chars_spec2cp()1.10.5
mchars_spec2str() 1.11.2 a2ascii()1.5.3
mchars_uc2str() 1.13.2 — —

AUTHORS
Kristaps Dzonsons <kristaps@bsd.lv>
Ingo Schwarze <schwarze@openbsd.org>

GNU July 7, 2016 62

tbl(3) Library Functions Manual tbl(3)

NAME
tbl_alloc, tbl_read, tbl_restart, tbl_span, tbl_end, tbl_free — roff table parser library for mandoc

SYNOPSIS
#include <sys/types.h>
#include <tbl.h>
#include <tbl_parse.h>

struct tbl_node ∗
tbl_alloc(int pos , int line);

void
tbl_read(struct tbl_node ∗tbl , int ln , const char ∗p , int offs);

void
tbl_restart(int line , int pos , struct tbl_node ∗tbl);

const struct tbl_span ∗
tbl_span(struct tbl_node ∗tbl);

void
tbl_end(struct tbl_node ∗∗tblp);

void
tbl_free(struct tbl_node ∗tbl);

DESCRIPTION
This library is tightly integrated into the mandoc(1) utility and not designed for stand-alone use. The
present manual is intended as a reference for developers working on mandoc(1).

Data structures
Unless otherwise noted, all of the following data structures are declared in <tbl.h> and are deleted in
tbl_free().

struct tbl_node
This structure describes a complete table. It is declared in <tbl_int.h>, created in tbl_alloc(),
and stored in the members first_tbl, last_tbl, and tbl of struct roff [roff.c].

The first_span, current_span, last_span, and next members may be NULL. The
first_row and last_row members may be NULL, but if there is a span, the function
tbl_layout() guarantees that these pointers are not NULL.

struct tbl_opts
This structure describes the options of one table. It is used as a substructure of struct
tbl_node and thus created and deleted together with it. It is filled in tbl_options().

struct tbl_row
This structure describes one layout line in a table by maintaining a list of all the cells in that line.
It is allocated and filled in row() [tbl_layout.c] and referenced from the layout member of
struct tbl_node.

The next member may be NULL. The function tbl_layout() guarantees that the first and
last members are not NULL.

struct tbl_cell
This structure describes one layout cell in a table, in particular its alignment, membership in spans,
and usage for lines. It is allocated and filled in cell_alloc() [tbl_layout.c] and referenced from
the first and last members of struct tbl_row.

The next member may be NULL.

struct tbl_span
This structure describes one data line in a table by maintaining a list of all data cells in that line or
by specifying that it is a horizontal line. It is allocated and filled in newspan() [tbl_data.c] which

GNU December 14, 2018 63

tbl(3) Library Functions Manual tbl(3)

is called from tbl_data() and referenced from the first_span, current_span, and
last_span members of struct tbl_node, and from the span members of struct
man_node and struct mdoc_node from <man.h> and <mdoc.h>.

The first, last, prev, and next members may be NULL. The function newspan()
[tbl_data.c] guarantees that the opts and layout members are not NULL.

struct tbl_dat
This structure describes one data cell in a table by specifying whether it contains a line or data,
whether it spans additional layout cells, and by storing the data. It is allocated and filled in
tbl_data() and referenced from the first and last members of struct tbl_span.

The string and next members may be NULL. The function getdata() guarantees that the
layout member is not NULL.

Interface functions
The following functions are implemented in tbl.c, and all callers are in roff.c.

tbl_alloc()
Allocates, initializes, and returns a new struct tbl_node. Called from roff_TS().

tbl_read()
Dispatches to tbl_option(), tbl_layout(), tbl_cdata(), and tbl_data(), see below.
Called from roff_parseln().

tbl_restart()
Resets the part member of struct tbl_node to TBL_PART_LAYOUT. Called from
roff_T_().

tbl_span()
On the first call, return the first struct tbl_span; for later calls, return the next one or NULL.
Called from roff_span().

tbl_end()
Flags the last span as TBL_SPAN_LAST and clears the pointer passed as an argment. Called from
roff_TE() and roff_endparse().

tbl_free()
Frees the specified struct tbl_node and all the tbl_row, tbl_cell, tbl_span, and tbl_dat struc-
tures referenced from it. Called from roff_free() and roff_reset().

Private functions
The following functions are declared in <tbl_int.h>.

int tbl_options(struct tbl_node ∗tbl , int ln , const char ∗p)
Parses the options line into struct tbl_opts. Implemented in tbl_opts.c, called from
tbl_read().

int tbl_layout(struct tbl_node ∗tbl , int ln , const char ∗p)
Allocates and fills one struct tbl_row for each layout line and one struct tbl_cell for
each layout cell. Implemented in tbl_layout.c, called from tbl_read().

int tbl_data(struct tbl_node ∗tbl , int ln , const char ∗p)
Allocates one struct tbl_span for each data line and calls getdata() for each data cell.
Implemented in tbl_data.c, called from tbl_read().

int tbl_cdata(struct tbl_node ∗tbl , int ln , const char ∗p)
Continues parsing a data line: When finding ‘T}’, switches back to TBL_PART_DATA mode and
calls getdata() if there are more data cells on the line. Otherwise, appends the data to the cur-
rent data cell. Implemented in tbl_data.c, called from tbl_read().

GNU December 14, 2018 64

tbl(3) Library Functions Manual tbl(3)

int getdata(struct tbl_node ∗tbl , struct tbl_span ∗dp , int ln ,
const char ∗p , int ∗pos)
Parses one data cell into one struct tbl_dat. Implemented in tbl_data.c, called from
tbl_data() and tbl_cdata().

SEE ALSO
mandoc(1), mandoc(3), tbl(7)

AUTHORS
The tbl library was written by Kristaps Dzonsons <kristaps@bsd.lv> with contributions from Ingo
Schwarze <schwarze@openbsd.org>.

GNU December 14, 2018 65

man.conf(5) File Formats Manual man.conf(5)

NAME
man.conf — configuration file for man

DESCRIPTION
This is the configuration file for the man(1), apropos(1), and makewhatis(8) utilities. Its presence, and all
directives, are optional.

This file is an ASCII text file. Leading whitespace on lines, lines starting with ‘#’, and blank lines are ig-
nored. Words are separated by whitespace. The first word on each line is the name of a configuration di-
rective.

The following directives are supported:

manpath path
Override the default search path for man(1), apropos(1), and makewhatis(8). It can be used mul-
tiple times to specify multiple paths, with the order determining the manual page search order.

Each path is a tree containing subdirectories whose names consist of the strings ‘man’ and/or ‘cat’
followed by the names of sections, usually single digits. The former are supposed to contain un-
formatted manual pages in mdoc(7) and/or man(7) format; file names should end with the name of
the section preceded by a dot. The latter should contain preformatted manual pages; file names
should end with ‘.0’.

Creating a mandoc.db(5) database with makewhatis(8) in each directory configured with
manpath is recommended and necessary for apropos(1) to work, and also for man(1) on operat-
ing systems like OpenBSD that install each manual page with only one file name in the file system,
even if it documents multiple utilities or functions.

output option [value]
Configure the default value of an output option. These directives are overridden by the -O com-
mand line options of the same names. For details, see the mandoc(1) manual.

option value used by -T purpose

fragment none htmlprint only body
includes string htmlpath to header files
indent integer ascii, utf8left margin
man string html path for Xr links
paper string ps, pdf paper size
style string html CSS file
toc none html print table of contents
width integer ascii, utf8right margin

FILES
/etc/man.conf

EXAMPLES
The following configuration file reproduces the defaults: installing it is equivalent to not having a
apropos file at all.

manpath /usr/share/man
manpath /usr/X11R6/man
manpath /usr/local/man

SEE ALSO
apropos(1), man(1), makewhatis(8)

HISTORY
A relatively complicated apropos file format first appeared in 4.3BSD-Reno. For OpenBSD 5.8, it was
redesigned from scratch, aiming for simplicity.

GNU February 10, 2020 66

man.conf(5) File Formats Manual man.conf(5)

AUTHORS
Ingo Schwarze <schwarze@openbsd.org>

GNU February 10, 2020 67

mandoc.db(5) File Formats Manual mandoc.db(5)

NAME
mandoc.db — manual page database

DESCRIPTION
The apropos file format is used to store information about installed manual pages to facilitate semantic
searching for manuals. Each manual page tree contains its own apropos file; see “FILES” for examples.

Such database files are generated by makewhatis(8) and used by man(1), apropos(1) and whatis(1).

The file format uses three datatypes:

- 32-bit signed integer numbers in big endian (network) byte ordering
- NUL-terminated strings
- lists of NUL-terminated strings, terminated by a second NUL character

Numbers are aligned to four-byte boundaries; where they follow strings or lists of strings, padding with ad-
ditional NUL characters occurs. Some, but not all, numbers point to positions in the file. These pointers
are measured in bytes, and the first byte of the file is considered to be byte 0.

Each file consists of:

- One magic number, 0x3a7d0cdb.
- One version number, currently 1.
- One pointer to the macros table.
- One pointer to the final magic number.
- The pages table (variable length).
- The macros table (variable length).
- The magic number once again, 0x3a7d0cdb.

The pages table contains one entry for each physical manual page file, no matter how many hard and soft
links it may have in the file system. The pages table consists of:

- The number of pages in the database.
- For each page:

- One pointer to the list of names.
- One pointer to the list of sections.
- One pointer to the list of architectures or 0 if the page is machine-independent.
- One pointer to the one-line description string.
- One pointer to the list of filenames.

- For each page, the list of names. Each name is preceded by a single byte indicating the sources of the
name. The meaning of the bits is:

- 0x10: The name appears in a filename.
- 0x08: The name appears in a header line, i.e. in a .Dt or .TH macro.
- 0x04: The name is the first one in the title line, i.e. it appears in the first .Nm macro in the NAME

section.
- 0x02: The name appears in any .Nm macro in the NAME section.
- 0x01: The name appears in an .Nm block in the SYNOPSIS section.

- For each page, the list of sections. Each section is given as a string, not as a number.
- For each architecture-dependent page, the list of architectures.
- For each page, the one-line description string taken from the .Nd macro.
- For each page, the list of filenames relative to the root of the respective manpath. This list includes

hard links, soft links, and links simulated with .so roff(7) requests. The first filename is preceded by a
single byte having the following significance:

- FORM_SRC = 0x01: The file format is mdoc(7) or man(7).
- FORM_CAT = 0x02: The manual page is preformatted.

- Zero to three NUL bytes for padding.

The macros table consists of:

GNU August 1, 2016 68

mandoc.db(5) File Formats Manual mandoc.db(5)

- The number of different macro keys, currently 36. The ordering of macros is defined in
<mansearch.h> and the significance of the macro keys is documented in apropos(1).

- For each macro key, one pointer to the respective macro table.
- For each macro key, the macro table (variable length).

Each macro table consists of:

- The number of entries in the table.
- For each entry:

- One pointer to the value of the macro key. Each value is a string of text taken from some macro
invocation.

- One pointer to the list of pages.
- For each entry, the value of the macro key.
- Zero to three NUL bytes for padding.
- For each entry, one or more pointers to pages in the pages table, pointing to the pointer to the list of

names, followed by the number 0.

FILES
/usr/share/man/mandoc.db The manual page database for the base system.
/usr/X11R6/man/mandoc.db The same for the X(7) Window System.
/usr/local/man/mandoc.db The same for packages(7).

A program to dump apropos files in a human-readable format suitable for diff(1) is provided in the direc-
tory /usr/src/regress/usr.bin/mandoc/db/dbm_dump/.

SEE ALSO
apropos(1), man(1), whatis(1), makewhatis(8)

HISTORY
A manual page database /usr/lib/whatis first appeared in 2BSD. The present format first appeared in
OpenBSD 6.1.

AUTHORS
The original version of makewhatis(8) was written by Bill Joy in 1979. The present database format was
designed by Ingo Schwarze <schwarze@openbsd.org> in 2016.

GNU August 1, 2016 69

eqn(7) Miscellaneous Information Manual eqn(7)

NAME
eqn — eqn language reference for mandoc

DESCRIPTION
The eqn language is an equation-formatting language. It is used within mdoc(7) and man(7) Unix manual
pages. It describes the structure of an equation, not its mathematical meaning. This manual describes the
apropos language accepted by the mandoc(1) utility, which corresponds to the Second Edition apropos
specification (see “SEE ALSO” for references).

An equation starts with an input line containing exactly the characters ‘.EQ’, may contain multiple input
lines, and ends with an input line containing exactly the characters ‘.EN’. Equivalently, an equation can be
given in the middle of a single text input line by surrounding it with the equation delimiters defined with the
delim statement.

The equation grammar is as follows, where quoted strings are case-sensitive literals in the input:

eqn : box | eqn box
box : text

| "{" eqn "}"
| "define" text text
| "ndefine" text text
| "tdefine" text text
| "gfont" text
| "gsize" text
| "set" text text
| "undef" text
| "sqrt" box
| box pos box
| box mark
| "matrix" "{" [col "{" list "}"]∗ "}"
| pile "{" list "}"
| font box
| "size" text box
| "left" text eqn ["right" text]

col : "lcol" | "rcol" | "ccol" | "col"
text : [ˆspace\"]+ | \".∗\"
pile : "lpile" | "cpile" | "rpile" | "pile"
pos : "over" | "sup" | "sub" | "to" | "from"
mark : "dot" | "dotdot" | "hat" | "tilde" | "vec"

| "dyad" | "bar" | "under"
font : "roman" | "italic" | "bold" | "fat"
list : eqn

| list "above" eqn
space : [\ˆ˜ \t]

White-space consists of the space, tab, circumflex, and tilde characters. It is required to delimit tokens con-
sisting of alphabetic characters and it is ignored at other places. Braces and quotes also delimit tokens. If
within a quoted string, these space characters are retained. Quoted strings are also not scanned for key-
words, glyph names, and expansion of definitions. To print a literal quote character, it can be prepended
with a backslash or expressed with the \(dq escape sequence.

Subequations can be enclosed in braces to pass them as arguments to operation keywords, overriding stan-
dard operation precedence. Braces can be nested. To set a brace verbatim, it needs to be enclosed in
quotes.

The following text terms are translated into a rendered glyph, if available: alpha, beta, chi, delta, epsilon,
eta, gamma, iota, kappa, lambda, mu, nu, omega, omicron, phi, pi, psi, rho, sigma, tau, theta, upsilon, xi,
zeta, DELTA, GAMMA, LAMBDA, OMEGA, PHI, PI, PSI, SIGMA, THETA, UPSILON, XI, inter (inter-
section), union (union), prod (product), int (integral), sum (summation), grad (gradient), del (vector

GNU January 10, 2020 70

eqn(7) Miscellaneous Information Manual eqn(7)

differential), times (multiply), cdot (center-dot), nothing (zero-width space), approx (approximately equals),
prime (prime), half (one-half), partial (partial differential), inf (infinity), >> (much greater), << (much less),
<- (left arrow), -> (right arrow), +- (plus-minus), != (not equal), == (equivalence), <= (less-than-equal),
and >= (more-than-equal). The character escape sequences documented in mandoc_char(7) can be used,
too.

The following control statements are available:

define
Replace all occurrences of a key with a value. Its syntax is as follows:

define key cvalc

The first character of the value string, c, is used as the delimiter for the value val. This allows for
arbitrary enclosure of terms (not just quotes), such as

define foo 'bar baz'
define foo cbar bazc

It is an error to have an empty key or val. Note that a quoted key causes errors in some
apropos implementations and should not be considered portable. It is not expanded for replace-
ments. Definitions may refer to other definitions; these are evaluated recursively when text re-
placement occurs and not when the definition is created.

Definitions can create arbitrary strings, for example, the following is a legal construction.

define foo 'define'
foo bar 'baz'

Self-referencing definitions will raise an error. The ndefine statement is a synonym for
define, while tdefine is discarded.

delim This statement takes a string argument consisting of two bytes, to be used as the opening and clos-
ing delimiters for equations in the middle of text input lines. Conventionally, the dollar sign is
used for both delimiters, as follows:

.EQ
delim $$
.EN
An equation like $sin pi = 0$ can now be entered
in the middle of a text input line.

The special statement delim off temporarily disables previously declared delimiters and
delim on reenables them.

gfont Set the default font of subsequent output. Its syntax is as follows:

gfont font

In mandoc, this value is discarded.

gsize Set the default size of subsequent output. Its syntax is as follows:

gsize [+|-]size

The size value should be an integer. If prepended by a sign, the font size is changed relative to
the current size.

set Set an equation mode. In mandoc, both arguments are thrown away. Its syntax is as follows:

set key val

The key and val are not expanded for replacements. This statement is a GNU extension.

GNU January 10, 2020 71

eqn(7) Miscellaneous Information Manual eqn(7)

undef Unset a previously-defined key. Its syntax is as follows:

define key

Once invoked, the definition for key is discarded. The key is not expanded for replacements.
This statement is a GNU extension.

Operation keywords have the following semantics:

above See pile.

bar Draw a line over the preceding box.

bold Set the following box using bold font.

ccol Like cpile, but for use in matrix.

cpile Like pile, but with slightly increased vertical spacing.

dot Set a single dot over the preceding box.

dotdot
Set two dots (dieresis) over the preceding box.

dyad Set a dyad symbol (left-right arrow) over the preceding box.

fat A synonym for bold.

font Set the second argument using the font specified by the first argument; currently not recognized by
the mandoc(1) apropos parser.

from Set the following box below the preceding box, using a slightly smaller font. Used for sums, inte-
grals, limits, and the like.

hat Set a hat (circumflex) over the preceding box.

italic
Set the following box using italic font.

lcol Like lpile, but for use in matrix.

left Set the first argument as a big left delimiter before the second argument. As an optional third argu-
ment, right can follow. In that case, the fourth argument is set as a big right delimiter after the
second argument.

lpile Like cpile, but subequations are left-justified.

matrix
Followed by a list of columns enclosed in braces. All columns need to have the same number of
subequations. The columns are set as a matrix. The difference compared to multiple subsequent
pile operators is that in a matrix, corresponding subequations in all columns line up horizon-
tally, while each pile does vertical spacing independently.

over Set a fraction. The preceding box is the numerator, the following box is the denominator.

pile Followed by a list of subequations enclosed in braces, the subequations being separated by above
keywords. Sets the subequations one above the other, each of them centered. Typically used to
represent vectors in coordinate representation.

rcol Like rpile, but for use in matrix.

right See left; right cannot be used without left. To set a big right delimiter without a big left
delimiter, the following construction can be used:

left "" box right delimiter

GNU January 10, 2020 72

eqn(7) Miscellaneous Information Manual eqn(7)

roman Set the following box using the default font.

rpile Like cpile, but subequations are right-justified.

size Set the second argument with the font size specified by the first argument; currently ignored by
mandoc(1). By prepending a plus or minus sign to the first argument, the font size can be selected
relative to the current size.

sqrt Set the square root of the following box.

sub Set the following box as a subscript to the preceding box.

sup Set the following box as a superscript to the preceding box. As a special case, if a sup clause im-
mediately follows a sub clause as in

mainbox sub subbox sup supbox

both are set with respect to the same mainbox, that is, supbox is set above subbox.

tilde Set a tilde over the preceding box.

to Set the following box above the preceding box, using a slightly smaller font. Used for sums and
integrals and the like. As a special case, if a to clause immediately follows a from clause as in

mainbox from frombox to tobox

both are set below and above the same mainbox.

under Underline the preceding box.

vec Set a vector symbol (right arrow) over the preceding box.

The binary operations from, to, sub, and sup group to the right, that is,

mainbox sup supbox sub subbox

is the same as

mainbox sup {supbox sub subbox}

and different from

{mainbox sup supbox} sub subbox.

By contrast, over groups to the left.

In the following list, earlier operations bind more tightly than later operations:

1. dyad, vec, under, bar, tilde, hat, dot, dotdot
2. fat, roman, italic, bold, size
3. sub, sup
4. sqrt
5. over
6. from, to

COMPATIBILITY
This section documents the compatibility of mandoc apropos and the troff apropos implementation
(including GNU troff).

- The text string ‘\"’ is interpreted as a literal quote in troff. In mandoc, this is interpreted as a comment.
- In troff, The circumflex and tilde white-space symbols map to fixed-width spaces. In mandoc, these

characters are synonyms for the space character.
- The troff implementation of apropos allows for equation alignment with the mark and lineup to-

kens. mandoc discards these tokens. The back n, fwd n, up n, and down n commands are also
ignored.

GNU January 10, 2020 73

eqn(7) Miscellaneous Information Manual eqn(7)

SEE ALSO
mandoc(1), man(7), mandoc_char(7), mdoc(7), roff(7)

Brian W. Kernighan and Lorinda L. Cherry, “System for Typesetting Mathematics”, Communications of the
ACM, 18, pp. 151–157, March, 1975.

Brian W. Kernighan and Lorinda L. Cherry, Typesetting Mathematics, User’s Guide, 1976.

Brian W. Kernighan and Lorinda L. Cherry, Typesetting Mathematics, User’s Guide (Second Edition),
1978.

HISTORY
The eqn utility, a preprocessor for troff, was originally written by Brian W. Kernighan and Lorinda L.
Cherry in 1975. The GNU reimplementation of eqn, part of the GNU troff package, was released in 1989
by James Clark. The eqn component of mandoc(1) was added in 2011.

AUTHORS
This apropos reference was written by Kristaps Dzonsons <kristaps@bsd.lv>.

GNU January 10, 2020 74

man(7) Miscellaneous Information Manual man(7)

NAME
man — legacy formatting language for manual pages

DESCRIPTION
The man language was the standard formatting language for AT&T UNIX manual pages from 1979 to
1989. Do not use it to write new manual pages: it is a purely presentational language and lacks support for
semantic markup. Use the mdoc(7) language, instead.

In a apropos document, lines beginning with the control character ‘.’ are called “macro lines”. The first
word is the macro name. It usually consists of two capital letters. For a list of portable macros, see
“MACRO OVERVIEW”. The words following the macro name are arguments to the macro.

Lines not beginning with the control character are called “text lines”. They provide free-form text to be
printed; the formatting of the text depends on the respective processing context:

.SH Macro lines change control state.
Text lines are interpreted within the current state.

Many aspects of the basic syntax of the apropos language are based on the roff(7) language; see the
LANGUAGE SYNTAX and MACRO SYNTAX sections in the roff(7) manual for details, in particular regard-
ing comments, escape sequences, whitespace, and quoting.

Each apropos document starts with the TH macro specifying the document’s name and section, followed
by the “NAME” section formatted as follows:

.TH PROGNAME 1 1979-01-10

.SH NAME
\fBprogname\fR \(en one line about what it does

MACRO OVERVIEW
This overview is sorted such that macros of similar purpose are listed together. Deprecated and non-
portable macros are not included in the overview, but can be found in the alphabetical reference below.

Page header and footer meta-data
TH set the title: name section date [source [volume]]
AT display AT&T UNIX version in the page footer (<= 1 argument)
UC display BSD version in the page footer (<= 1 argument)

Sections and paragraphs
SH section header (one line)
SS subsection header (one line)
PP start an undecorated paragraph (no arguments)
RS, RE reset the left margin: [width]
IP indented paragraph: [head [width]]
TP tagged paragraph: [width]
PD set vertical paragraph distance: [height]
in additional indent: [width]

Physical markup
B boldface font
I italic font
SB small boldface font
SM small roman font
BI alternate between boldface and italic fonts
BR alternate between boldface and roman fonts
IB alternate between italic and boldface fonts
IR alternate between italic and roman fonts
RB alternate between roman and boldface fonts

GNU August 5, 2021 75

man(7) Miscellaneous Information Manual man(7)

RI alternate between roman and italic fonts

MACRO REFERENCE
This section is a canonical reference to all macros, arranged alphabetically. For the scoping of individual
macros, see “MACRO SYNTAX”.

AT Sets the volume for the footer for compatibility with man pages from AT&T UNIX releases. The op-
tional arguments specify which release it is from. This macro is an extension that first appeared in
4.3BSD.

B Text is rendered in bold face.

BI Text is rendered alternately in bold face and italic. Thus, ‘.BI this word and that’ causes ‘this’ and
‘and’ to render in bold face, while ‘word’ and ‘that’ render in italics. Whitespace between arguments
is omitted in output.

Example:

.BI bold italic bold italic

BR Text is rendered alternately in bold face and roman (the default font). Whitespace between arguments
is omitted in output. See also BI.

DT Restore the default tabulator positions. They are at intervals of 0.5 inches. This has no effect unless
the tabulator positions were changed with the roff(7) ta request.

EE This is a non-standard Version 9 AT&T UNIX extension later adopted by GNU. In mandoc(1), it does
the same as the roff(7) fi request (switch to fill mode).

EX This is a non-standard Version 9 AT&T UNIX extension later adopted by GNU. In mandoc(1), it does
the same as the roff(7) nf request (switch to no-fill mode).

HP Begin a paragraph whose initial output line is left-justified, but subsequent output lines are indented,
with the following syntax:

.HP [width]

The width argument is a roff(7) scaling width. If specified, it’s saved for later paragraph left mar-
gins; if unspecified, the saved or default width is used.

This macro is portable, but deprecated because it has no good representation in HTML output, usually
ending up indistinguishable from PP.

I Text is rendered in italics.

IB Text is rendered alternately in italics and bold face. Whitespace between arguments is omitted in out-
put. See also BI.

IP Begin an indented paragraph with the following syntax:

.IP [head [width]]

The width argument is a roff(7) scaling width defining the left margin. It’s saved for later paragraph
left-margins; if unspecified, the saved or default width is used.

The head argument is used as a leading term, flushed to the left margin. This is useful for bulleted
paragraphs and so on.

IR Text is rendered alternately in italics and roman (the default font). Whitespace between arguments is
omitted in output. See also BI.

LP A synonym for PP.

ME End a mailto block started with MT. This is a non-standard GNU extension.

GNU August 5, 2021 76

man(7) Miscellaneous Information Manual man(7)

MT Begin a mailto block. This is a non-standard GNU extension. It has the following syntax:

.MT address
link description to be shown
.ME

OP Optional command-line argument. This is a non-standard DWB extension. It has the following syn-
tax:

.OP key [value]

The key is usually a command-line flag and value its argument.

P This synonym for PP is an AT&T System III UNIX extension later adopted by 4.3BSD.

PD Specify the vertical space to be inserted before each new paragraph.
The syntax is as follows:

.PD [height]

The height argument is a roff(7) scaling width. It defaults to 1v. If the unit is omitted, v is as-
sumed.

This macro affects the spacing before any subsequent instances of HP, IP, LP, P, PP, SH, SS, SY, and
TP.

PP Begin an undecorated paragraph. The scope of a paragraph is closed by a subsequent paragraph, sub-
section, section, or end of file. The saved paragraph left-margin width is reset to the default.

RB Text is rendered alternately in roman (the default font) and bold face. Whitespace between arguments
is omitted in output. See also BI.

RE Explicitly close out the scope of a prior RS. The default left margin is restored to the state before that
RS invocation.

The syntax is as follows:

.RE [level]

Without an argument, the most recent RS block is closed out. If level is 1, all open RS blocks are
closed out. Otherwise, level − 1 nested RS blocks remain open.

RI Text is rendered alternately in roman (the default font) and italics. Whitespace between arguments is
omitted in output. See also BI.

RS Temporarily reset the default left margin. This has the following syntax:

.RS [width]

The width argument is a roff(7) scaling width. If not specified, the saved or default width is used.

See also RE.

SB Text is rendered in small size (one point smaller than the default font) bold face. This macro is an ex-
tension that probably first appeared in SunOS 4.0 and was later adopted by GNU and by 4.4BSD.

SH Begin a section. The scope of a section is only closed by another section or the end of file. The para-
graph left-margin width is reset to the default.

SM Text is rendered in small size (one point smaller than the default font).

SS Begin a sub-section. The scope of a sub-section is closed by a subsequent sub-section, section, or end
of file. The paragraph left-margin width is reset to the default.

SY Begin a synopsis block with the following syntax:

.SY command
arguments
.YS

GNU August 5, 2021 77

man(7) Miscellaneous Information Manual man(7)

This is a non-standard GNU extension and very rarely used even in GNU manual pages. Formatting is
similar to IP.

TH Set the name of the manual page for use in the page header and footer with the following syntax:

.TH name section date [source [volume]]

Conventionally, the document name is given in all caps. The section is usually a single digit, in a
few cases followed by a letter. The recommended date format is YYYY-MM-DD as specified in the
ISO-8601 standard; if the argument does not conform, it is printed verbatim. If the date is empty or
not specified, the current date is used. The optional source string specifies the organisation provid-
ing the utility. When unspecified, mandoc(1) uses its -Ios argument. The volume string replaces
the default volume title of the section.

Examples:

.TH CVS 5 1992-02-12 GNU

TP Begin a paragraph where the head, if exceeding the indentation width, is followed by a newline; if not,
the body follows on the same line after advancing to the indentation width. Subsequent output lines
are indented. The syntax is as follows:

.TP [width]
head \" one line
body

The width argument is a roff(7) scaling width. If specified, it’s saved for later paragraph left-mar-
gins; if unspecified, the saved or default width is used.

TQ Like TP, except that no vertical spacing is inserted before the paragraph. This is a non-standard GNU
extension and very rarely used even in GNU manual pages.

UC Sets the volume for the footer for compatibility with man pages from BSD releases. The optional first
argument specifies which release it is from. This macro is an extension that first appeared in 3BSD.

UE End a uniform resource identifier block started with UR. This is a non-standard GNU extension.

UR Begin a uniform resource identifier block. This is a non-standard GNU extension. It has the following
syntax:

.UR uri
link description to be shown
.UE

YS End a synopsis block started with SY. This is a non-standard GNU extension.

in Indent relative to the current indentation:

.in [width]

If width is signed, the new offset is relative. Otherwise, it is absolute. This value is reset upon the
next paragraph, section, or sub-section.

MACRO SYNTAX
The apropos macros are classified by scope: line scope or block scope. Line macros are only scoped to
the current line (and, in some situations, the subsequent line). Block macros are scoped to the current line
and subsequent lines until closed by another block macro.

Line Macros
Line macros are generally scoped to the current line, with the body consisting of zero or more arguments.
If a macro is scoped to the next line and the line arguments are empty, the next line, which must be text, is
used instead. Thus:

GNU August 5, 2021 78

man(7) Miscellaneous Information Manual man(7)

.I
foo

is equivalent to ‘.I foo’. If next-line macros are invoked consecutively, only the last is used. If a next-line
macro is followed by a non-next-line macro, an error is raised.

The syntax is as follows:

.YO [body...]
[body...]

Macro Arguments Scope Notes
AT <=1 current
B n next-line
BI n current
BR n current
DT 0 current
EE 0 current Version 9 AT&T UNIX
EX 0 current Version 9 AT&T UNIX
I n next-line
IB n current
IR n current
OP >=1 current DWB
PD 1 current
RB n current
RI n current
SB n next-line
SM n next-line
TH >1, <6 current
UC <=1 current
in 1 current roff(7)

Block Macros
Block macros comprise a head and body. As with in-line macros, the head is scoped to the current line and,
in one circumstance, the next line (the next-line stipulations as in “Line Macros” apply here as well).

The syntax is as follows:

.YO [head...]
[head...]
[body...]

The closure of body scope may be to the section, where a macro is closed by SH; sub-section, closed by a
section or SS; or paragraph, closed by a section, sub-section, HP, IP, LP, P, PP, RE, SY, or TP. No clo-
sure refers to an explicit block closing macro.

As a rule, block macros may not be nested; thus, calling a block macro while another block macro scope is
open, and the open scope is not implicitly closed, is syntactically incorrect.

Macro Arguments Head Scope Body Scope Notes
HP <2 current paragraph
IP <3 current paragraph
LP 0 current paragraph
ME 0 none none GNU
MT 1 current to ME GNU
P 0 current paragraph
PP 0 current paragraph

GNU August 5, 2021 79

man(7) Miscellaneous Information Manual man(7)

RE <=1 current none
RS 1 current to RE
SH >0 next-line section
SS >0 next-line sub-section
SY 1 current to YS GNU
TP n next-line paragraph
TQ n next-line paragraph GNU
UE 0 current none GNU
UR 1 current part GNU
YS 0 none none GNU

If a block macro is next-line scoped, it may only be followed by in-line macros for decorating text.

Font handling
In apropos documents, both “Physical markup” macros and roff(7) ‘\f’ font escape sequences can be
used to choose fonts. In text lines, the effect of manual font selection by escape sequences only lasts until
the next macro invocation; in macro lines, it only lasts until the end of the macro scope. Note that macros
like BR open and close a font scope for each argument.

SEE ALSO
man(1), mandoc(1), eqn(7), mandoc_char(7), mdoc(7), roff(7), tbl(7)

HISTORY
The apropos language first appeared as a macro package for the roff typesetting system in Version 7
AT&T UNIX.

The stand-alone implementation that is part of the mandoc(1) utility first appeared in OpenBSD 4.6.

AUTHORS
Douglas McIlroy <m.douglas.mcilroy@dartmouth.edu> designed and implemented the original version of
these macros, wrote the original version of this manual page, and was the first to use them when he edited
volume 1 of the Version 7 AT&T UNIX manual pages.

James Clark later rewrote the macros for groff. Eric S. Raymond <esr@thyrsus.com> and Werner Lemberg
<wl@gnu.org> added the extended apropos macros to groff in 2007.

The mandoc(1) program and this apropos reference were written by Kristaps Dzonsons
<kristaps@bsd.lv>.

GNU August 5, 2021 80

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

NAME
mandoc_char — mandoc special characters

DESCRIPTION
This page documents the roff(7) escape sequences accepted by mandoc(1) to represent special characters in
mdoc(7) and man(7) documents.

The rendering depends on the mandoc(1) output mode; it can be inspected by calling man(1) on the
apropos manual page with different -T arguments. In ASCII output, the rendering of some characters
may be hard to interpret for the reader. Many are rendered as descriptive strings like "<integral>",
"<degree>", or "<Gamma>", which may look ugly, and many are replaced by similar ASCII characters. In
particular, accented characters are usually shown without the accent. For that reason, try to avoid using any
of the special characters documented here except those discussed in the “DESCRIPTION”, unless they are
essential for explaining the subject matter at hand, for example when documenting complicated mathemati-
cal functions.

In particular, in English manual pages, do not use special-character escape sequences to represent national
language characters in author names; instead, provide ASCII transcriptions of the names.

Dashes and Hyphens
In typography there are different types of dashes of various width: the hyphen (-), the en-dash (–), the em-
dash (—), and the mathematical minus sign (−).

Hyphens are used for adjectives; to separate the two parts of a compound word; or to separate a word across
two successive lines of text. The hyphen does not need to be escaped:

blue-eyed
lorry-driver

The en-dash is used to separate the two elements of a range, or can be used the same way as an em-dash. It
should be written as ‘\(en’:

pp. 95\(en97.
Go away \(en or else!

The em-dash can be used to show an interruption or can be used the same way as colons, semi-colons, or
parentheses. It should be written as ‘\(em’:

Three things \(em apples, oranges, and bananas.
This is not that \(em rather, this is that.

In roff(7) documents, the minus sign is normally written as ‘\-’. In manual pages, some style guides recom-
mend to also use ‘\-’ if an ASCII 0x2d “hyphen-minus” output glyph that can be copied and pasted is de-
sired in output modes supporting it, for example in -T utf8 and -T html. But currently, no practically
relevant manual page formatter requires that subtlety, so in manual pages, it is sufficient to write plain ‘-’ to
represent hyphen, minus, and hyphen-minus.

If a word on a text input line contains a hyphen, a formatter may decide to insert an output line break after
the hyphen if that helps filling the current output line, but the whole word would overflow the line. If it is
important that the word is not broken across lines in this way, a zero-width space (‘\&’) can be inserted be-
fore or after the hyphen. While mandoc(1) never breaks the output line after hyphens adjacent to a zero-
width space, after any of the other dash- or hyphen-like characters represented by escape sequences, or after
hyphens inside words in macro arguments, other software may not respect these rules and may break the
line even in such cases.

Some roff(7) implementations contains dictionaries allowing to break the line at syllable boundaries even
inside words that contain no hyphens. Such automatic hyphenation is not supported by mandoc(1), which
only breaks the line at whitespace, and inside words only after existing hyphens.

Spaces
To separate words in normal text, for indenting and alignment in literal context, and when none of the fol-
lowing special cases apply, just use the normal space character (‘ ’).

GNU October 31, 2020 81

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

When filling text, output lines may be broken between words, i.e. at space characters. To prevent a line
break between two particular words, use the unpaddable non-breaking space escape sequence (‘\ ’) instead
of the normal space character. For example, the input string “number\ 1” will be kept together as
“number 1” on the same output line.

On request and macro lines, the normal space character serves as an argument delimiter. To include white-
space into arguments, quoting is usually the best choice; see the MACRO SYNTAX section in roff(7). In
some cases, using the non-breaking space escape sequence (‘\ ’) may be preferable.

To escape macro names and to protect whitespace at the end of input lines, the zero-width space (‘\&’) is
often useful. For example, in mdoc(7), a normal space character can be displayed in single quotes in either
of the following ways:

.Sq " "

.Sq \ \&

Quotes
On request and macro lines, the double-quote character (‘"’) is handled specially to allow quoting. One
way to prevent this special handling is by using the ‘\(dq’ escape sequence.

Note that on text lines, literal double-quote characters can be used verbatim. All other quote-like characters
can be used verbatim as well, even on request and macro lines.

Accents
In output modes supporting such special output characters, for example -T pdf, and sometimes less con-
sistently in -T utf8, some roff(7) formatters convert the following ASCII input characters to the follow-
ing Unicode special output characters:

` U+2018 left single quotation mark
' U+2019 right single quotation mark
~ U+02DC small tilde
^ U+02C6 modifier letter circumflex

In prose, this automatic substitution is often desirable; but when these characters have to be displayed as
plain ASCII characters, for example in source code samples, they require escaping to render as follows:

\(ga U+0060 grave accent
\(aq U+0027 apostrophe
\(ti U+007E tilde
\(ha U+005E circumflex accent

Periods
The period (‘.’) is handled specially at the beginning of an input line, where it introduces a roff(7) request
or a macro, and when appearing alone as a macro argument in mdoc(7). In such situations, prepend a zero-
width space (‘\&.’) to make it behave like normal text.

Do not use the ‘\.’ escape sequence. It does not prevent special handling of the period.

Backslashes
To include a literal backslash (‘\’) into the output, use the (‘\e’) escape sequence.

Note that doubling it (‘\\’) is not the right way to output a backslash. Because mandoc(1) does not imple-
ment full roff(7) functionality, it may work with mandoc(1), but it may have weird effects on complete
roff(7) implementations.

SPECIAL CHARACTERS
Special characters are encoded as ‘\X’ (for a one-character escape), ‘\(XX’ (two-character), and ‘\[N]’
(N-character). For details, see the Special Characters subsection of the roff(7) manual.

Spaces, non-breaking unless stated otherwise:

GNU October 31, 2020 82

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

Input Description
‘\ unpaddable space’
\~ paddable space
\0 digit-width space
\| one-sixth \(em narrow space, zero width in nroff mode
\ˆ one-twelfth \(em half-narrow space, zero width in nroff
\& zero-width space
\) zero-width space transparent to end-of-sentence detection
\% zero-width space allowing hyphenation
\: zero-width space allowing line break

Lines:
Input Rendered Description
\(ba | bar
\(br box rule
\(ul underscore
\(ru underscore (width 0.5m)
\(rn overline
\(bb ¦ broken bar
\(sl / forward slash
\(rs \ backward slash

Text markers:
Input Rendered Description
\(ci circle
\(bu • bullet
\(dd ‡ double dagger
\(dg † dagger
\(lz ◊ lozenge
\(sq white square
\(ps ¶ paragraph
\(sc § section
\(lh ☞ left hand
\(rh ☞ right hand
\(at @ at
\(sh # hash (pound)
\(CR ↵ carriage return
\(OK ✓ check mark
\(CL ♣ club suit
\(SP ♠ spade suit
\(HE ♥ heart suit
\(DI ♦ diamond suit

Legal symbols:
Input Rendered Description
\(co © copyright
\(rg ® registered
\(tm ™ trademarked

Punctuation:
Input Rendered Description
\(em — em-dash
\(en – en-dash
\(hy - hyphen

GNU October 31, 2020 83

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\e \ back-slash
\. . period
\(r! ¡ upside-down exclamation
\(r? ¿ upside-down question

Quotes:
Input Rendered Description
\(Bq „ right low double-quote
\(bq ‚ right low single-quote
\(lq “ left double-quote
\(rq ” right double-quote
\(oq ‘ left single-quote
\(cq ’ right single-quote
\(aq ' apostrophe quote (ASCII character)
\(dq " double quote (ASCII character)
\(Fo « left guillemet
\(Fc » right guillemet
\(fo ‹ left single guillemet
\(fc › right single guillemet

Brackets:
Input Rendered Description
\(lB [left bracket
\(rB] right bracket
\(lC { left brace
\(rC } right brace
\(la 〈 left angle
\(ra 〉 right angle
\(bv brace extension (special font)
\[braceex] brace extension
\[bracketlefttp] top-left hooked bracket
\[bracketleftbt] bottom-left hooked bracket
\[bracketleftex] left hooked bracket extension
\[bracketrighttp] top-right hooked bracket
\[bracketrightbt] bottom-right hooked bracket
\[bracketrightex] right hooked bracket extension
\(lt top-left hooked brace
\[bracelefttp] top-left hooked brace
\(lk mid-left hooked brace
\[braceleftmid] mid-left hooked brace
\(lb bottom-left hooked brace
\[braceleftbt] bottom-left hooked brace
\[braceleftex] left hooked brace extension
\(rt top-left hooked brace
\[bracerighttp] top-right hooked brace
\(rk mid-right hooked brace
\[bracerightmid] mid-right hooked brace
\(rb bottom-right hooked brace
\[bracerightbt] bottom-right hooked brace
\[bracerightex] right hooked brace extension
\[parenlefttp] top-left hooked parenthesis
\[parenleftbt] bottom-left hooked parenthesis
\[parenleftex] left hooked parenthesis extension

GNU October 31, 2020 84

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\[parenrighttp] top-right hooked parenthesis
\[parenrightbt] bottom-right hooked parenthesis
\[parenrightex] right hooked parenthesis extension

Arrows:
Input Rendered Description
\(<- ← left arrow
\(-> → right arrow
\(<> ↔ left-right arrow
\(da ↓ down arrow
\(ua ↑ up arrow
\(va ↑↓ up-down arrow
\(lA ⇐ left double-arrow
\(rA ⇒ right double-arrow
\(hA ⇔ left-right double-arrow
\(uA ⇑ up double-arrow
\(dA ⇓ down double-arrow
\(vA up-down double-arrow
\(an horizontal arrow extension

Logical:
Input Rendered Description
\(AN ∧ logical and
\(OR ∨ logical or
\[tno] ¬ logical not (text font)
\(no ¬ logical not (special font)
\(te ∃ existential quantifier
\(fa ∀ universal quantifier
\(st ∋ such that
\(tf ∴ therefore
\(3d ∴ therefore
\(or bitwise or

Mathematical:
Input Rendered Description
\- - minus (text font)
\(mi − minus (special font)
+ + plus (text font)
\(pl + plus (special font)
\(-+ minus-plus
\[t+-] ± plus-minus (text font)
\(+- ± plus-minus (special font)
\(pc · center-dot
\[tmu] × multiply (text font)
\(mu × multiply (special font)
\(c∗ ⊗ circle-multiply
\(c+ ⊕ circle-plus
\[tdi] ÷ divide (text font)
\(di ÷ divide (special font)
\(f/ ⁄ fraction
\(∗∗ ∗ asterisk
\(<= ≤ less-than-equal
\(>= ≥ greater-than-equal

GNU October 31, 2020 85

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\(<< << much less
\(>> >> much greater
\(eq = equal
\(!= ≠ not equal
\(== ≡ equivalent
\(ne /≡ not equivalent
\(ap ∼ tilde operator
\(|= −∼ asymptotically equal
\(=~ ≅ approximately equal
\(~~ ≈ almost equal
\(~= ≈ almost equal
\(pt ∝ proportionate
\(es ∅ empty set
\(mo ∈ element
\(nm ∉ not element
\(sb ⊂ proper subset
\(nb ⊄ not subset
\(sp ⊃ proper superset
\(nc /⊃ not superset
\(ib ⊆ reflexive subset
\(ip ⊇ reflexive superset
\(ca ∩ intersection
\(cu ∪ union
\(/_ ∠ angle
\(pp ⊥ perpendicular
\(is ∫ integral
\[integral] ∫ integral
\[sum] ∑ summation
\[product] ∏ product
\[coproduct] coproduct
\(gr ∇ gradient
\(sr √ square root
\[sqrt] √ square root
\(lc left-ceiling
\(rc right-ceiling
\(lf left-floor
\(rf right-floor
\(if ∞ infinity
\(Ah ℵ aleph
\(Im ℑ imaginary
\(Re ℜ real
\(wp ℘ Weierstrass p
\(pd ∂ partial differential
\(-h h Planck constant over 2π
\[hbar] h Planck constant over 2π
\(12 ½ one-half
\(14 ¼ one-fourth
\(34 ¾ three-fourths
\(18 1⁄8 one-eighth
\(38 3⁄8 three-eighths
\(58 5⁄8 five-eighths
\(78 7⁄8 seven-eighths

GNU October 31, 2020 86

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\(S1 ¹ superscript 1
\(S2 ² superscript 2
\(S3 ³ superscript 3

Ligatures:
Input Rendered Description
\(ff ff ff ligature
\(fi fi fi ligature
\(fl fl fl ligature
\(Fi ffi ffi ligature
\(Fl ffl ffl ligature
\(AE Æ AE
\(ae æ ae
\(OE Œ OE
\(oe œ oe
\(ss ß German eszett
\(IJ IJ IJ ligature
\(ij ij ij ligature

Accents:
Input Rendered Description
\(a" ˝ Hungarian umlaut
\(a- ¯ macron
\(a. ˙ dotted
\(aˆ ˆ circumflex
\(aa ´ acute
\' ´ acute
\(ga ` grave
\` ` grave
\(ab ˘ breve
\(ac ¸ cedilla
\(ad ¨ dieresis
\(ah ˇ caron
\(ao ˚ ring
\(a~ ˜ tilde
\(ho ˛ ogonek
\(ha ^ hat (ASCII character)
\(ti ~ tilde (ASCII character)

Accented letters:
Input Rendered Description
\('A Á acute A
\('E É acute E
\('I Í acute I
\('O Ó acute O
\('U Ú acute U
\('Y Ý acute Y
\('a á acute a
\('e é acute e
\('i í acute i
\('o ó acute o
\('u ú acute u
\('y ý acute y

GNU October 31, 2020 87

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\(`A À grave A
\(`E È grave E
\(`I Ì grave I
\(`O Ò grave O
\(`U Ù grave U
\(`a à grave a
\(`e è grave e
\(`i ì grave i
\(`o ì grave o
\(`u ù grave u
\(~A Ã tilde A
\(~N Ñ tilde N
\(~O Õ tilde O
\(~a ã tilde a
\(~n ñ tilde n
\(~o õ tilde o
\(:A Ä dieresis A
\(:E Ë dieresis E
\(:I Ï dieresis I
\(:O Ö dieresis O
\(:U Ü dieresis U
\(:a ä dieresis a
\(:e ë dieresis e
\(:i ï dieresis i
\(:o ö dieresis o
\(:u ü dieresis u
\(:y ÿ dieresis y
\(ˆA Â circumflex A
\(ˆE Ê circumflex E
\(ˆI Î circumflex I
\(ˆO Ô circumflex O
\(ˆU Û circumflex U
\(ˆa â circumflex a
\(ˆe ê circumflex e
\(ˆi î circumflex i
\(ˆo ô circumflex o
\(ˆu û circumflex u
\(,C Ç cedilla C
\(,c ç cedilla c
\(/L Ł stroke L
\(/l ł stroke l
\(/O Ø stroke O
\(/o ø stroke o
\(oA Å ring A
\(oa å ring a

Special letters:
Input Rendered Description
\(-D Ð Eth
\(Sd ð eth
\(TP Þ Thorn
\(Tp þ thorn

GNU October 31, 2020 88

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\(.i ı dotless i
\(.j dotless j

Currency:
Input Rendered Description
\(Do $ dollar
\(ct ¢ cent
\(Eu € Euro symbol
\(eu € Euro symbol
\(Ye ¥ yen
\(Po £ pound
\(Cs ¤ Scandinavian
\(Fn ƒ florin

Units:
Input Rendered Description
\(de ° degree
\(%0 ‰ per-thousand
\(fm ′ minute
\(sd ″ second
\(mc µ micro
\(Of ª Spanish female ordinal
\(Om º Spanish masculine ordinal

Greek letters:
Input Rendered Description
\(∗A Α Alpha
\(∗B Β Beta
\(∗G Γ Gamma
\(∗D ∆ Delta
\(∗E Ε Epsilon
\(∗Z Ζ Zeta
\(∗Y Η Eta
\(∗H Θ Theta
\(∗I Ι Iota
\(∗K Κ Kappa
\(∗L Λ Lambda
\(∗M Μ Mu
\(∗N Ν Nu
\(∗C Ξ Xi
\(∗O Ο Omicron
\(∗P Π Pi
\(∗R Ρ Rho
\(∗S Σ Sigma
\(∗T Τ Tau
\(∗U ϒ Upsilon
\(∗F Φ Phi
\(∗X Χ Chi
\(∗Q Ψ Psi
\(∗W Ω Omega
\(∗a α alpha
\(∗b β beta
\(∗g γ gamma

GNU October 31, 2020 89

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\(∗d δ delta
\(∗e ε epsilon
\(∗z ζ zeta
\(∗y η eta
\(∗h θ theta
\(∗i ι iota
\(∗k κ kappa
\(∗l λ lambda
\(∗m µ mu
\(∗n ν nu
\(∗c ξ xi
\(∗o ο omicron
\(∗p π pi
\(∗r ρ rho
\(∗s σ sigma
\(∗t τ tau
\(∗u υ upsilon
\(∗f φ phi
\(∗x χ chi
\(∗q ψ psi
\(∗w ω omega
\(+h ϑ theta variant
\(+f ϕ phi variant
\(+p ϖ pi variant
\(+e epsilon variant
\(ts ς sigma terminal

PREDEFINED STRINGS
Predefined strings are inherited from the macro packages of historical troff implementations. They are not
recommended for use, as they differ across implementations. Manuals using these predefined strings are al-
most certainly not portable.

Their syntax is similar to special characters, using ‘\∗X’ (for a one-character escape), ‘\∗(XX’
(two-character), and ‘\∗[N]’ (N-character).

Input Rendered Description
\∗(Ba | vertical bar
\∗(Ne ≠ not equal
\∗(Ge ≥ greater-than-equal
\∗(Le ≤ less-than-equal
\∗(Gt > greater-than
\∗(Lt < less-than
\∗(Pm ± plus-minus
\∗(If ∞ infinity
\∗(Pi π pi
\∗(Na NaN NaN
\∗(Am & ampersand
\∗R restricted mark
\∗(Tm trade mark
\∗q " double-quote
\∗(Rq ” right-double-quote
\∗(Lq “ left-double-quote
\∗(lp (right-parenthesis

GNU October 31, 2020 90

mandoc_char(7) Miscellaneous Information Manual mandoc_char(7)

\∗(rp) left-parenthesis
\∗(lq left double-quote
\∗(rq right double-quote
\∗(ua ↑ up arrow
\∗(va up-down arrow
\∗(<= ≤ less-than-equal
\∗(>= ≥ greater-than-equal
\∗(aa ´ acute
\∗(ga ` grave
\∗(Px POSIX POSIX standard name
\∗(Ai ANSI ANSI standard name

UNICODE CHARACTERS
The escape sequences

\[uXXXX] and \C'uXXXX'

are interpreted as Unicode codepoints. The codepoint must be in the range above U+0080 and less than
U+10FFFF. For compatibility, the hexadecimal digits ‘A’ to ‘F’ must be given as uppercase characters, and
points must be zero-padded to four characters; if greater than four characters, no zero padding is allowed.
Unicode surrogates are not allowed.

NUMBERED CHARACTERS
For backward compatibility with existing manuals, mandoc(1) also supports the

\N'number' and \[charnumber]

escape sequences, inserting the character number from the current character set into the output. Of
course, this is inherently non-portable and is already marked as deprecated in the Heirloom roff manual; on
top of that, the second form is a GNU extension. For example, do not use \N'34' or \[char34], use \(dq, or
even the plain ‘"’ character where possible.

COMPATIBILITY
This section documents compatibility between mandoc and other troff implementations, at this time limited
to GNU troff ("groff").

- The \N'' escape sequence is limited to printable characters; in groff, it accepts arbitrary character num-
bers.

- In -Tascii, the \(ss, \(nm, \(nb, \(nc, \(ib, \(ip, \(pp, \[sum], \[product], \[coproduct], \(gr, \(-h, and \(a.
special characters render differently between mandoc and groff.

- In -Thtml, the \(~=, \(nb, and \(nc special characters render differently between mandoc and groff.
- The -Tps and -Tpdf modes format like -Tascii instead of rendering glyphs as in groff.
- The \[radicalex], \[sqrtex], and \(ru special characters have been omitted from mandoc either because

they are poorly documented or they have no known representation.

SEE ALSO
mandoc(1), man(7), mdoc(7), roff(7)

AUTHORS
The apropos manual page was written by Kristaps Dzonsons <kristaps@bsd.lv>.

CAVEATS
The predefined string ‘\∗(Ba’ mimics the behaviour of the ‘|’ character in mdoc(7); thus, if you wish to ren-
der a vertical bar with no side effects, use the ‘\(ba’ escape.

GNU October 31, 2020 91

mdoc(7) Miscellaneous Information Manual mdoc(7)

NAME
mdoc — semantic markup language for formatting manual pages

DESCRIPTION
The mdoc language supports authoring of manual pages for the man(1) utility by allowing semantic anno-
tations of words, phrases, page sections and complete manual pages. Such annotations are used by format-
ting tools to achieve a uniform presentation across all manuals written in apropos, and to support hyper-
linking if supported by the output medium.

This reference document describes the structure of manual pages and the syntax and usage of the apropos
language. The reference implementation of a parsing and formatting tool is mandoc(1); the
“COMPATIBILITY” section describes compatibility with other implementations.

In an apropos document, lines beginning with the control character ‘.’ are called “macro lines”. The first
word is the macro name. It consists of two or three letters. Most macro names begin with a capital letter.
For a list of available macros, see “MACRO OVERVIEW”. The words following the macro name are argu-
ments to the macro, optionally including the names of other, callable macros; see “MACRO SYNTAX” for
details.

Lines not beginning with the control character are called “text lines”. They provide free-form text to be
printed; the formatting of the text depends on the respective processing context:

.Sh Macro lines change control state.
Text lines are interpreted within the current state.

Many aspects of the basic syntax of the apropos language are based on the roff(7) language; see the
LANGUAGE SYNTAX and MACRO SYNTAX sections in the roff(7) manual for details, in particular regard-
ing comments, escape sequences, whitespace, and quoting. However, using roff(7) requests in apropos
documents is discouraged; mandoc(1) supports some of them merely for backward compatibility.

MANUAL STRUCTURE
A well-formed apropos document consists of a document prologue followed by one or more sections.

The prologue, which consists of the Dd, Dt, and Os macros in that order, is required for every document.

The first section (sections are denoted by Sh) must be the NAME section, consisting of at least one Nm fol-
lowed by Nd.

Following that, convention dictates specifying at least the SYNOPSIS and DESCRIPTION sections, al-
though this varies between manual sections.

The following is a well-formed skeleton apropos file for a utility "progname":

.Dd $Mdocdate$

.Dt PROGNAME section

.Os

.Sh NAME

.Nm progname

.Nd one line about what it does

.\" .Sh LIBRARY

.\" For sections 2, 3, and 9 only.

.\" Not used in OpenBSD.

.Sh SYNOPSIS

.Nm progname

.Op Fl options

.Ar

.Sh DESCRIPTION
The
.Nm
utility processes files ...
.\" .Sh CONTEXT

GNU July 29, 2021 92

mdoc(7) Miscellaneous Information Manual mdoc(7)

.\" For section 9 functions only.

.\" .Sh IMPLEMENTATION NOTES

.\" Not used in OpenBSD.

.\" .Sh RETURN VALUES

.\" For sections 2, 3, and 9 function return values only.

.\" .Sh ENVIRONMENT

.\" For sections 1, 6, 7, and 8 only.

.\" .Sh FILES

.\" .Sh EXIT STATUS

.\" For sections 1, 6, and 8 only.

.\" .Sh EXAMPLES

.\" .Sh DIAGNOSTICS

.\" For sections 1, 4, 6, 7, 8, and 9 printf/stderr messages only.

.\" .Sh ERRORS

.\" For sections 2, 3, 4, and 9 errno settings only.

.\" .Sh SEE ALSO

.\" .Xr foobar 1

.\" .Sh STANDARDS

.\" .Sh HISTORY

.\" .Sh AUTHORS

.\" .Sh CAVEATS

.\" .Sh BUGS

.\" .Sh SECURITY CONSIDERATIONS

.\" Not used in OpenBSD.

The sections in an apropos document are conventionally ordered as they appear above. Sections should
be composed as follows:

NAME
The name(s) and a one line description of the documented material. The syntax for this as follows:

.Nm name0 ,

.Nm name1 ,

.Nm name2

.Nd a one line description

Multiple ‘Nm’ names should be separated by commas.

The Nm macro(s) must precede the Nd macro.

See Nm and Nd.

LIBRARY
The name of the library containing the documented material, which is assumed to be a function in a
section 2, 3, or 9 manual. The syntax for this is as follows:

.Lb libarm

See Lb.

SYNOPSIS
Documents the utility invocation syntax, function call syntax, or device configuration.

For the first, utilities (sections 1, 6, and 8), this is generally structured as follows:

.Nm bar

.Op Fl v

.Op Fl o Ar file

.Op Ar

.Nm foo

.Op Fl v

GNU July 29, 2021 93

mdoc(7) Miscellaneous Information Manual mdoc(7)

.Op Fl o Ar file

.Op Ar

Commands should be ordered alphabetically.

For the second, function calls (sections 2, 3, 9):

.In header.h

.Vt extern const char ∗global;

.Ft "char ∗"

.Fn foo "const char ∗src"

.Ft "char ∗"

.Fn bar "const char ∗src"

Ordering of In, Vt, Fn, and Fo macros should follow C header-file conventions.

And for the third, configurations (section 4):

.Cd "it∗ at isa? port 0x2e"

.Cd "it∗ at isa? port 0x4e"

Manuals not in these sections generally don’t need a SYNOPSIS.

Some macros are displayed differently in the SYNOPSIS section, particularly Nm, Cd, Fd, Fn, Fo,
In, Vt, and Ft. All of these macros are output on their own line. If two such dissimilar macros are
pairwise invoked (except for Ft before Fo or Fn), they are separated by a vertical space, unless in
the case of Fo, Fn, and Ft, which are always separated by vertical space.

When text and macros following an Nm macro starting an input line span multiple output lines, all
output lines but the first will be indented to align with the text immediately following the Nm macro,
up to the next Nm, Sh, or Ss macro or the end of an enclosing block, whichever comes first.

DESCRIPTION
This begins with an expansion of the brief, one line description in NAME:

The
.Nm
utility does this, that, and the other.

It usually follows with a breakdown of the options (if documenting a command), such as:

The options are as follows:
.Bl -tag -width Ds
.It Fl v
Print verbose information.
.El

List the options in alphabetical order, uppercase before lowercase for each letter and with no regard
to whether an option takes an argument. Put digits in ascending order before all letter options.

Manuals not documenting a command won’t include the above fragment.

Since the DESCRIPTION section usually contains most of the text of a manual, longer manuals of-
ten use the Ss macro to form subsections. In very long manuals, the DESCRIPTION may be split
into multiple sections, each started by an Sh macro followed by a non-standard section name, and
each having several subsections, like in the present apropos manual.

CONTEXT
This section lists the contexts in which functions can be called in section 9. The contexts are auto-
conf, process, or interrupt.

IMPLEMENTATION NOTES
Implementation-specific notes should be kept here. This is useful when implementing standard
functions that may have side effects or notable algorithmic implications.

GNU July 29, 2021 94

mdoc(7) Miscellaneous Information Manual mdoc(7)

RETURN VALUES
This section documents the return values of functions in sections 2, 3, and 9.

See Rv.

ENVIRONMENT
Lists the environment variables used by the utility, and explains the syntax and semantics of their
values. The environ(7) manual provides examples of typical content and formatting.

See Ev.

FILES
Documents files used. It’s helpful to document both the file name and a short description of how the
file is used (created, modified, etc.).

See Pa.

EXIT STATUS
This section documents the command exit status for section 1, 6, and 8 utilities. Historically, this
information was described in DIAGNOSTICS, a practise that is now discouraged.

See Ex.

EXAMPLES
Example usages. This often contains snippets of well-formed, well-tested invocations. Make sure
that examples work properly!

DIAGNOSTICS
Documents error messages. In section 4 and 9 manuals, these are usually messages printed by the
kernel to the console and to the kernel log. In section 1, 6, 7, and 8, these are usually messages
printed by userland programs to the standard error output.

Historically, this section was used in place of EXIT STATUS for manuals in sections 1, 6, and 8;
however, this practise is discouraged.

See Bl -diag.

ERRORS
Documents errno(2) settings in sections 2, 3, 4, and 9.

See Er.

SEE ALSO
References other manuals with related topics. This section should exist for most manuals. Cross-
references should conventionally be ordered first by section, then alphabetically (ignoring case).

References to other documentation concerning the topic of the manual page, for example authorita-
tive books or journal articles, may also be provided in this section.

See Rs and Xr.

STANDARDS
References any standards implemented or used. If not adhering to any standards, the HISTORY sec-
tion should be used instead.

See St.

HISTORY
A brief history of the subject, including where it was first implemented, and when it was ported to
or reimplemented for the operating system at hand.

AUTHORS
Credits to the person or persons who wrote the code and/or documentation. Authors should gener-
ally be noted by both name and email address.

GNU July 29, 2021 95

mdoc(7) Miscellaneous Information Manual mdoc(7)

See An.

CAVEATS
Common misuses and misunderstandings should be explained in this section.

BUGS
Known bugs, limitations, and work-arounds should be described in this section.

SECURITY CONSIDERATIONS
Documents any security precautions that operators should consider.

MACRO OVERVIEW
This overview is sorted such that macros of similar purpose are listed together, to help find the best macro
for any given purpose. Deprecated macros are not included in the overview, but can be found below in the
alphabetical “MACRO REFERENCE”.

Document preamble and NAME section macros
Dd document date: $Mdocdate$ | month day, year
Dt document title: TITLE section [arch]
Os operating system version: [system [version]]
Nm document name (one argument)
Nd document description (one line)

Sections and cross references
Sh section header (one line)
Ss subsection header (one line)
Sx internal cross reference to a section or subsection
Xr cross reference to another manual page: name section
Tg tag the definition of a term (<= 1 arguments)
Pp start a text paragraph (no arguments)

Displays and lists
Bd, Ed display block: -type [-offset width] [-compact]
D1 indented display (one line)
Dl indented literal display (one line)
Ql in-line literal display: text
Bl, El list block: -type [-width val] [-offset val] [-compact]
It list item (syntax depends on -type)
Ta table cell separator in Bl -column lists
Rs, %∗, Re bibliographic block (references)

Spacing control
Pf prefix, no following horizontal space (one argument)
Ns roman font, no preceding horizontal space (no arguments)
Ap apostrophe without surrounding whitespace (no arguments)
Sm switch horizontal spacing mode: [on | off]
Bk, Ek keep block: -words

Semantic markup for command line utilities
Nm start a SYNOPSIS block with the name of a utility
Fl command line options (flags) (>=0 arguments)
Cm command modifier (>0 arguments)
Ar command arguments (>=0 arguments)
Op, Oo, Oc optional syntax elements (enclosure)
Ic internal or interactive command (>0 arguments)
Ev environmental variable (>0 arguments)
Pa file system path (>=0 arguments)

GNU July 29, 2021 96

mdoc(7) Miscellaneous Information Manual mdoc(7)

Semantic markup for function libraries
Lb function library (one argument)
In include file (one argument)
Fd other preprocessor directive (>0 arguments)
Ft function type (>0 arguments)
Fo, Fc function block: funcname
Fn function name: funcname [argument . . .]
Fa function argument (>0 arguments)
Vt variable type (>0 arguments)
Va variable name (>0 arguments)
Dv defined variable or preprocessor constant (>0 arguments)
Er error constant (>0 arguments)
Ev environmental variable (>0 arguments)

Various semantic markup
An author name (>0 arguments)
Lk hyperlink: uri [display_name]
Mt “mailto” hyperlink: localpart@domain
Cd kernel configuration declaration (>0 arguments)
Ad memory address (>0 arguments)
Ms mathematical symbol (>0 arguments)

Physical markup
Em italic font or underline (emphasis) (>0 arguments)
Sy boldface font (symbolic) (>0 arguments)
No return to roman font (normal) (>0 arguments)
Bf, Ef font block: -type | Em | Li | Sy

Physical enclosures
Dq, Do, Dc enclose in typographic double quotes: “text”
Qq, Qo, Qc enclose in typewriter double quotes: "text"
Sq, So, Sc enclose in single quotes: ‘text’
Pq, Po, Pc enclose in parentheses: (text)
Bq, Bo, Bc enclose in square brackets: [text]
Brq, Bro, Brc enclose in curly braces: {text}
Aq, Ao, Ac enclose in angle brackets: 〈text〉
Eo, Ec generic enclosure

Text production
Ex -std standard command exit values: [utility . . .]
Rv -std standard function return values: [function . . .]
St reference to a standards document (one argument)
At AT&T UNIX
Bx BSD
Bsx BSD/OS
Nx NetBSD
Fx FreeBSD
Ox OpenBSD
Dx DragonFly

MACRO REFERENCE
This section is a canonical reference of all macros, arranged alphabetically. For the scoping of individual
macros, see “MACRO SYNTAX”.

%A first_name . . . last_name
Author name of an Rs block. Multiple authors should each be accorded their own %A line. Author
names should be ordered with full or abbreviated forename(s) first, then full surname.

GNU July 29, 2021 97

mdoc(7) Miscellaneous Information Manual mdoc(7)

%B title
Book title of an Rs block. This macro may also be used in a non-bibliographic context when referring
to book titles.

%C location
Publication city or location of an Rs block.

%D [month day,] year
Publication date of an Rs block. Provide the full English name of the month and all four digits of the
year.

%I name
Publisher or issuer name of an Rs block.

%J name
Journal name of an Rs block.

%N number
Issue number (usually for journals) of an Rs block.

%O line
Optional information of an Rs block.

%P number
Book or journal page number of an Rs block. Conventionally, the argument starts with ‘p.’ for a sin-
gle page or pp. for a range of pages, for example:

.%P pp. 42\(en47

%Q name
Institutional author (school, government, etc.) of an Rs block. Multiple institutional authors should
each be accorded their own %Q line.

%R name
Technical report name of an Rs block.

%T title
Article title of an Rs block. This macro may also be used in a non-bibliographical context when refer-
ring to article titles.

%U protocol://path
URI of reference document.

%V number
Volume number of an Rs block.

Ac Close an Ao block. Does not have any tail arguments.

Ad address
Memory address. Do not use this for postal addresses.

Examples:
.Ad [0,$]
.Ad 0x00000000

An -split | -nosplit | first_name . . . last_name
Author name. Can be used both for the authors of the program, function, or driver documented in the
manual, or for the authors of the manual itself. Requires either the name of an author or one of the fol-
lowing arguments:

-split Start a new output line before each subsequent invocation of An.

GNU July 29, 2021 98

mdoc(7) Miscellaneous Information Manual mdoc(7)

-nosplit The opposite of -split.

The default is -nosplit. The effect of selecting either of the -split modes ends at the beginning
of the AUTHORS section. In the AUTHORS section, the default is -nosplit for the first author list-
ing and -split for all other author listings.

Examples:
.An -nosplit
.An Kristaps Dzonsons Aq Mt kristaps@bsd.lv

Ao block
Begin a block enclosed by angle brackets. Does not have any head arguments. This macro is almost
never useful. See Aq for more details.

Ap Inserts an apostrophe without any surrounding whitespace. This is generally used as a grammatical
device when referring to the verb form of a function.

Examples:
.Fn execve Ap d

Aq line
Enclose the rest of the input line in angle brackets. The only important use case is for email addresses.
See Mt for an example.

Occasionally, it is used for names of characters and keys, for example:

Press the
.Aq escape
key to ...

For URIs, use Lk instead, and In for “#include” directives. Never wrap Ar in Aq.

Since Aq usually renders with non-ASCII characters in non-ASCII output modes, do not use it where
the ASCII characters ‘<’ and ‘>’ are required as syntax elements. Instead, use these characters di-
rectly in such cases, combining them with the macros Pf, Ns, or Eo as needed.

See also Ao.

Ar [placeholder . . .]
Command arguments. If an argument is not provided, the string “file ...” is used as a default.

Examples:
.Fl o Ar file
.Ar
.Ar arg1 , arg2 .

The arguments to the Ar macro are names and placeholders for command arguments; for fixed strings
to be passed verbatim as arguments, use Fl or Cm.

At [version]
Formats an AT&T UNIX version. Accepts one optional argument:

v[1-7] | 32v A version of AT&T UNIX.
III AT&T System III UNIX.
V | V.[1-4] A version of AT&T System V UNIX.

Note that these arguments do not begin with a hyphen.

Examples:
.At
.At III
.At V.1

GNU July 29, 2021 99

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Bsx, Bx, Dx, Fx, Nx, and Ox.

Bc Close a Bo block. Does not have any tail arguments.

Bd -type [-offset width] [-compact]
Begin a display block. Display blocks are used to select a different indentation and justification than
the one used by the surrounding text. They may contain both macro lines and text lines. By default, a
display block is preceded by a vertical space.

The type must be one of the following:

-centered Produce one output line from each input line, and center-justify each line.
Using this display type is not recommended; many apropos implementa-
tions render it poorly.

-filled Change the positions of line breaks to fill each line, and left- and right-justify
the resulting block.

-literal Produce one output line from each input line, and do not justify the block at
all. Preserve white space as it appears in the input. Always use a constant-
width font. Use this for displaying source code.

-ragged Change the positions of line breaks to fill each line, and left-justify the result-
ing block.

-unfilled The same as -literal, but using the same font as for normal text, which is
a variable width font if supported by the output device.

The type must be provided first. Additional arguments may follow:

-offset width
Indent the display by the width, which may be one of the following:

One of the pre-defined strings indent, the width of a standard indentation
(six constant width characters); indent-two, twice indent; left, which
has no effect; right, which justifies to the right margin; or center, which
aligns around an imagined center axis.

A macro invocation, which selects a predefined width associated with that
macro. The most popular is the imaginary macro Ds, which resolves to 6n.

A scaling width as described in roff(7).

An arbitrary string, which indents by the length of this string.

When the argument is missing, -offset is ignored.

-compact Do not assert vertical space before the display.

Examples:

.Bd -literal -offset indent -compact
Hello world.

.Ed

See also D1 and Dl.

Bf -emphasis | -literal | -symbolic | Em | Li | Sy
Change the font mode for a scoped block of text. The -emphasis and Em argument are equivalent,
as are -symbolic and Sy, and -literal and Li. Without an argument, this macro does nothing.
The font mode continues until broken by a new font mode in a nested scope or Ef is encountered.

See also Li, Ef, Em, and Sy.

GNU July 29, 2021 100

mdoc(7) Miscellaneous Information Manual mdoc(7)

Bk -words
For each macro, keep its output together on the same output line, until the end of the macro or the end
of the input line is reached, whichever comes first. Line breaks in text lines are unaffected.

The -words argument is required; additional arguments are ignored.

The following example will not break within each Op macro line:

.Bk -words

.Op Fl f Ar flags

.Op Fl o Ar output

.Ek

Be careful in using over-long lines within a keep block! Doing so will clobber the right margin.

Bl -type [-width val] [-offset val] [-compact] [col . . .]
Begin a list. Lists consist of items specified using the It macro, containing a head or a body or both.

The list type is mandatory and must be specified first. The -width and -offset arguments ac-
cept macro names as described for Bd -offset, scaling widths as described in roff(7), or use the
length of the given string. The -offset is a global indentation for the whole list, affecting both item
heads and bodies. For those list types supporting it, the -width argument requests an additional in-
dentation of item bodies, to be added to the -offset. Unless the -compact argument is specified,
list entries are separated by vertical space.

A list must specify one of the following list types:

-bullet No item heads can be specified, but a bullet will be printed at the head of each
item. Item bodies start on the same output line as the bullet and are indented
according to the -width argument.

-column A columnated list. The -width argument has no effect; instead, the string
length of each argument specifies the width of one column. If the first line of
the body of a -column list is not an It macro line, It contexts spanning
one input line each are implied until an It macro line is encountered, at which
point items start being interpreted as described in the It documentation.

-dash Like -bullet, except that dashes are used in place of bullets.

-diag Like -inset, except that item heads are not parsed for macro invocations.
Most often used in the DIAGNOSTICS section with error constants in the item
heads.

-enum A numbered list. No item heads can be specified. Formatted like -bullet,
except that cardinal numbers are used in place of bullets, starting at 1.

-hang Like -tag, except that the first lines of item bodies are not indented, but fol-
low the item heads like in -inset lists.

-hyphen Synonym for -dash.

-inset Item bodies follow items heads on the same line, using normal inter-word
spacing. Bodies are not indented, and the -width argument is ignored.

-item No item heads can be specified, and none are printed. Bodies are not indented,
and the -width argument is ignored.

-ohang Item bodies start on the line following item heads and are not indented. The
-width argument is ignored.

-tag Item bodies are indented according to the -width argument. When an item
head fits inside the indentation, the item body follows this head on the same
output line. Otherwise, the body starts on the output line following the head.

GNU July 29, 2021 101

mdoc(7) Miscellaneous Information Manual mdoc(7)

Lists may be nested within lists and displays. Nesting of -column and -enum lists may not be
portable.

See also El and It.

Bo block
Begin a block enclosed by square brackets. Does not have any head arguments.

Examples:
.Bo 1 ,
.Dv BUFSIZ Bc

See also Bq.

Bq line
Encloses its arguments in square brackets.

Examples:
.Bq 1, Dv BUFSIZ

Remarks: this macro is sometimes abused to emulate optional arguments for commands; the correct
macros to use for this purpose are Op, Oo, and Oc.

See also Bo.

Brc
Close a Bro block. Does not have any tail arguments.

Bro block
Begin a block enclosed by curly braces. Does not have any head arguments.

Examples:
.Bro 1 , ... ,
.Va n Brc

See also Brq.

Brq line
Encloses its arguments in curly braces.

Examples:
.Brq 1, . . ., Va n

See also Bro.

Bsx [version]
Format the BSD/OS version provided as an argument, or a default value if no argument is provided.

Examples:
.Bsx 1.0
.Bsx

See also At, Bx, Dx, Fx, Nx, and Ox.

Bt Supported only for compatibility, do not use this in new manuals. Prints “is currently in beta test.”

Bx [version [variant]]
Format the BSD version provided as an argument, or a default value if no argument is provided.

Examples:
.Bx 4.3 Tahoe
.Bx 4.4
.Bx

See also At, Bsx, Dx, Fx, Nx, and Ox.

GNU July 29, 2021 102

mdoc(7) Miscellaneous Information Manual mdoc(7)

Cd line
Kernel configuration declaration. This denotes strings accepted by config(8). It is most often used in
section 4 manual pages.

Examples:
.Cd device le0 at scode?

Remarks: this macro is commonly abused by using quoted literals to retain whitespace and align con-
secutive Cd declarations. This practise is discouraged.

Cm keyword . . .
Command modifiers. Typically used for fixed strings passed as arguments to interactive commands, to
commands in interpreted scripts, or to configuration file directives, unless Fl is more appropriate.

Examples:
.Nm mt Fl f Ar device Cm rewind
.Nm ps Fl o Cm pid , Ns Cm command
.Nm dd Cm if= Ns Ar file1 Cm of= Ns Ar file2
.Ic set Fl o Cm vi
.Ic lookup Cm file bind
.Ic permit Ar identity Op Cm as Ar target

D1 line
One-line indented display. This is formatted by the default rules and is useful for simple indented
statements. It is followed by a newline.

Examples:
.D1 Fl abcdefgh

See also Bd and Dl.

Db This macro is obsolete. No replacement is needed. It is ignored by mandoc(1) and groff including its
arguments. It was formerly used to toggle a debugging mode.

Dc Close a Do block. Does not have any tail arguments.

Dd $Mdocdate$ | month day, year
Document date for display in the page footer, by convention the date of the last change. This is the
mandatory first macro of any apropos manual.

The month is the full English month name, the day is an integer number, and the year is the full
four-digit year.

Other arguments are not portable; the mandoc(1) utility handles them as follows:
- To have the date automatically filled in by the OpenBSD version of cvs(1), the special string

“$Mdocdate$” can be given as an argument.
- The traditional, purely numeric man(7) format year–month–day is accepted, too.
- If a date string cannot be parsed, it is used verbatim.
- If no date string is given, the current date is used.

Examples:
.Dd $Mdocdate$
.Dd $Mdocdate: July 2 2018$
.Dd July 2, 2018

See also Dt and Os.

Dl line
One-line indented display. This is formatted as literal text and is useful for commands and invoca-
tions. It is followed by a newline.

Examples:
.Dl % mandoc mdoc.7 \(ba less

GNU July 29, 2021 103

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Ql, Bd -literal, and D1.

Do block
Begin a block enclosed by double quotes. Does not have any head arguments.

Examples:
.Do
April is the cruellest month
.Dc
\(em T.S. Eliot

See also Dq.

Dq line
Encloses its arguments in “typographic” double-quotes.

Examples:
.Dq April is the cruellest month
\(em T.S. Eliot

See also Qq, Sq, and Do.

Dt TITLE section [arch]
Document title for display in the page header. This is the mandatory second macro of any apropos
file.

Its arguments are as follows:

TITLE The document’s title (name), defaulting to “UNTITLED” if unspecified. To achieve a
uniform appearance of page header lines, it should by convention be all caps.

section The manual section. This may be one of 1 (General Commands), 2 (System Calls), 3
(Library Functions), 3p (Perl Library), 4 (Device Drivers), 5 (File Formats), 6 (Games),
7 (Miscellaneous Information), 8 (System Manager’s Manual), or 9 (Kernel
Developer’s Manual). It should correspond to the manual’s filename suffix and defaults
to the empty string if unspecified.

arch This specifies the machine architecture a manual page applies to, where relevant, for ex-
ample alpha, amd64, i386, or sparc64. The list of valid architectures varies by
operating system.

Examples:
.Dt FOO 1
.Dt FOO 9 i386

See also Dd and Os.

Dv identifier . . .
Defined variables such as preprocessor constants, constant symbols, enumeration values, and so on.

Examples:
.Dv NULL
.Dv BUFSIZ
.Dv STDOUT_FILENO

See also Er and Ev for special-purpose constants, Va for variable symbols, and Fd for listing pre-
processor variable definitions in the SYNOPSIS.

Dx [version]
Format the DragonFly version provided as an argument, or a default value if no argument is provided.

Examples:
.Dx 2.4.1
.Dx

GNU July 29, 2021 104

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also At, Bsx, Bx, Fx, Nx, and Ox.

Ec [closing_delimiter]
Close a scope started by Eo.

The closing_delimiter argument is used as the enclosure tail, for example, specifying \(rq will
emulate Dc.

Ed End a display context started by Bd.

Ef End a font mode context started by Bf.

Ek End a keep context started by Bk.

El End a list context started by Bl. See also It.

Em word . . .
Request an italic font. If the output device does not provide that, underline.

This is most often used for stress emphasis (not to be confused with importance, see Sy). In the rare
cases where none of the semantic markup macros fit, it can also be used for technical terms and place-
holders, except that for syntax elements, Sy and Ar are preferred, respectively.

Examples:
Selected lines are those
.Em not
matching any of the specified patterns.
Some of the functions use a
.Em hold space
to save the pattern space for subsequent retrieval.

See also No, Ql, and Sy.

En word . . .
This macro is obsolete. Use Eo or any of the other enclosure macros.

It encloses its argument in the delimiters specified by the last Es macro.

Eo [opening_delimiter]
An arbitrary enclosure. The opening_delimiter argument is used as the enclosure head, for ex-
ample, specifying \(lq will emulate Do.

Er identifier . . .
Error constants for definitions of the errno libc global variable. This is most often used in section 2
and 3 manual pages.

Examples:
.Er EPERM
.Er ENOENT

See also Dv for general constants.

Es opening_delimiter closing_delimiter
This macro is obsolete. Use Eo or any of the other enclosure macros.

It takes two arguments, defining the delimiters to be used by subsequent En macros.

Ev identifier . . .
Environmental variables such as those specified in environ(7).

Examples:
.Ev DISPLAY
.Ev PATH

GNU July 29, 2021 105

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Dv for general constants.

Ex -std [utility . . .]
Insert a standard sentence regarding command exit values of 0 on success and >0 on failure. This is
most often used in section 1, 6, and 8 manual pages.

If utility is not specified, the document’s name set by Nm is used. Multiple utility arguments
are treated as separate utilities.

See also Rv.

Fa argument . . .
Function argument or parameter. Each argument may be a name and a type (recommended for the
SYNOPSIS section), a name alone (for function invocations), or a type alone (for function prototypes).
If both a type and a name are given or if the type consists of multiple words, all words belonging to the
same function argument have to be given in a single argument to the Fa macro.

This macro is also used to specify the field name of a structure.

Most often, the Fa macro is used in the SYNOPSIS within Fo blocks when documenting multi-line
function prototypes. If invoked with multiple arguments, the arguments are separated by a comma.
Furthermore, if the following macro is another Fa, the last argument will also have a trailing comma.

Examples:
.Fa "const char ∗p"
.Fa "int a" "int b" "int c"
.Fa "char ∗" size_t

See also Fo.

Fc End a function context started by Fo.

Fd #directive [argument . . .]
Preprocessor directive, in particular for listing it in the SYNOPSIS. Historically, it was also used to
document include files. The latter usage has been deprecated in favour of In.

Examples:
.Fd #define sa_handler __sigaction_u.__sa_handler
.Fd #define SIO_MAXNFDS
.Fd #ifdef FS_DEBUG
.Ft void
.Fn dbg_open "const char ∗"
.Fd #endif

See also “MANUAL STRUCTURE”, In, and Dv.

Fl [word . . .]
Command-line flag or option. Used when listing arguments to command-line utilities. For each argu-
ment, prints an ASCII hyphen-minus character ‘-’, immediately followed by the argument. If no ar-
guments are provided, a hyphen-minus is printed followed by a space. If the argument is a macro, a
hyphen-minus is prefixed to the subsequent macro output.

Examples:
.Nm du Op Fl H | L | P
.Nm ls Op Fl 1AaCcdFfgHhikLlmnopqRrSsTtux
.Nm route Cm add Fl inet Ar destination gateway
.Nm locate.updatedb Op Fl \-fcodes Ns = Ns Ar dbfile
.Nm aucat Fl o Fl
.Nm kill Fl Ar signal_number

For GNU-sytle long options, escaping the additional hyphen-minus is not strictly required, but may be
safer with future versions of GNU troff; see mandoc_char(7) for details.

GNU July 29, 2021 106

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Cm.

Fn funcname [argument . . .]
A function name.

Function arguments are surrounded in parenthesis and are delimited by commas. If no arguments are
specified, blank parenthesis are output. In the SYNOPSIS section, this macro starts a new output line,
and a blank line is automatically inserted between function definitions.

Examples:
.Fn "int funcname" "int arg0" "int arg1"
.Fn funcname "int arg0"
.Fn funcname arg0

.Ft functype

.Fn funcname

When referring to a function documented in another manual page, use Xr instead. See also
“MANUAL STRUCTURE”, Fo, and Ft.

Fo funcname
Begin a function block. This is a multi-line version of Fn.

Invocations usually occur in the following context:

.Ft functype

.Fo funcname

.Fa "argtype argname"

...

.Fc

A Fo scope is closed by Fc.

See also “MANUAL STRUCTURE”, Fa, Fc, and Ft.

Fr number
This macro is obsolete. No replacement markup is needed.

It was used to show numerical function return values in an italic font.

Ft functype
A function type.

In the SYNOPSIS section, a new output line is started after this macro.

Examples:
.Ft int
.Ft functype
.Fn funcname

See also “MANUAL STRUCTURE”, Fn, and Fo.

Fx [version]
Format the FreeBSD version provided as an argument, or a default value if no argument is provided.

Examples:
.Fx 7.1
.Fx

See also At, Bsx, Bx, Dx, Nx, and Ox.

Hf filename
This macro is not implemented in mandoc(1). It was used to include the contents of a (header) file lit-
erally.

GNU July 29, 2021 107

mdoc(7) Miscellaneous Information Manual mdoc(7)

Ic keyword . . .
Internal or interactive command, or configuration instruction in a configuration file. See also Cm.

Examples:
.Ic :wq
.Ic hash
.Ic alias

Note that using Ql, Dl, or Bd -literal is preferred for displaying code samples; the Ic macro is
used when referring to an individual command name.

In filename
The name of an include file. This macro is most often used in section 2, 3, and 9 manual pages.

When invoked as the first macro on an input line in the SYNOPSIS section, the argument is displayed
in angle brackets and preceded by "#include", and a blank line is inserted in front if there is a preced-
ing function declaration. In other sections, it only encloses its argument in angle brackets and causes
no line break.

Examples:
.In sys/types.h

See also “MANUAL STRUCTURE”.

It [head]
A list item. The syntax of this macro depends on the list type.

Lists of type -hang, -ohang, -inset, and -diag have the following syntax:

.It args

Lists of type -bullet, -dash, -enum, -hyphen and -item have the following syntax:

.It

with subsequent lines interpreted within the scope of the It until either a closing El or another It.

The -tag list has the following syntax:

.It [args]

Subsequent lines are interpreted as with -bullet and family. The line arguments correspond to the
list’s left-hand side; body arguments correspond to the list’s contents.

The -column list is the most complicated. Its syntax is as follows:

.It cell [Ta cell . . .]

.It cell [<TAB> cell . . .]

The arguments consist of one or more lines of text and macros representing a complete table line.
Cells within the line are delimited by the special Ta block macro or by literal tab characters.

Using literal tabs is strongly discouraged because they are very hard to use correctly and apropos
code using them is very hard to read. In particular, a blank character is syntactically significant before
and after the literal tab character. If a word precedes or follows the tab without an intervening blank,
that word is never interpreted as a macro call, but always output literally.

The tab cell delimiter may only be used within the It line itself; on following lines, only the Ta
macro can be used to delimit cells, and portability requires that Ta is called by other macros: some
parsers do not recognize it when it appears as the first macro on a line.

Note that quoted strings may span tab-delimited cells on an It line. For example,

.It "col1 , <TAB> col2 ," ;

will preserve the whitespace before both commas, but not the whitespace before the semicolon.

GNU July 29, 2021 108

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Bl.

Lb libname
Specify a library.

The name parameter may be a system library, such as z or pam, in which case a small library descrip-
tion is printed next to the linker invocation; or a custom library, in which case the library name is
printed in quotes. This is most commonly used in the SYNOPSIS section as described in “MANUAL
STRUCTURE”.

Examples:
.Lb libz
.Lb libmandoc

Li word . . .
Request a typewriter (literal) font. Deprecated because on terminal output devices, this is usually in-
distinguishable from normal text. For literal displays, use Ql (in-line), Dl (single line), or Bd
-literal (multi-line) instead.

Lk uri [display_name]
Format a hyperlink.

Examples:
.Lk https://bsd.lv "The BSD.lv Project"
.Lk https://bsd.lv

See also Mt.

Lp Deprecated synonym for Pp.

Ms name
Display a mathematical symbol.

Examples:
.Ms sigma
.Ms aleph

Mt localpart@domain
Format a “mailto:” hyperlink.

Examples:
.Mt discuss@manpages.bsd.lv
.An Kristaps Dzonsons Aq Mt kristaps@bsd.lv

Nd line
A one line description of the manual’s content. This is the mandatory last macro of the NAME section
and not appropriate for other sections.

Examples:
.Nd mdoc language reference
.Nd format and display UNIX manuals

The Nd macro technically accepts child macros and terminates with a subsequent Sh invocation. Do
not assume this behaviour: some whatis(1) database generators are not smart enough to parse more
than the line arguments and will display macros verbatim.

See also Nm.

Nm [name]
The name of the manual page, or — in particular in section 1, 6, and 8 pages — of an additional com-
mand or feature documented in the manual page. When first invoked, the Nm macro expects a single
argument, the name of the manual page. Usually, the first invocation happens in the NAME section of
the page. The specified name will be remembered and used whenever the macro is called again with-
out arguments later in the page. The Nm macro uses “Block full-implicit” semantics when invoked as

GNU July 29, 2021 109

mdoc(7) Miscellaneous Information Manual mdoc(7)

the first macro on an input line in the SYNOPSIS section; otherwise, it uses ordinary “In-line” seman-
tics.

Examples:

.Sh SYNOPSIS

.Nm cat

.Op Fl benstuv

.Op Ar

In the SYNOPSIS of section 2, 3 and 9 manual pages, use the Fn macro rather than Nm to mark up the
name of the manual page.

No word . . .
Normal text. Closes the scope of any preceding in-line macro. When used after physical formatting
macros like Em or Sy, switches back to the standard font face and weight. Can also be used to embed
plain text strings in macro lines using semantic annotation macros.

Examples:
.Em italic , Sy bold , No and roman

.Sm off

.Cm :C No / Ar pattern No / Ar replacement No /

.Sm on

See also Em, Ql, and Sy.

Ns Suppress a space between the output of the preceding macro and the following text or macro. Follow-
ing invocation, input is interpreted as normal text just like after an No macro.

This has no effect when invoked at the start of a macro line.

Examples:
.Ar name Ns = Ns Ar value
.Cm :M Ns Ar pattern
.Fl o Ns Ar output

See also No and Sm.

Nx [version]
Format the NetBSD version provided as an argument, or a default value if no argument is provided.

Examples:
.Nx 5.01
.Nx

See also At, Bsx, Bx, Dx, Fx, and Ox.

Oc Close multi-line Oo context.

Oo block
Multi-line version of Op.

Examples:
.Oo
.Op Fl flag Ns Ar value
.Oc

Op line
Optional part of a command line. Prints the argument(s) in brackets. This is most often used in the
SYNOPSIS section of section 1 and 8 manual pages.

Examples:
.Op Fl a Ar b
.Op Ar a | b

GNU July 29, 2021 110

mdoc(7) Miscellaneous Information Manual mdoc(7)

See also Oo.

Os [system [version]]
Operating system version for display in the page footer. This is the mandatory third macro of any
apropos file.

The optional system parameter specifies the relevant operating system or environment. It is sug-
gested to leave it unspecified, in which case mandoc(1) uses its -Ios argument or, if that isn’t speci-
fied either, sysname and release as returned by uname(3).

Examples:
.Os
.Os KTH/CSC/TCS
.Os BSD 4.3

See also Dd and Dt.

Ot functype
This macro is obsolete. Use Ft instead; with mandoc(1), both have the same effect.

Historical apropos packages described it as “old function type (FORTRAN)”.

Ox [version]
Format the OpenBSD version provided as an argument, or a default value if no argument is provided.

Examples:
.Ox 4.5
.Ox

See also At, Bsx, Bx, Dx, Fx, and Nx.

Pa name . . .
An absolute or relative file system path, or a file or directory name. If an argument is not provided, the
character ‘~’ is used as a default.

Examples:
.Pa /usr/bin/mandoc
.Pa /usr/share/man/man7/mdoc.7

See also Lk.

Pc Close parenthesised context opened by Po.

Pf prefix macro [argument . . .]
Removes the space between its argument and the following macro. It is equivalent to:

No \&prefix Ns macro [argument . . .]

The prefix argument is not parsed for macro names or delimiters, but used verbatim as if it were es-
caped.

Examples:
.Pf $ Ar variable_name
.Pf . Ar macro_name
.Pf 0x Ar hex_digits

See also Ns and Sm.

Po block
Multi-line version of Pq.

Pp Break a paragraph. This will assert vertical space between prior and subsequent macros and/or text.

Paragraph breaks are not needed before or after Sh or Ss macros or before displays (Bd line) or
lists (Bl) unless the -compact flag is given.

GNU July 29, 2021 111

mdoc(7) Miscellaneous Information Manual mdoc(7)

Pq line
Parenthesised enclosure.

See also Po.

Qc Close quoted context opened by Qo.

Ql line
In-line literal display. This can be used for complete command invocations and for multi-word code
examples when an indented display is not desired.

See also Dl and Bd -literal.

Qo block
Multi-line version of Qq.

Qq line
Encloses its arguments in "typewriter" double-quotes. Consider using Dq.

See also Dq, Sq, and Qo.

Re Close an Rs block. Does not have any tail arguments.

Rs Begin a bibliographic (“reference”) block. Does not have any head arguments. The block macro may
only contain %A, %B, %C, %D, %I, %J, %N, %O, %P, %Q, %R, %T, %U, and %V child macros (at least one
must be specified).

Examples:
.Rs
.%A J. E. Hopcroft
.%A J. D. Ullman
.%B Introduction to Automata Theory, Languages, and Computation
.%I Addison-Wesley
.%C Reading, Massachusetts
.%D 1979
.Re

If an Rs block is used within a SEE ALSO section, a vertical space is asserted before the rendered out-
put, else the block continues on the current line.

Rv -std [function . . .]
Insert a standard sentence regarding a function call’s return value of 0 on success and -1 on error, with
the errno libc global variable set on error.

If function is not specified, the document’s name set by Nm is used. Multiple function argu-
ments are treated as separate functions.

See also Ex.

Sc Close single-quoted context opened by So.

Sh TITLE LINE
Begin a new section. For a list of conventional manual sections, see “MANUAL STRUCTURE”.
These sections should be used unless it’s absolutely necessary that custom sections be used.

Section names should be unique so that they may be keyed by Sx. Although this macro is parsed, it
should not consist of child node or it may not be linked with Sx.

See also Pp, Ss, and Sx.

Sm [on | off]
Switches the spacing mode for output generated from macros.

By default, spacing is on. When switched off, no white space is inserted between macro arguments
and between the output generated from adjacent macros, but text lines still get normal spacing between

GNU July 29, 2021 112

mdoc(7) Miscellaneous Information Manual mdoc(7)

words and sentences.

When called without an argument, the Sm macro toggles the spacing mode. Using this is not recom-
mended because it makes the code harder to read.

So block
Multi-line version of Sq.

Sq line
Encloses its arguments in ‘typewriter’ single-quotes.

See also Dq, Qq, and So.

Ss Title line
Begin a new subsection. Unlike with Sh, there is no convention for the naming of subsections. Ex-
cept DESCRIPTION, the conventional sections described in “MANUAL STRUCTURE” rarely have
subsections.

Sub-section names should be unique so that they may be keyed by Sx. Although this macro is parsed,
it should not consist of child node or it may not be linked with Sx.

See also Pp, Sh, and Sx.

St -abbreviation
Replace an abbreviation for a standard with the full form. The following standards are recognised.
Where multiple lines are given without a blank line in between, they all refer to the same standard, and
using the first form is recommended.

C language standards

-ansiC ANSI X3.159-1989 (“ANSI C89”)
-ansiC-89 ANSI X3.159-1989 (“ANSI C89”)
-isoC ISO/IEC 9899:1990 (“ISO C90”)
-isoC-90 ISO/IEC 9899:1990 (“ISO C90”)

The original C standard.

-isoC-amd1 ISO/IEC 9899/AMD1:1995 (“ISO C90, Amendment 1”)

-isoC-tcor1 ISO/IEC 9899/TCOR1:1994 (“ISO C90, Technical Corrigendum 1”)

-isoC-tcor2 ISO/IEC 9899/TCOR2:1995 (“ISO C90, Technical Corrigendum 2”)

-isoC-99 ISO/IEC 9899:1999 (“ISO C99”)
The second major version of the C language standard.

-isoC-2011 ISO/IEC 9899:2011 (“ISO C11”)
The third major version of the C language standard.

POSIX.1 before the Single UNIX Specification

-p1003.1-88 IEEE Std 1003.1-1988 (“POSIX.1”)
-p1003.1 IEEE Std 1003.1 (“POSIX.1”)

The original POSIX standard, based on ANSI C.

-p1003.1-90 ISO/IEC 9945-1:1990 (“POSIX.1”)
-iso9945-1-90 ISO/IEC 9945-1:1990 (“POSIX.1”)

The first update of POSIX.1.

-p1003.1b-93 IEEE Std 1003.1b-1993 (“POSIX.1”)
-p1003.1b IEEE Std 1003.1b (“POSIX.1”)

Real-time extensions.

-p1003.1c-95 IEEE Std 1003.1c-1995 (“POSIX.1”)
POSIX thread interfaces.

GNU July 29, 2021 113

mdoc(7) Miscellaneous Information Manual mdoc(7)

-p1003.1i-95 IEEE Std 1003.1i-1995 (“POSIX.1”)
Technical Corrigendum.

-p1003.1-96 ISO/IEC 9945-1:1996 (“POSIX.1”)
-iso9945-1-96 ISO/IEC 9945-1:1996 (“POSIX.1”)

Includes POSIX.1-1990, 1b, 1c, and 1i.

X/Open Portability Guide version 4 and related standards

-xpg3 X/Open Portability Guide Issue 3 (“XPG3”)
An XPG4 precursor, published in 1989.

-p1003.2 IEEE Std 1003.2 (“POSIX.2”)
-p1003.2-92 IEEE Std 1003.2-1992 (“POSIX.2”)
-iso9945-2-93 ISO/IEC 9945-2:1993 (“POSIX.2”)

An XCU4 precursor.

-p1003.2a-92 IEEE Std 1003.2a-1992 (“POSIX.2”)
Updates to POSIX.2.

-xpg4 X/Open Portability Guide Issue 4 (“XPG4”)
Based on POSIX.1 and POSIX.2, published in 1992.

Single UNIX Specification version 1 and related standards

-susv1 Version 1 of the Single UNIX Specification (“SUSv1”)
-xpg4.2 X/Open Portability Guide Issue 4, Version 2 (“XPG4.2”)

This standard was published in 1994. It was used as the basis for UNIX 95
certification. The following three refer to parts of it.

-xsh4.2

-xcurses4.2 X/Open Curses Issue 4, Version 2 (“XCURSES4.2”)

-p1003.1g-2000 IEEE Std 1003.1g-2000 (“POSIX.1”)
Networking APIs, including sockets.

-svid4 System V Interface Definition, Fourth Edition (“SVID4”),
Published in 1995.

Single UNIX Specification version 2 and related standards

-susv2 Version 2 of the Single UNIX Specification (“SUSv2”) This Standard was
published in 1997 and is also called X/Open Portability Guide version 5. It
was used as the basis for UNIX 98 certification. The following refer to parts
of it.

-xbd5 X/Open Base Definitions Issue 5 (“XBD5”)

-xsh5 X/Open System Interfaces and Headers Issue 5 (“XSH5”)

-xcu5 X/Open Commands and Utilities Issue 5 (“XCU5”)

-xns5 X/Open Networking Services Issue 5 (“XNS5”)
-xns5.2 X/Open Networking Services Issue 5.2 (“XNS5.2”)

Single UNIX Specification version 3

-p1003.1-2001 IEEE Std 1003.1-2001 (“POSIX.1”)
-susv3 Version 3 of the Single UNIX Specification (“SUSv3”)

This standard is based on C99, SUSv2, POSIX.1-1996, 1d, and 1j. It is also
called X/Open Portability Guide version 6. It is used as the basis for UNIX 03
certification.

GNU July 29, 2021 114

mdoc(7) Miscellaneous Information Manual mdoc(7)

-p1003.1-2004 IEEE Std 1003.1-2004 (“POSIX.1”)
The second and last Technical Corrigendum.

Single UNIX Specification version 4

-p1003.1-2008 IEEE Std 1003.1-2008 (“POSIX.1”)
-susv4 Version 4 of the Single UNIX Specification (“SUSv4”)

This standard is also called X/Open Portability Guide version 7.

Other standards

-ieee754 IEEE Std 754-1985
Floating-point arithmetic.

-iso8601 ISO 8601
Representation of dates and times, published in 1988.

-iso8802-3 ISO/IEC 8802-3:1989
Ethernet local area networks.

-ieee1275-94 IEEE Std 1275-1994 (“Open Firmware”)

Sx Title line
Reference a section or subsection in the same manual page. The referenced section or subsection
name must be identical to the enclosed argument, including whitespace.

Examples:
.Sx MANUAL STRUCTURE

See also Sh and Ss.

Sy word . . .
Request a boldface font.

This is most often used to indicate importance or seriousness (not to be confused with stress emphasis,
see Em). When none of the semantic macros fit, it is also adequate for syntax elements that have to be
given or that appear verbatim.

Examples:
.Sy Warning :
If
.Sy s
appears in the owner permissions, set-user-ID mode is set.
This utility replaces the former
.Sy dumpdir
program.

See also Em, No, and Ql.

Ta Table cell separator in Bl -column lists; can only be used below It.

Tg [term]
Announce that the next input line starts a definition of the term. This macro must appear alone on its
own input line. The argument defaults to the first argument of the first macro on the next line. The ar-
gument may not contain whitespace characters, not even when it is quoted. This macro is a mandoc(1)
extension and is typically ignored by other formatters.

When viewing terminal output with less(1), the interactive :t command can be used to go to the defi-
nition of the term as described for the MANPAGER variable in man(1); when producing HTML out-
put, a fragment identifier (id attribute) is generated, to be used for deep linking to this place of the
document.

In most cases, adding a Tg macro would be redundant because mandoc(1) is able to automatically tag
most definitions. This macro is intended for cases where automatic tagging of a term is unsatisfac-
tory, for example if a definition is not tagged automatically (false negative) or if places are tagged that

GNU July 29, 2021 115

mdoc(7) Miscellaneous Information Manual mdoc(7)

do not define the term (false positives). When there is at least one Tg macro for a term, no other
places are automatically marked as definitions of that term.

Tn word . . .
Supported only for compatibility, do not use this in new manuals. Even though the macro name
(“tradename”) suggests a semantic function, historic usage is inconsistent, mostly using it as a presen-
tation-level macro to request a small caps font.

Ud Supported only for compatibility, do not use this in new manuals. Prints out “currently under
development.”

Ux Supported only for compatibility, do not use this in new manuals. Prints out “Unix”.

Va [type] identifier . . .
A variable name.

Examples:
.Va foo
.Va const char ∗bar;

For function arguments and parameters, use Fa instead. For declarations of global variables in the
SYNOPSIS section, use Vt.

Vt type [identifier]
A variable type.

This is also used for indicating global variables in the SYNOPSIS section, in which case a variable
name is also specified. Note that it accepts “Block partial-implicit” syntax when invoked as the first
macro on an input line in the SYNOPSIS section, else it accepts ordinary “In-line” syntax. In the for-
mer case, this macro starts a new output line, and a blank line is inserted in front if there is a preceding
function definition or include directive.

Examples:
.Vt unsigned char
.Vt extern const char ∗ const sys_signame[] ;

For parameters in function prototypes, use Fa instead, for function return types Ft, and for variable
names outside the SYNOPSIS section Va, even when including a type with the name. See also
“MANUAL STRUCTURE”.

Xc Close a scope opened by Xo.

Xo block
Extend the header of an It macro or the body of a partial-implicit block macro beyond the end of the
input line. This macro originally existed to work around the 9-argument limit of historic roff(7).

Xr name section
Link to another manual ("cross-reference").

Cross reference the name and section number of another man page.

Examples:
.Xr mandoc 1
.Xr mandoc 1 ;
.Xr mandoc 1 Ns s behaviour

MACRO SYNTAX
The syntax of a macro depends on its classification. In this section, ‘-arg’ refers to macro arguments,
which may be followed by zero or more ‘parm’ parameters; ‘Yo’ opens the scope of a macro; and if speci-
fied, ‘Yc’ closes it out.

The Callable column indicates that the macro may also be called by passing its name as an argument to an-
other macro. For example, ‘.Op Fl O Ar file’ produces ‘[-O file]’. To prevent a macro call and render
the macro name literally, escape it by prepending a zero-width space, ‘\&’. For example, ‘Op \&Fl O’

GNU July 29, 2021 116

mdoc(7) Miscellaneous Information Manual mdoc(7)

produces ‘[Fl O]’. If a macro is not callable but its name appears as an argument to another macro, it is in-
terpreted as opaque text. For example, ‘.Fl Sh’ produces ‘ -Sh’.

The Parsed column indicates whether the macro may call other macros by receiving their names as argu-
ments. If a macro is not parsed but the name of another macro appears as an argument, it is interpreted as
opaque text.

The Scope column, if applicable, describes closure rules.

Block full-explicit
Multi-line scope closed by an explicit closing macro. All macros contains bodies; only Bf and (optionally)
Bl contain a head.

.Yo [-arg [parm...]] [head...]
[body...]
.Yc

Macro Callable Parsed Scope
Bd No No closed by Ed
Bf No No closed by Ef
Bk No No closed by Ek
Bl No No closed by El
Ed No No opened by Bd
Ef No No opened by Bf
Ek No No opened by Bk
El No No opened by Bl

Block full-implicit
Multi-line scope closed by end-of-file or implicitly by another macro. All macros have bodies; some (It
-bullet, -hyphen, -dash, -enum, -item) don’t have heads; only one (It in Bl -column) has
multiple heads.

.Yo [-arg [parm...]] [head... [Ta head...]]
[body...]

Macro Callable Parsed Scope
It No Yes closed by It, El
Nd No No closed by Sh
Nm No Yes closed by Nm, Sh, Ss
Sh No Yes closed by Sh
Ss No Yes closed by Sh, Ss

Note that the Nm macro is a “Block full-implicit” macro only when invoked as the first macro in a
SYNOPSIS section line, else it is “In-line”.

Block partial-explicit
Like block full-explicit, but also with single-line scope. Each has at least a body and, in limited circum-
stances, a head (Fo, Eo) and/or tail (Ec).

.Yo [-arg [parm...]] [head...]
[body...]
.Yc [tail...]

.Yo [-arg [parm...]] [head...] [body...] Yc [tail...]

Macro Callable Parsed Scope
Ac Yes Yes opened by Ao
Ao Yes Yes closed by Ac

GNU July 29, 2021 117

mdoc(7) Miscellaneous Information Manual mdoc(7)

Bc Yes Yes closed by Bo
Bo Yes Yes opened by Bc
Brc Yes Yes opened by Bro
Bro Yes Yes closed by Brc
Dc Yes Yes opened by Do
Do Yes Yes closed by Dc
Ec Yes Yes opened by Eo
Eo Yes Yes closed by Ec
Fc Yes Yes opened by Fo
Fo No No closed by Fc
Oc Yes Yes closed by Oo
Oo Yes Yes opened by Oc
Pc Yes Yes closed by Po
Po Yes Yes opened by Pc
Qc Yes Yes opened by Oo
Qo Yes Yes closed by Oc
Re No No opened by Rs
Rs No No closed by Re
Sc Yes Yes opened by So
So Yes Yes closed by Sc
Xc Yes Yes opened by Xo
Xo Yes Yes closed by Xc

Block partial-implicit
Like block full-implicit, but with single-line scope closed by the end of the line.

.Yo [-arg [val...]] [body...] [res...]

Macro Callable Parsed
Aq Yes Yes
Bq Yes Yes
Brq Yes Yes
D1 No Yes
Dl No Yes
Dq Yes Yes
En Yes Yes
Op Yes Yes
Pq Yes Yes
Ql Yes Yes
Qq Yes Yes
Sq Yes Yes
Vt Yes Yes

Note that the Vt macro is a “Block partial-implicit” only when invoked as the first macro in a SYNOPSIS
section line, else it is “In-line”.

Special block macro
The Ta macro can only be used below It in Bl -column lists. It delimits blocks representing table
cells; these blocks have bodies, but no heads.

Macro Callable Parsed Scope
Ta Yes Yes closed by Ta, It

In-line
Closed by the end of the line, fixed argument lengths, and/or subsequent macros. In-line macros have only
text children. If a number (or inequality) of arguments is (n), then the macro accepts an arbitrary number of
arguments.

GNU July 29, 2021 118

mdoc(7) Miscellaneous Information Manual mdoc(7)

.Yo [-arg [val...]] [args...] [res...]

.Yo [-arg [val...]] [args...] Yc...

.Yo [-arg [val...]] arg0 arg1 argN

Macro Callable Parsed Arguments
%A No No >0
%B No No >0
%C No No >0
%D No No >0
%I No No >0
%J No No >0
%N No No >0
%O No No >0
%P No No >0
%Q No No >0
%R No No >0
%T No No >0
%U No No >0
%V No No >0
Ad Yes Yes >0
An Yes Yes >0
Ap Yes Yes 0
Ar Yes Yes n
At Yes Yes 1
Bsx Yes Yes n
Bt No No 0
Bx Yes Yes n
Cd Yes Yes >0
Cm Yes Yes >0
Db No No 1
Dd No No n
Dt No No n
Dv Yes Yes >0
Dx Yes Yes n
Em Yes Yes >0
Er Yes Yes >0
Es Yes Yes 2
Ev Yes Yes >0
Ex No No n
Fa Yes Yes >0
Fd No No >0
Fl Yes Yes n
Fn Yes Yes >0
Fr Yes Yes >0
Ft Yes Yes >0
Fx Yes Yes n
Hf No No n
Ic Yes Yes >0
In No No 1
Lb No No 1

GNU July 29, 2021 119

mdoc(7) Miscellaneous Information Manual mdoc(7)

Li Yes Yes >0
Lk Yes Yes >0
Lp No No 0
Ms Yes Yes >0
Mt Yes Yes >0
Nm Yes Yes n
No Yes Yes >0
Ns Yes Yes 0
Nx Yes Yes n
Os No No n
Ot Yes Yes >0
Ox Yes Yes n
Pa Yes Yes n
Pf Yes Yes 1
Pp No No 0
Rv No No n
Sm No No <2
St No Yes 1
Sx Yes Yes >0
Sy Yes Yes >0
Tg No No <2
Tn Yes Yes >0
Ud No No 0
Ux Yes Yes n
Va Yes Yes n
Vt Yes Yes >0
Xr Yes Yes 2

Delimiters
When a macro argument consists of one single input character considered as a delimiter, the argument gets
special handling. This does not apply when delimiters appear in arguments containing more than one char-
acter. Consequently, to prevent special handling and just handle it like any other argument, a delimiter can
be escaped by prepending a zero-width space (‘\&’). In text lines, delimiters never need escaping, but may
be used as normal punctuation.

For many macros, when the leading arguments are opening delimiters, these delimiters are put before the
macro scope, and when the trailing arguments are closing delimiters, these delimiters are put after the
macro scope. Spacing is suppressed after opening delimiters and before closing delimiters. For example,

.Aq ([word]) .

renders as:

([〈word〉]).

Opening delimiters are:

(left parenthesis
[left bracket

Closing delimiters are:

. period
, comma
: colon
; semicolon
) right parenthesis

GNU July 29, 2021 120

mdoc(7) Miscellaneous Information Manual mdoc(7)

] right bracket
? question mark
! exclamation mark

Note that even a period preceded by a backslash (‘\.’) gets this special handling; use ‘\&.’ to prevent that.

Many in-line macros interrupt their scope when they encounter delimiters, and resume their scope when
more arguments follow that are not delimiters. For example,

.Fl a (b | c \∗(Ba d) e

renders as:

-a (-b | -c | -d) -e

This applies to both opening and closing delimiters, and also to the middle delimiter, which does not sup-
press spacing:

| vertical bar

As a special case, the predefined string \∗(Ba is handled and rendered in the same way as a plain ‘|’ charac-
ter. Using this predefined string is not recommended in new manuals.

Appending a zero-width space (‘\&’) to the end of an input line is also useful to prevent the interpretation
of a trailing period, exclamation or question mark as the end of a sentence, for example when an abbrevia-
tion happens to occur at the end of a text or macro input line.

Font handling
In apropos documents, usage of semantic markup is recommended in order to have proper fonts automat-
ically selected; only when no fitting semantic markup is available, consider falling back to “Physical
markup” macros. Whenever any apropos macro switches the roff(7) font mode, it will automatically re-
store the previous font when exiting its scope. Manually switching the font using the roff(7) ‘\f’ font es-
cape sequences is never required.

COMPATIBILITY
This section provides an incomplete list of compatibility issues between mandoc and GNU troff ("groff").

The following problematic behaviour is found in groff:

- Pa does not format its arguments when used in the FILES section under certain list types.
- Ta can only be called by other macros, but not at the beginning of a line.
- ‘\f’ (font face) and ‘\F’ (font family face) “Text Decoration” escapes behave irregularly when specified

within line-macro scopes.
- Negative scaling units return to prior lines. Instead, mandoc truncates them to zero.

The following features are unimplemented in mandoc:

- Bd -file file is unsupported for security reasons.
- Bd -filled does not adjust the right margin, but is an alias for Bd -ragged.
- Bd -literal does not use a literal font, but is an alias for Bd -unfilled.
- Bd -offset center and -offset right don’t work. Groff does not implement centered and

flush-right rendering either, but produces large indentations.

SEE ALSO
man(1), mandoc(1), eqn(7), man(7), mandoc_char(7), roff(7), tbl(7)

The web page extended documentation for the mdoc language: https://mandoc.bsd.lv/mdoc/ provides a few
tutorial-style pages for beginners, an extensive style guide for advanced authors, and an alphabetic index
helping to choose the best macros for various kinds of content.

The manual page groff_mdoc(7): https://man.voidlinux.org/groff_mdoc contained in the “groff” package
documents exactly the same language in a somewhat different style.

GNU July 29, 2021 121

mdoc(7) Miscellaneous Information Manual mdoc(7)

HISTORY
The apropos language first appeared as a troff macro package in 4.4BSD. It was later significantly up-
dated by Werner Lemberg and Ruslan Ermilov in groff-1.17. The standalone implementation that is part of
the mandoc(1) utility written by Kristaps Dzonsons appeared in OpenBSD 4.6.

AUTHORS
The apropos reference was written by Kristaps Dzonsons <kristaps@bsd.lv>.

GNU July 29, 2021 122

roff(7) Miscellaneous Information Manual roff(7)

NAME
roff — roff language reference for mandoc

DESCRIPTION
The roff language is a general purpose text formatting language. Since traditional implementations of the
mdoc(7) and man(7) manual formatting languages are based on it, many real-world manuals use small num-
bers of apropos requests and escape sequences intermixed with their mdoc(7) or man(7) code. To prop-
erly format such manuals, the mandoc(1) utility supports a subset of apropos requests and escapes. Even
though this manual page lists all apropos requests and escape sequences, it only contains partial informa-
tion about requests not supported by mandoc(1) and about language features that do not matter for manual
pages. For complete apropos manuals, consult the “SEE ALSO” section.

Input lines beginning with the control character ‘.’ are parsed for requests and macros. Such lines are
called “request lines” or “macro lines”, respectively. Requests change the processing state and manipulate
the formatting; some macros also define the document structure and produce formatted output. The single
quote ("'") is accepted as an alternative control character, treated by mandoc(1) just like ‘.’

Lines not beginning with control characters are called “text lines”. They provide free-form text to be
printed; the formatting of the text depends on the respective processing context.

LANGUAGE SYNTAX
apropos documents may contain only graphable 7-bit ASCII characters, the space character, and, in cer-
tain circumstances, the tab character. The backslash character ‘\’ indicates the start of an escape sequence,
used for example for “Comments” and “Special Characters”. For a complete listing of escape sequences,
consult the “ESCAPE SEQUENCE REFERENCE” below.

Comments
Text following an escaped double-quote ‘\"’, whether in a request, macro, or text line, is ignored to the end
of the line. A request line beginning with a control character and comment escape ‘.\"’ is also ignored.
Furthermore, request lines with only a control character and optional trailing whitespace are stripped from
input.

Examples:
.\" This is a comment line.
.\" The next line is ignored:
.
.Sh EXAMPLES \" This is a comment, too.
example text \" And so is this.

Special Characters
Special characters are used to encode special glyphs and are rendered differently across output media.
They may occur in request, macro, and text lines. Sequences begin with the escape character ‘\’ followed
by either an open-parenthesis ‘(’ for two-character sequences; an open-bracket ‘[’ for n-character sequences
(terminated at a close-bracket ‘]’); or a single one character sequence.

Examples:
\(em Two-letter em dash escape.
\e One-letter backslash escape.

See mandoc_char(7) for a complete list.

Font Selection
In mdoc(7) and man(7) documents, fonts are usually selected with macros. The \f escape sequence and
the ft request can be used to manually change the font, but this is not recommended in mdoc(7) docu-
ments. Such manual font changes are overridden by many subsequent macros.

The following fonts are supported:

B Bold font.

GNU September 18, 2021 123

roff(7) Miscellaneous Information Manual roff(7)

BI A font that is both bold and italic.
CB Bold constant width font. Same as B in terminal output.
CI Italic constant width font. Same as I in terminal output.
CR Regular constant width font. Same as R in terminal output.
CW An alias for CR.
I Italic font.
P Return to the previous font. If a macro caused a font change since the last \f eascape sequence

or ft request, this returns to the font before the last font change in the macro rather than to the
font before the last manual font change.

R Roman font. This is the default font.
1 An alias for R.
2 An alias for I.
3 An alias for B.
4 An alias for BI.

Examples:
\fBbold\fR

Write in bold, then switch to regular font mode.
\fIitalic\fP

Write in italic, then return to previous font mode.
\f(BIbold italic\fP

Write in bold italic, then return to previous font mode.

Whitespace
Whitespace consists of the space character. In text lines, whitespace is preserved within a line. In request
and macro lines, whitespace delimits arguments and is discarded.

Unescaped trailing spaces are stripped from text line input unless in a literal context. In general, trailing
whitespace on any input line is discouraged for reasons of portability. In the rare case that a space character
is needed at the end of an input line, it may be forced by ‘\ \&’.

Literal space characters can be produced in the output using escape sequences. In macro lines, they can
also be included in arguments using quotation; see “MACRO SYNTAX” for details.

Blank text lines, which may include whitespace, are only permitted within literal contexts. If the first char-
acter of a text line is a space, that line is printed with a leading newline.

Scaling Widths
Many requests and macros support scaled widths for their arguments. The syntax for a scaled width is
‘[+-]?[0-9]∗.[0-9]∗[:unit:]’, where a decimal must be preceded or followed by at least one
digit.

The following scaling units are accepted:

c centimetre
i inch
P pica (1/6 inch)
p point (1/72 inch)
f scale ‘u’ by 65536
v default vertical span
m width of rendered ‘m’ (em) character
n width of rendered ‘n’ (en) character
u default horizontal span for the terminal
M mini-em (1/100 em)

Using anything other than ‘m’, ‘n’, or ‘v’ is necessarily non-portable across output media. See
“COMPATIBILITY”.

If a scaling unit is not provided, the numerical value is interpreted under the default rules of ‘v’ for vertical
spaces and ‘u’ for horizontal ones.

GNU September 18, 2021 124

roff(7) Miscellaneous Information Manual roff(7)

Examples:
.Bl -tag -width 2i
two-inch tagged list indentation in mdoc(7)

.HP 2i
two-inch tagged list indentation in man(7)

.sp 2v
two vertical spaces

Sentence Spacing
Each sentence should terminate at the end of an input line. By doing this, a formatter will be able to apply
the proper amount of spacing after the end of sentence (unescaped) period, exclamation mark, or question
mark followed by zero or more non-sentence closing delimiters (‘)’, ‘]’, ‘’’, ‘"’).

The proper spacing is also intelligently preserved if a sentence ends at the boundary of a macro line.

If an input line happens to end with a period, exclamation or question mark that isn’t the end of a sentence,
append a zero-width space (‘\&’).

Examples:
Do not end sentences mid-line like this. Instead,
end a sentence like this.
A macro would end like this:
.Xr mandoc 1 .
An abbreviation at the end of an input line needs escaping, e.g.\&
like this.

REQUEST SYNTAX
A request or macro line consists of:

1. the control character ‘.’ or ‘'’ at the beginning of the line,
2. optionally an arbitrary amount of whitespace,
3. the name of the request or the macro, which is one word of arbitrary length, terminated by whitespace,
4. and zero or more arguments delimited by whitespace.

Thus, the following request lines are all equivalent:

.ig end

.ig end

. ig end

MACRO SYNTAX
Macros are provided by the mdoc(7) and man(7) languages and can be defined by the de request. When
called, they follow the same syntax as requests, except that macro arguments may optionally be quoted by
enclosing them in double quote characters (‘"’). Quoted text, even if it contains whitespace or would cause
a macro invocation when unquoted, is always considered literal text. Inside quoted text, pairs of double
quote characters (‘""’) resolve to single double quote characters.

To be recognised as the beginning of a quoted argument, the opening quote character must be preceded by a
space character. A quoted argument extends to the next double quote character that is not part of a pair, or
to the end of the input line, whichever comes earlier. Leaving out the terminating double quote character at
the end of the line is discouraged. For clarity, if more arguments follow on the same input line, it is recom-
mended to follow the terminating double quote character by a space character; in case the next character af-
ter the terminating double quote character is anything else, it is regarded as the beginning of the next, un-
quoted argument.

Both in quoted and unquoted arguments, pairs of backslashes (‘\\’) resolve to single backslashes. In un-
quoted arguments, space characters can alternatively be included by preceding them with a backslash (‘\ ’),
but quoting is usually better for clarity.

Examples:

GNU September 18, 2021 125

roff(7) Miscellaneous Information Manual roff(7)

.Fn strlen "const char ∗s"
Group arguments "const char ∗s" into one function argument. If unspecified, "const",
"char", and "∗s" would be considered separate arguments.

.Op "Fl a"
Consider "Fl a" as literal text instead of a flag macro.

REQUEST REFERENCE
The mandoc(1) apropos parser recognises the following requests. For requests marked as "ignored" or
"unsupported", any arguments are ignored, and the number of arguments is not checked.

ab [message]
Abort processing. Currently unsupported.

ad [b | c | l | n | r]
Set line adjustment mode for subsequent text. Currently ignored.

af registername format
Assign an output format to a number register. Currently ignored.

aln newname oldname
Create an alias for a number register. Currently unsupported.

als newname oldname
Create an alias for a request, string, macro, or diversion.

am macroname [endmacro]
Append to a macro definition. The syntax of this request is the same as that of de.

am1 macroname [endmacro]
Append to a macro definition, switching roff compatibility mode off during macro execution (groff
extension). The syntax of this request is the same as that of de1. Since mandoc(1) does not im-
plement apropos compatibility mode at all, it handles this request as an alias for am.

ami macrostring [endstring]
Append to a macro definition, specifying the macro name indirectly (groff extension). The syntax
of this request is the same as that of dei.

ami1 macrostring [endstring]
Append to a macro definition, specifying the macro name indirectly and switching roff compatibil-
ity mode off during macro execution (groff extension). The syntax of this request is the same as
that of dei1. Since mandoc(1) does not implement apropos compatibility mode at all, it han-
dles this request as an alias for ami.

as stringname [string]
Append to a user-defined string. The syntax of this request is the same as that of ds. If a user-de-
fined string with the specified name does not yet exist, it is set to the empty string before append-
ing.

as1 stringname [string]
Append to a user-defined string, switching roff compatibility mode off during macro execution
(groff extension). The syntax of this request is the same as that of ds1. Since mandoc(1) does not
implement apropos compatibility mode at all, it handles this request as an alias for as.

asciify divname
Fully unformat a diversion. Currently unsupported.

backtrace
Print a backtrace of the input stack. This is a groff extension and currently ignored.

bd font [curfont] [offset]
Artificially embolden by repeated printing with small shifts. Currently ignored.

GNU September 18, 2021 126

roff(7) Miscellaneous Information Manual roff(7)

bleedat left top width height
Set the BleedBox page parameter for PDF generation. This is a Heirloom extension and currently
ignored.

blm macroname
Set a blank line trap. Currently unsupported.

box divname
Begin a diversion without including a partially filled line. Currently unsupported.

boxa divname
Add to a diversion without including a partially filled line. Currently unsupported.

bp [+|-]pagenumber
Begin a new page. Currently ignored.

BP source height width position offset flags label
Define a frame and place a picture in it. This is a Heirloom extension and currently unsupported.

br Break the output line.

break Break out of the innermost while loop.

breakchar char . . .
Optional line break characters. This is a Heirloom extension and currently ignored.

brnl N
Break output line after the next N input lines. This is a Heirloom extension and currently ignored.

brp Break and spread output line. Currently, this is implemented as an alias for br.

brpnl N
Break and spread output line after the next N input lines. This is a Heirloom extension and cur-
rently ignored.

c2 [char]
Change the no-break control character. Currently unsupported.

cc [char]
Change the control character. If char is not specified, the control character is reset to ‘.’. Trailing
characters are ignored.

ce [N]
Center the next N input lines without filling. N defaults to 1. An argument of 0 or less ends center-
ing. Currently, high level macros abort centering.

cf filename
Output the contents of a file. Ignored because insecure.

cflags flags char . . .
Set character flags. This is a groff extension and currently ignored.

ch macroname [dist]
Change a trap location. Currently ignored.

char glyph [string]
Define or redefine the ASCII character or character escape sequence glyph to be rendered as
string, which can be empty. Only partially supported in mandoc(1); may interact incorrectly
with tr.

chop stringname
Remove the last character from a macro, string, or diversion. Currently unsupported.

GNU September 18, 2021 127

roff(7) Miscellaneous Information Manual roff(7)

class classname char . . .
Define a character class. This is a groff extension and currently ignored.

close streamname
Close an open file. Ignored because insecure.

CL color text
Print text in color. This is a Heirloom extension and currently unsupported.

color [1 | 0]
Activate or deactivate colors. This is a groff extension and currently ignored.

composite from to
Define a name component for composite glyph names. This is a groff extension and currently un-
supported.

continue
Immediately start the next iteration of a while loop. Currently unsupported.

cp [1 | 0]
Switch apropos compatibility mode on or off. Currently ignored.

cropat left top width height
Set the CropBox page parameter for PDF generation. This is a Heirloom extension and currently
ignored.

cs font [width [emsize]]
Constant character spacing mode. Currently ignored.

cu [N]
Underline next N input lines including whitespace. Currently ignored.

da divname
Append to a diversion. Currently unsupported.

dch macroname [dist]
Change a trap location in the current diversion. This is a Heirloom extension and currently unsup-
ported.

de macroname [endmacro]
Define a apropos macro. Its syntax can be either

.de macroname
definition
..

or

.de macroname endmacro
definition
.endmacro

Both forms define or redefine the macro macroname to represent the definition, which may
consist of one or more input lines, including the newline characters terminating each line, option-
ally containing calls to apropos requests, apropos macros or high-level macros like man(7) or
mdoc(7) macros, whichever applies to the document in question.

Specifying a custom endmacro works in the same way as for ig; namely, the call to
‘.endmacro’ first ends the definition, and after that, it is also evaluated as a apropos re-
quest or apropos macro, but not as a high-level macro.

The macro can be invoked later using the syntax

GNU September 18, 2021 128

roff(7) Miscellaneous Information Manual roff(7)

.macroname [argument [argument . . .]]

Regarding argument parsing, see “MACRO SYNTAX” above.

The line invoking the macro will be replaced in the input stream by the definition, replacing
all occurrences of \\$N, where N is a digit, by the Nth argument. For example,

.de ZN
\fI\ˆ\\$1\ˆ\fP\\$2
..
.ZN XtFree .

produces

\fI\ˆXtFree\ˆ\fP.

in the input stream, and thus in the output: XtFree . Each occurrence of \\$∗ is replaced with all the
arguments, joined together with single space characters. The variant \\$@ is similar, except that
each argument is individually quoted.

Since macros and user-defined strings share a common string table, defining a macro macroname
clobbers the user-defined string macroname, and the definition can also be printed using the
‘\∗’ string interpolation syntax described below ds, but this is rarely useful because every macro
definition contains at least one explicit newline character.

In order to prevent endless recursion, both groff and mandoc(1) limit the stack depth for expanding
macros and strings to a large, but finite number, and mandoc(1) also limits the length of the ex-
panded input line. Do not rely on the exact values of these limits.

de1 macroname [endmacro]
Define a apropos macro that will be executed with apropos compatibility mode switched off
during macro execution. This is a groff extension. Since mandoc(1) does not implement
apropos compatibility mode at all, it handles this request as an alias for de.

defcolor newname scheme component . . .
Define a color name. This is a groff extension and currently ignored.

dei macrostring [endstring]
Define a apropos macro, specifying the macro name indirectly (groff extension). The syntax of
this request is the same as that of de. The effect is the same as:

.de \∗[macrostring] [\∗[endstring]]

dei1 macrostring [endstring]
Define a apropos macro that will be executed with apropos compatibility mode switched off
during macro execution, specifying the macro name indirectly (groff extension). Since mandoc(1)
does not implement apropos compatibility mode at all, it handles this request as an alias for
dei.

device string . . .

devicem stringname
These two requests only make sense with the groff-specific intermediate output format and are un-
supported.

di divname
Begin a diversion. Currently unsupported.

do command [argument . . .]
Execute apropos request or macro line with compatibility mode disabled. Currently unsup-
ported.

GNU September 18, 2021 129

roff(7) Miscellaneous Information Manual roff(7)

ds stringname [["]string]
Define a user-defined string. The stringname and string arguments are space-separated. If
the string begins with a double-quote character, that character will not be part of the string. All
remaining characters on the input line form the string, including whitespace and double-quote
characters, even trailing ones.

The string can be interpolated into subsequent text by using \∗[stringname] for a
stringname of arbitrary length, or \∗(NN or \∗N if the length of stringname is two or one
characters, respectively. Interpolation can be prevented by escaping the leading backslash; that is,
an asterisk preceded by an even number of backslashes does not trigger string interpolation.

Since user-defined strings and macros share a common string table, defining a string
stringname clobbers the macro stringname, and the stringname used for defining a
string can also be invoked as a macro, in which case the following input line will be appended to
the string, forming a new input line passed to the apropos parser. For example,

.ds badidea .S

.badidea
H SYNOPSIS

invokes the SH macro when used in a man(7) document. Such abuse is of course strongly discour-
aged.

ds1 stringname [["]string]
Define a user-defined string that will be expanded with apropos compatibility mode switched off
during string expansion. This is a groff extension. Since mandoc(1) does not implement
apropos compatibility mode at all, it handles this request as an alias for ds.

dwh dist macroname
Set a location trap in the current diversion. This is a Heirloom extension and currently unsup-
ported.

dt [dist macroname]
Set a trap within a diversion. Currently unsupported.

ec [char]
Enable the escape mechanism and change the escape character. The char argument defaults to
the backslash (‘\’).

ecr Restore the escape character. Currently unsupported.

ecs Save the escape character. Currently unsupported.

el body
The “else” half of an if/else conditional. Pops a result off the stack of conditional evaluations
pushed by ie and uses it as its conditional. If no stack entries are present (e.g., due to no prior ie
calls) then false is assumed. The syntax of this request is similar to if except that the conditional
is missing.

em macroname
Set a trap at the end of input. Currently unsupported.

EN End an equation block. See EQ.

eo Disable the escape mechanism completely.

EP End a picture started by BP. This is a Heirloom extension and currently unsupported.

EQ Begin an equation block. See eqn(7) for a description of the equation language.

errprint message
Print a string like an error message. This is a Heirloom extension and currently ignored.

GNU September 18, 2021 130

roff(7) Miscellaneous Information Manual roff(7)

ev [envname]
Switch to another environment. Currently unsupported.

evc [envname]
Copy an environment into the current environment. Currently unsupported.

ex Abort processing and exit. Currently unsupported.

fallback curfont font . . .
Select the fallback sequence for a font. This is a Heirloom extension and currently ignored.

fam [familyname]
Change the font family. This is a groff extension and currently ignored.

fc [delimchar [padchar]]
Define a delimiting and a padding character for fields. Currently unsupported.

fchar glyphname [string]
Define a fallback glyph. Currently unsupported.

fcolor colorname
Set the fill color for \D objects. This is a groff extension and currently ignored.

fdeferlig font string . . .
Defer ligature building. This is a Heirloom extension and currently ignored.

feature +|-name
Enable or disable an OpenType feature. This is a Heirloom extension and currently ignored.

fi Break the output line and switch to fill mode, which is active by default but can be ended with the
nf request. In fill mode, input from subsequent input lines is added to the same output line until
the next word no longer fits, at which point the output line is broken. This request is implied by
the mdoc(7) Sh macro and by the man(7) SH, SS, and EE macros.

fkern font minkern
Control the use of kerning tables for a font. This is a Heirloom extension and currently ignored.

fl Flush output. Currently ignored.

flig font string char . . .
Define ligatures. This is a Heirloom extension and currently ignored.

fp position font [filename]
Assign font position. Currently ignored.

fps mapname . . .
Mount a font with a special character map. This is a Heirloom extension and currently ignored.

fschar font glyphname [string]
Define a font-specific fallback glyph. This is a groff extension and currently unsupported.

fspacewidth font [afmunits]
Set a font-specific width for the space character. This is a Heirloom extension and currently ig-
nored.

fspecial curfont [font . . .]
Conditionally define a special font. This is a groff extension and currently ignored.

ft [font]
Change the font; see “Font Selection”. The font argument defaults to P.

ftr newname [oldname]
Translate font name. This is a groff extension and currently ignored.

GNU September 18, 2021 131

roff(7) Miscellaneous Information Manual roff(7)

fzoom font [permille]
Zoom font size. Currently ignored.

gcolor [colorname]
Set glyph color. This is a groff extension and currently ignored.

hc [char]
Set the hyphenation character. Currently ignored.

hcode char code . . .
Set hyphenation codes of characters. Currently ignored.

hidechar font char . . .
Hide characters in a font. This is a Heirloom extension and currently ignored.

hla language
Set hyphenation language. This is a groff extension and currently ignored.

hlm [number]
Set maximum number of consecutive hyphenated lines. Currently ignored.

hpf filename
Load hyphenation pattern file. This is a groff extension and currently ignored.

hpfa filename
Load hyphenation pattern file, appending to the current patterns. This is a groff extension and cur-
rently ignored.

hpfcode code code . . .
Define mapping values for character codes in hyphenation patterns. This is a groff extension and
currently ignored.

hw word . . .
Specify hyphenation points in words. Currently ignored.

hy [mode]
Set automatic hyphenation mode. Currently ignored.

hylang language
Set hyphenation language. This is a Heirloom extension and currently ignored.

hylen nchar
Minimum word length for hyphenation. This is a Heirloom extension and currently ignored.

hym [length]
Set hyphenation margin. This is a groff extension and currently ignored.

hypp penalty . . .
Define hyphenation penalties. This is a Heirloom extension and currently ignored.

hys [length]
Set hyphenation space. This is a groff extension and currently ignored.

ie condition body
The “if” half of an if/else conditional. The result of the conditional is pushed into a stack used by
subsequent invocations of el, which may be separated by any intervening input (or not exist at
all). Its syntax is equivalent to if.

if condition body
Begin a conditional. This request can also be written as follows:

.if condition \{body
body . . .\}

GNU September 18, 2021 132

roff(7) Miscellaneous Information Manual roff(7)

.if condition \{\
body . . .
.\}

The condition is a boolean expression. Currently, mandoc(1) supports the following subset of
roff conditionals:

• If ‘!’ is prefixed to condition, it is logically inverted.

• If the first character of condition is ‘n’ (nroff mode) or ‘o’ (odd page), it evaluates to true,
and the body starts with the next character.

• If the first character of condition is ‘e’ (even page), ‘t’ (troff mode), or ‘v’ (vroff mode), it
evaluates to false, and the body starts with the next character.

• If the first character of condition is ‘c’ (character available), it evaluates to true if the fol-
lowing character is an ASCII character or a valid character escape sequence, or to false other-
wise. The body starts with the character following that next character.

• If the first character of condition is ‘d’, it evaluates to true if the rest of condition is the
name of an existing user defined macro or string; otherwise, it evaluates to false.

• If the first character of condition is ‘r’, it evaluates to true if the rest of condition is the
name of an existing number register; otherwise, it evaluates to false.

• If the condition starts with a parenthesis or with an optionally signed integer number, it is
evaluated according to the rules of “Numerical expressions” explained below. It evaluates to
true if the result is positive, or to false if the result is zero or negative.

• Otherwise, the first character of condition is regarded as a delimiter and it evaluates to true
if the string extending from its first to its second occurrence is equal to the string extending
from its second to its third occurrence.

• If condition cannot be parsed, it evaluates to false.

If a conditional is false, its children are not processed, but are syntactically interpreted to preserve
the integrity of the input document. Thus,

.if t .ig

will discard the ‘.ig’, which may lead to interesting results, but

.if t .if t \{\

will continue to syntactically interpret to the block close of the final conditional. Sub-conditionals,
in this case, obviously inherit the truth value of the parent.

If the body section is begun by an escaped brace ‘\{’, scope continues until the end of the input
line containing the matching closing-brace escape sequence ‘\}’. If the body is not enclosed in
braces, scope continues until the end of the line. If the condition is followed by a body on the
same line, whether after a brace or not, then requests and macros must begin with a control charac-
ter. It is generally more intuitive, in this case, to write

.if condition \{\

.request

.\}

than having the request or macro follow as

.if condition \{.request

The scope of a conditional is always parsed, but only executed if the conditional evaluates to true.

Note that the ‘\}’ is converted into a zero-width escape sequence if not passed as a standalone
macro ‘.\}’. For example,

GNU September 18, 2021 133

roff(7) Miscellaneous Information Manual roff(7)

.Fl a \} b

will result in ‘\}’ being considered an argument of the ‘Fl’ macro.

ig [endmacro]
Ignore input. Its syntax can be either

.ig
ignored text
..

or

.ig endmacro
ignored text
.endmacro

In the first case, input is ignored until a ‘..’ request is encountered on its own line. In the second
case, input is ignored until the specified ‘.endmacro’ is encountered. Do not use the escape char-
acter ‘\’ anywhere in the definition of endmacro; it would cause very strange behaviour.

When the endmacro is a roff request or a roff macro, like in

.ig if

the subsequent invocation of if will first terminate the ignored text, then be invoked as
usual. Otherwise, it only terminates the ignored text, and arguments following it or the ‘..’
request are discarded.

in [[+|-]width]
Change indentation. See man(7). Ignored in mdoc(7).

index register stringname substring
Find a substring in a string. This is a Heirloom extension and currently unsupported.

it expression macro
Set an input line trap. The named macro will be invoked after processing the number of input
text lines specified by the numerical expression. While evaluating the expression, the unit
suffixes described below “Scaling Widths” are ignored.

itc expression macro
Set an input line trap, not counting lines ending with \c. Currently unsupported.

IX class keystring
To support the generation of a table of contents, pod2man(1) emits this user-defined macro, usually
without defining it. To avoid reporting large numbers of spurious errors, mandoc(1) ignores it.

kern [1 | 0]
Switch kerning on or off. Currently ignored.

kernafter font char . . . afmunits . . .
Increase kerning after some characters. This is a Heirloom extension and currently ignored.

kernbefore font char . . . afmunits . . .
Increase kerning before some characters. This is a Heirloom extension and currently ignored.

kernpair font char . . . font char . . . afmunits
Add a kerning pair to the kerning table. This is a Heirloom extension and currently ignored.

lc [glyph]
Define a leader repetition character. Currently unsupported.

lc_ctype localename
Set the LC_CTYPE locale. This is a Heirloom extension and currently unsupported.

GNU September 18, 2021 134

roff(7) Miscellaneous Information Manual roff(7)

lds macroname string
Define a local string. This is a Heirloom extension and currently unsupported.

length register string
Count the number of input characters in a string. Currently unsupported.

letadj lspmin lshmin letss lspmax lshmax
Dynamic letter spacing and reshaping. This is a Heirloom extension and currently ignored.

lf lineno [filename]
Change the line number for error messages. Ignored because insecure.

lg [1 | 0]
Switch the ligature mechanism on or off. Currently ignored.

lhang font char . . . afmunits
Hang characters at left margin. This is a Heirloom extension and currently ignored.

linetabs [1 | 0]
Enable or disable line-tabs mode. This is a groff extension and currently unsupported.

ll [[+|-]width]
Change the output line length. If the width argument is omitted, the line length is reset to its pre-
vious value. The default setting for terminal output is 78n. If a sign is given, the line length is
added to or subtracted from; otherwise, it is set to the provided value. Using this request in new
manuals is discouraged for several reasons, among others because it overrides the mandoc(1) -O
width command line option.

lnr register [+|-]value [increment]
Set local number register. This is a Heirloom extension and currently unsupported.

lnrf register [+|-]value [increment]
Set local floating-point register. This is a Heirloom extension and currently unsupported.

lpfx string
Set a line prefix. This is a Heirloom extension and currently unsupported.

ls [factor]
Set line spacing. It takes one integer argument specifying the vertical distance of subsequent out-
put text lines measured in v units. Currently ignored.

lsm macroname
Set a leading spaces trap. This is a groff extension and currently unsupported.

lt [[+|-]width]
Set title line length. Currently ignored.

mc glyph [dist]
Print margin character in the right margin. The dist is currently ignored; instead, 1n is used.

mediasize media
Set the device media size. This is a Heirloom extension and currently ignored.

minss width
Set minimum word space. This is a Heirloom extension and currently ignored.

mk [register]
Mark vertical position. Currently ignored.

mso filename
Load a macro file using the search path. Ignored because insecure.

GNU September 18, 2021 135

roff(7) Miscellaneous Information Manual roff(7)

na Disable adjusting without changing the adjustment mode. Currently ignored.

ne [height]
Declare the need for the specified minimum vertical space before the next trap or the bottom of the
page. Currently ignored.

nf Break the output line and switch to no-fill mode. Subsequent input lines are kept together on the
same output line even when exceeding the right margin, and line breaks in subsequent input cause
output line breaks. This request is implied by the mdoc(7) Bd -unfilled and Bd -literal
macros and by the man(7) EX macro. The fi request switches back to the default fill mode.

nh Turn off automatic hyphenation mode. Currently ignored.

nhychar char . . .
Define hyphenation-inhibiting characters. This is a Heirloom extension and currently ignored.

nm [start [inc [space [indent]]]]
Print line numbers. Currently unsupported.

nn [number]
Temporarily turn off line numbering. Currently unsupported.

nop body
Execute the rest of the input line as a request, macro, or text line, skipping the nop request and any
space characters immediately following it. This is mostly used to indent text lines inside macro
definitions.

nr register [+|-]expression [stepsize]
Define or change a register. A register is an arbitrary string value that defines some sort of state,
which influences parsing and/or formatting. For the syntax of expression, see “Numerical
expressions” below. If it is prefixed by a sign, the register will be incremented or decremented in-
stead of assigned to.

The stepsize is used by the \n+ auto-increment feature. It remains unchanged when omitted
while changing an existing register, and it defaults to 0 when defining a new register.

The following register is handled specially:

nS If set to a positive integer value, certain mdoc(7) macros will behave in the same way as in
the SYNOPSIS section. If set to 0, these macros will behave in the same way as outside
the SYNOPSIS section, even when called within the SYNOPSIS section itself. Note that
starting a new mdoc(7) section with the Sh macro will reset this register.

nrf register [+|-]expression [increment]
Define or change a floating-point register. This is a Heirloom extension and currently unsupported.

nroff Force nroff mode. This is a groff extension and currently ignored.

ns Turn on no-space mode. Currently ignored.

nx [filename]
Abort processing of the current input file and process another one. Ignored because insecure.

open stream file
Open a file for writing. Ignored because insecure.

opena stream file
Open a file for appending. Ignored because insecure.

os Output saved vertical space. Currently ignored.

output string
Output directly to intermediate output. Not supported.

GNU September 18, 2021 136

roff(7) Miscellaneous Information Manual roff(7)

padj [1 | 0]
Globally control paragraph-at-once adjustment. This is a Heirloom extension and currently ig-
nored.

papersize media
Set the paper size. This is a Heirloom extension and currently ignored.

pc [char]
Change the page number character. Currently ignored.

pev Print environments. This is a groff extension and currently ignored.

pi command
Pipe output to a shell command. Ignored because insecure.

PI Low-level request used by BP. This is a Heirloom extension and currently unsupported.

pl [[+|-]height]
Change page length. Currently ignored.

pm Print names and sizes of macros, strings, and diversions to standard error output. Currently ig-
nored.

pn [+|-]number
Change the page number of the next page. Currently ignored.

pnr Print all number registers on standard error output. Currently ignored.

po [[+|-]offset]
Set a horizontal page offset. If no argument is specified, the page offset is reverted to its previous
value. If a sign is specified, the new page offset is calculated relative to the current one; otherwise,
it is absolute. The argument follows the syntax of “Scaling Widths” and the default scaling unit is
m.

ps [[+|-]size]
Change point size. Currently ignored.

psbb filename
Retrieve the bounding box of a PostScript file. Currently unsupported.

pshape indent length . . .
Set a special shape for the current paragraph. This is a Heirloom extension and currently unsup-
ported.

pso command
Include output of a shell command. Ignored because insecure.

ptr Print the names and positions of all traps on standard error output. This is a groff extension and
currently ignored.

pvs [[+|-]height]
Change post-vertical spacing. This is a groff extension and currently ignored.

rchar glyph . . .
Remove glyph definitions. Currently unsupported.

rd [prompt [argument . . .]]
Read from standard input. Currently ignored.

recursionlimit maxrec maxtail
Set the maximum stack depth for recursive macros. This is a Heirloom extension and currently ig-
nored.

GNU September 18, 2021 137

roff(7) Miscellaneous Information Manual roff(7)

return [twice]
Exit the presently executed macro and return to the caller. The argument is currently ignored.

rfschar font glyph . . .
Remove font-specific fallback glyph definitions. Currently unsupported.

rhang font char . . . afmunits
Hang characters at right margin. This is a Heirloom extension and currently ignored.

rj [N]
Justify the next N input lines to the right margin without filling. N defaults to 1. An argument of 0
or less ends right adjustment.

rm macroname
Remove a request, macro or string.

rn oldname newname
Rename a request, macro, diversion, or string. In mandoc(1), user-defined macros, mdoc(7) and
man(7) macros, and user-defined strings can be renamed, but renaming of predefined strings and of
apropos requests is not supported, and diversions are not implemented at all.

rnn oldname newname
Rename a number register. Currently unsupported.

rr register
Remove a register.

rs End no-space mode. Currently ignored.

rt [dist]
Return to marked vertical position. Currently ignored.

schar glyph [string]
Define global fallback glyph. This is a groff extension and currently unsupported.

sentchar char . . .
Define sentence-ending characters. This is a Heirloom extension and currently ignored.

shc [glyph]
Change the soft hyphen character. Currently ignored.

shift [number]
Shift macro arguments number times, by default once: \\$i becomes what \\$i+number was. Also
decrement \n(.$ by number.

sizes size . . .
Define permissible point sizes. This is a groff extension and currently ignored.

so filename
Include a source file. The file is read and its contents processed as input in place of the so request
line. To avoid inadvertent inclusion of unrelated files, mandoc(1) only accepts relative paths not
containing the strings "../" and "/..".

This request requires man(1) to change to the right directory before calling mandoc(1), per conven-
tion to the root of the manual tree. Typical usage looks like:

.so man3/Xcursor.3

As the whole concept is rather fragile, the use of so is discouraged. Use ln(1) instead.

sp [height]
Break the output line and emit vertical space. The argument follows the syntax of “Scaling
Widths” and defaults to one blank line (1v).

GNU September 18, 2021 138

roff(7) Miscellaneous Information Manual roff(7)

spacewidth [1 | 0]
Set the space width from the font metrics file. This is a Heirloom extension and currently ignored.

special [font . . .]
Define a special font. This is a groff extension and currently ignored.

spreadwarn [width]
Warn about wide spacing between words. Currently ignored.

ss wordspace [sentencespace]
Set space character size. Currently ignored.

sty position style
Associate style with a font position. This is a groff extension and currently ignored.

substring stringname startpos [endpos]
Replace a user-defined string with a substring. Currently unsupported.

sv [height]
Save vertical space. Currently ignored.

sy command
Execute shell command. Ignored because insecure.

T& Re-start a table layout, retaining the options of the prior table invocation. See TS.

ta [width . . . [T width . . .]]
Set tab stops. Each width argument follows the syntax of “Scaling Widths”. If prefixed by a
plus sign, it is relative to the previous tab stop. The arguments after the T marker are used repeat-
edly as often as needed; for each reuse, they are taken relative to the last previously established tab
stop. When ta is called without arguments, all tab stops are cleared.

tc [glyph]
Change tab repetition character. Currently unsupported.

TE End a table context. See TS.

ti [+|-]width
Break the output line and indent the next output line by width. If a sign is specified, the tempo-
rary indentation is calculated relative to the current indentation; otherwise, it is absolute. The ar-
gument follows the syntax of “Scaling Widths” and the default scaling unit is m.

tkf font minps width1 maxps width2
Enable track kerning for a font. Currently ignored.

tl ’left’center’right’
Print a title line. Currently unsupported.

tm string
Print to standard error output. Currently ignored.

tm1 string
Print to standard error output, allowing leading blanks. This is a groff extension and currently ig-
nored.

tmc string
Print to standard error output without a trailing newline. This is a groff extension and currently ig-
nored.

tr glyph glyph . . .
Output character translation. The first glyph in each pair is replaced by the second one. Character
escapes can be used; for example,

GNU September 18, 2021 139

roff(7) Miscellaneous Information Manual roff(7)

tr \(xx\(yy

replaces all invocations of \(xx with \(yy.

track font minps width1 maxps width2
Static letter space tracking. This is a Heirloom extension and currently ignored.

transchar char . . .
Define transparent characters for sentence-ending. This is a Heirloom extension and currently ig-
nored.

trf filename
Output the contents of a file, disallowing invalid characters. This is a groff extension and ignored
because insecure.

trimat left top width height
Set the TrimBox page parameter for PDF generation. This is a Heirloom extension and currently
ignored.

trin glyph glyph . . .
Output character translation, ignored by asciify. Currently unsupported.

trnt glyph glyph . . .
Output character translation, ignored by \!. Currently unsupported.

troff Force troff mode. This is a groff extension and currently ignored.

TS Begin a table, which formats input in aligned rows and columns. See tbl(7) for a description of the
tbl language.

uf font
Globally set the underline font. Currently ignored.

ul [N]
Underline next N input lines. Currently ignored.

unformat divname
Unformat spaces and tabs in a diversion. Currently unsupported.

unwatch macroname
Disable notification for string or macro. This is a Heirloom extension and currently ignored.

unwatchn register
Disable notification for register. This is a Heirloom extension and currently ignored.

vpt [1 | 0]
Enable or disable vertical position traps. This is a groff extension and currently ignored.

vs [[+|-]height]
Change vertical spacing. Currently ignored.

warn flags
Set warning level. Currently ignored.

warnscale si
Set the scaling indicator used in warnings. This is a groff extension and currently ignored.

watch macroname
Notify on change of string or macro. This is a Heirloom extension and currently ignored.

watchlength maxlength
On change, report the contents of macros and strings up to the specified length. This is a Heirloom
extension and currently ignored.

GNU September 18, 2021 140

roff(7) Miscellaneous Information Manual roff(7)

watchn register
Notify on change of register. This is a Heirloom extension and currently ignored.

wh dist [macroname]
Set a page location trap. Currently unsupported.

while condition body
Repeated execution while a condition is true, with syntax similar to if. Currently imple-
mented with two restrictions: cannot nest, and each loop must start and end in the same scope.

write ["]string
Write to an open file. Ignored because insecure.

writec ["]string
Write to an open file without appending a newline. Ignored because insecure.

writem macroname
Write macro or string to an open file. Ignored because insecure.

xflag level
Set the extension level. This is a Heirloom extension and currently ignored.

Numerical expressions
The nr, if, and ie requests accept integer numerical expressions as arguments. These are always evalu-
ated using the C int type; integer overflow works the same way as in the C language. Numbers consist of
an arbitrary number of digits ‘0’ to ‘9’ prefixed by an optional sign ‘+’ or ‘-’. Each number may be fol-
lowed by one optional scaling unit described below “Scaling Widths”. The following equations hold:

1i = 6v = 6P = 10m = 10n = 72p = 1000M = 240u = 240
254c = 100i = 24000u = 24000
1f = 65536u = 65536

The following binary operators are implemented. Unless otherwise stated, they behave as in the C lan-
guage:

+ addition
- subtraction
∗ multiplication
/ division
% remainder of division
< less than
> greater than
==

equal to
= equal to, same effect as == (this differs from C)
<=

less than or equal to
>=

greater than or equal to
<>

not equal to (corresponds to C !=; this one is of limited portability, it is supported by Heirloom roff, but
not by groff)

& logical and (corresponds to C &&)
: logical or (corresponds to C ||)
<?

minimum (not available in C)
>?

maximum (not available in C)

GNU September 18, 2021 141

roff(7) Miscellaneous Information Manual roff(7)

There is no concept of precedence; evaluation proceeds from left to right, except when subexpressions are
enclosed in parentheses. Inside parentheses, whitespace is ignored.

ESCAPE SEQUENCE REFERENCE
The mandoc(1) apropos parser recognises the following escape sequences. In mdoc(7) and man(7) docu-
ments, using escape sequences is discouraged except for those described in the “LANGUAGE SYNTAX”
section above.

A backslash followed by any character not listed here simply prints that character itself.

\<newline>
A backslash at the end of an input line can be used to continue the logical input line on the next
physical input line, joining the text on both lines together as if it were on a single input line.

\<space>
The escape sequence backslash-space (‘\ ’) is an unpaddable space-sized non-breaking space char-
acter; see “Whitespace” and mandoc_char(7).

\! Embed text up to and including the end of the input line into the current diversion or into interme-
diate output without interpreting requests, macros, and escapes. Currently unsupported.

\" The rest of the input line is treated as “Comments”.

\# Line continuation with comment. Discard the rest of the physical input line and continue the logi-
cal input line on the next physical input line, joining the text on both lines together as if it were on
a single input line. This is a groff extension.

\$arg Macro argument expansion, see de.

\% Hyphenation allowed at this point of the word; ignored by mandoc(1).

\& Non-printing zero-width character, often used for various kinds of escaping; see “Whitespace”,
mandoc_char(7), and the “MACRO SYNTAX” and “Delimiters” sections in mdoc(7).

\' Acute accent special character; use \(aa instead.

\(cc “Special Characters” with two-letter names, see mandoc_char(7).

\) Zero-width space transparent to end-of-sentence detection; ignored by mandoc(1).

\∗[name]
Interpolate the string with the name. For short names, there are variants \∗c and \∗(cc.

One string is predefined on the apropos language level: \∗(.T expands to the name of the out-
put device, for example ascii, utf8, ps, pdf, html, or markdown.

Macro sets traditionally predefine additional strings which are not portable and differ across imple-
mentations. Those supported by mandoc(1) are listed in mandoc_char(7).

Strings can be defined, changed, and deleted with the ds, as, and rm requests.

\, Left italic correction (groff extension); ignored by mandoc(1).

\- Special character “mathematical minus sign”; see mandoc_char(7) for details.

\/ Right italic correction (groff extension); ignored by mandoc(1).

\: Breaking the line is allowed at this point of the word without inserting a hyphen.

\? Embed the text up to the next \? into the current diversion without interpreting requests, macros,
and escapes. This is a groff extension and currently unsupported.

\[name]
“Special Characters” with names of arbitrary length, see mandoc_char(7).

GNU September 18, 2021 142

roff(7) Miscellaneous Information Manual roff(7)

\ˆ One-twelfth em half-narrow space character, effectively zero-width in mandoc(1).

_ Underline special character; use \(ul instead.

\‘ Grave accent special character; use \(ga instead.

\{ Begin conditional input; see if.

\| One-sixth em narrow space character, effectively zero-width in mandoc(1).

\} End conditional input; see if.

\˜ Paddable non-breaking space character.

\0 Digit width space character.

\A'string'
Anchor definition; ignored by mandoc(1).

\a Leader character; ignored by mandoc(1).

\B'string'
Interpolate ‘1’ if string conforms to the syntax of “Numerical expressions” explained above or
‘0’ otherwise.

\b'string'
Bracket building function; ignored by mandoc(1).

\C'name'
“Special Characters” with names of arbitrary length.

\c When encountered at the end of an input text line, the next input text line is considered to continue
that line, even if there are request or macro lines in between. No whitespace is inserted.

\D'string'
Draw graphics function; ignored by mandoc(1).

\d Move down by half a line; ignored by mandoc(1).

\E Escape character intended to not be interpreted in copy mode. In mandoc(1), it currently does the
same as \ itself.

\e Backslash special character.

\F[name]
Switch font family (groff extension); ignored by mandoc(1). For short names, there are variants
\Fc and \F(cc.

\f[name]
Switch to the font name, see “Font Selection”. For short names, there are variants \fc and
\f(cc. An empty name \f[] defaults to \fP.

\g[name]
Interpolate the format of a number register; ignored by mandoc(1). For short names, there are
variants \gc and \g(cc.

\H'[+|-]number'
Set the height of the current font; ignored by mandoc(1).

\h'[|]width'
Horizontal motion. If the vertical bar is given, the motion is relative to the current indentation.
Otherwise, it is relative to the current position. The default scaling unit is m.

\k[name]
Mark horizontal input place in register; ignored by mandoc(1). For short names, there are variants
\kc and \k(cc.

GNU September 18, 2021 143

roff(7) Miscellaneous Information Manual roff(7)

\L'number[c]'
Vertical line drawing function; ignored by mandoc(1).

\l'width[c]'
Draw a horizontal line of width using the glyph c.

\M[name]
Set fill (background) color (groff extension); ignored by mandoc(1). For short names, there are
variants \Mc and \M(cc.

\m[name]
Set glyph drawing color (groff extension); ignored by mandoc(1). For short names, there are vari-
ants \mc and \m(cc.

\N'number'
Character number on the current font.

\n[+|-][name]
Interpolate the number register name. For short names, there are variants \nc and \n(cc. If the
optional sign is specified, the register is first incremented or decremented by the stepsize that
was specified in the relevant nr request, and the changed value is interpolated.

\Odigit, \O[5arguments]
Suppress output. This is a groff extension and currently unsupported. With an argument of 1, 2,
3, or 4, it is ignored.

\o'string'
Overstrike, writing all the characters contained in the string to the same output position. In ter-
minal and HTML output modes, only the last one of the characters is visible.

\p Break the output line at the end of the current word.

\R'name [+|-]number'
Set number register; ignored by mandoc(1).

\r Move up by one line; ignored by mandoc(1).

\S'number'
Slant output; ignored by mandoc(1).

\s'[+|-]number'
Change point size; ignored by mandoc(1). Alternative forms \s[+|-]n, \s[+|-]'number',
\s[[+|-]number], and \s[+|-][number] are also parsed and ignored.

\t Horizontal tab; ignored by mandoc(1).

\u Move up by half a line; ignored by mandoc(1).

\V[name]
Interpolate an environment variable; ignored by mandoc(1). For short names, there are variants
\Vc and \V(cc.

\v'number'
Vertical motion; ignored by mandoc(1).

\w'string'
Interpolate the width of the string. The mandoc(1) implementation assumes that after expan-
sion of user-defined strings, the string only contains normal characters, no escape sequences,
and that each character has a width of 24 basic units.

\X'string'
Output string as device control function; ignored in nroff mode and by mandoc(1).

GNU September 18, 2021 144

roff(7) Miscellaneous Information Manual roff(7)

\x'number'
Extra line space function; ignored by mandoc(1).

\Y[name]
Output a string as a device control function; ignored in nroff mode and by mandoc(1). For short
names, there are variants \Yc and \Y(cc.

\Z'string'
Print string with zero width and height; ignored by mandoc(1).

\z Output the next character without advancing the cursor position.

COMPATIBILITY
The mandoc(1) implementation of the apropos language is incomplete. Major unimplemented features
include:

- For security reasons, mandoc(1) never reads or writes external files except via so requests with safe rel-
ative paths.

- There is no automatic hyphenation, no adjustment to the right margin, and very limited support for cen-
tering; the output is always set flush-left.

- Support for setting tabulator and leader characters is missing, and support for manually changing inden-
tation is limited.

- The ‘u’ scaling unit is the default terminal unit. In traditional troff systems, this unit changes depending
on the output media.

- Width measurements are implemented in a crude way and often yield wrong results. Support for ex-
plicit movement requests and escapes is limited.

- There is no concept of output pages, no support for floats, graphics drawing, and picture inclusion; ter-
minal output is always continuous.

- Requests regarding color, font families, font sizes, and glyph manipulation are ignored. Font support is
very limited. Kerning is not implemented, and no ligatures are produced.

- The "'" macro control character does not suppress output line breaks.
- Diversions and environments are not implemented, and support for traps is very incomplete.
- Use of macros is not supported inside tbl(7) code.

The special semantics of the nS number register is an idiosyncrasy of OpenBSD manuals and not supported
by other mdoc(7) implementations.

SEE ALSO
mandoc(1), eqn(7), man(7), mandoc_char(7), mdoc(7), tbl(7)

Joseph F. Ossanna and Brian W. Kernighan, Troff User’s Manual, AT&T Bell Laboratories, Computing
Science Technical Report, 54, http://www.kohala.com/start/troff/cstr54.ps, Murray Hill, New Jersey, 1976
and 1992.

Joseph F. Ossanna, Brian W. Kernighan, and Gunnar Ritter, Heirloom Documentation Tools Nroff/Troff
User’s Manual, http://heirloom.sourceforge.net/doctools/troff.pdf, September 17, 2007.

HISTORY
The RUNOFF typesetting system, whose input forms the basis for apropos, was written in MAD and
FAP for the CTSS operating system by Jerome E. Saltzer in 1964. Doug McIlroy rewrote it in BCPL in
1969, renaming it apropos. Dennis M. Ritchie rewrote McIlroy’s apropos in PDP-11 assembly for
Version 1 AT&T UNIX, Joseph F. Ossanna improved roff and renamed it nroff for Version 2 AT&T UNIX,
then ported nroff to C as troff, which Brian W. Kernighan released with Version 7 AT&T UNIX. In 1989,
James Clark re-implemented troff in C++, naming it groff.

AUTHORS
This apropos reference was written by Kristaps Dzonsons <kristaps@bsd.lv> and Ingo Schwarze
<schwarze@openbsd.org>.

GNU September 18, 2021 145

tbl(7) Miscellaneous Information Manual tbl(7)

NAME
tbl — tbl language reference for mandoc

DESCRIPTION
The tbl language formats tables. It is used within mdoc(7) and man(7) pages. This manual describes the
subset of the apropos language accepted by the mandoc(1) utility.

Each table is started with a roff(7) TS macro, consist of at most one line of “Options”, one or more
“Layout” lines, one or more “Data” lines, and ends with a TE macro. All input must be 7-bit ASCII.

Options
If the first input line of a table ends with a semicolon, it contains case-insensitive options separated by
spaces, tabs, or commas. Otherwise, it is interpreted as the first “Layout” line.

The following options are available. Some of them require arguments enclosed in parentheses:

allbox
Draw a single-line box around each table cell.

box Draw a single-line box around the table. For GNU compatibility, this may also be invoked with
frame.

center
Center the table instead of left-adjusting it. For GNU compatibility, this may also be invoked with
centre.

decimalpoint
Use the single-character argument as the decimal point with the n layout key. This is a GNU ex-
tension.

delim Use the two characters of the argument as eqn(7) delimiters. Currently unsupported.

doublebox
Draw a double-line box around the table. For GNU compatibility, this may also be invoked with
doubleframe.

expand
Increase the width of the table to the current line length. Currently ignored.

linesize
Draw lines with the point size given by the unsigned integer argument. Currently ignored.

nokeep
Allow page breaks within the table. This is a GNU extension and currently ignored.

nospaces
Ignore leading and trailing spaces in data cells. This is a GNU extension.

nowarn
Suppress warnings about tables exceeding the current line length. This is a GNU extension and
currently ignored.

tab Use the single-character argument as a delimiter between data cells. By default, the horizontal tab-
ulator character is used.

Layout
The table layout follows an “Options” line or a roff(7) TS or T& macro. Each layout line specifies how one
line of “Data” is formatted. The last layout line ends with a full stop. It also applies to all remaining data
lines. Multiple layout lines can be joined by commas on a single physical input line.

Each layout line consists of one or more layout cell specifications, optionally separated by whitespace. The
following case-insensitive key characters start a new cell specification:

GNU September 18, 2021 146

tbl(7) Miscellaneous Information Manual tbl(7)

c Center the string in this cell.

r Right-justify the string in this cell.

l Left-justify the string in this cell.

n Justify a number around its last decimal point. If no decimal point is found in the number, it is assumed
to trail the number.

s Horizontally span columns from the last non-s layout cell. It is an error if a column span follows a _ or
= cell, or comes first on a layout line. The combined cell as a whole consumes only one cell of the cor-
responding data line.

a Left-justify a string and pad with one space.

^ Vertically span rows from the last non-^ layout cell. It is an error to invoke a vertical span on the first
layout line. Unlike a horizontal span, a vertical span consumes a data cell and discards the content.

_ Draw a single horizontal line in this cell. This consumes a data cell and discards the content. It may
also be invoked with -.

= Draw a double horizontal line in this cell. This consumes a data cell and discards the content.

Each cell key may be followed by zero or more of the following case-insensitive modifiers:

b Use a bold font for the contents of this cell.

d Move content down to the last row of this vertical span. Currently ignored.

e Make this column wider to match the maximum width of any other column also having the e modifier.

f The next one or two characters select the font to use for this cell. One-character font names must be
followed by a blank or period. See the roff(7) manual for supported font names.

i Use an italic font for the contents of this cell.

m Specify a cell start macro. This is a GNU extension and currently unsupported.

p Set the point size to the following unsigned argument, or change it by the following signed argument.
Currently ignored.

v Set the vertical line spacing to the following unsigned argument, or change it by the following signed
argument. Currently ignored.

t Do not vertically center content in this vertical span, leave it in the top row. Currently ignored.

u Move cell content up by half a table row. Currently ignored.

w Specify a minimum column width.

x After determining the width of all other columns, distribute the rest of the line length among all
columns having the x modifier.

z Do not use this cell for determining the width of this column.

| Draw a single vertical line to the right of this cell.

||
Draw a double vertical line to the right of this cell.

If a modifier consists of decimal digits, it specifies a minimum spacing in units of n between this column
and the next column to the right. The default is 3. If there is a vertical line, it is drawn inside the spacing.

Data
The data section follows the last “Layout” line. Each data line consists of one or more data cells, delimited
by tab characters.

GNU September 18, 2021 147

tbl(7) Miscellaneous Information Manual tbl(7)

If a data cell contains only the two bytes ‘\^’, the cell above spans to this row, as if the layout specification
of this cell were ^.

If a data cell contains only the single character ‘_’ or ‘=’, a single or double horizontal line is drawn across
the cell, joining its neighbours. If a data cell contains only the two character sequence ‘_’ or ‘\=’, a sin-
gle or double horizontal line is drawn inside the cell, not joining its neighbours. If a data line contains
nothing but the single character ‘_’ or ‘=’, a horizontal line across the whole table is inserted without con-
suming a layout row.

In place of any data cell, a text block can be used. It starts with T{ at the end of a physical input line. In-
put line breaks inside the text block neither end the text block nor its data cell. It only ends if T} occurs at
the beginning of a physical input line and is followed by an end-of-cell indicator. If the T} is followed by
the end of the physical input line, the text block, the data cell, and the data line ends at this point. If the T}
is followed by the tab character, only the text block and the data cell end, but the data line continues with
the data cell following the tab character. If T} is followed by any other character, it does not end the text
block, which instead continues to the following physical input line.

EXAMPLES
String justification and font selection:

.TS
rb c lb
r ci l.
r center l
ri ce le
right c left
.TE

r center l
ri ce le

right c left

Some ports in OpenBSD 6.1 to show number alignment and line drawing:

.TS
box tab(:);
r| l
r n.
software:version
_
AFL:2.39b
Mutt:1.8.0
Ruby:1.8.7.374
TeX Live:2015
.TE

software version

AFL 2.39b
Mutt 1.8.0
Ruby 1.8.7.374

TeX Live 2015

Spans and skipping width calculations:

.TS
box tab(:);
lz s | rt
lt| cb| ^

GNU September 18, 2021 148

tbl(7) Miscellaneous Information Manual tbl(7)

^ | rz s.
left:r
l:center:
:right
.TE

left
center

r

right
l

Text blocks, specifying spacings and specifying and equalizing column widths, putting lines into individual
cells, and overriding allbox:

.TS
allbox tab(:);
le le||7 lw10.
The fourth line:_:line 1
of this column:=:line 2
determines: :line 3
the column width.:T{
This text is too wide to fit into a column of width 17.
T}:line 4
T{
No break here.
T}::line 5
.TE

The fourth line line 1

of this column line 2

determines line 3

the column width. line 4This text is too wide to fit
into a column of width 17.

line 5No break here.

These examples were constructed to demonstrate many apropos features in a compact way. In real man-
ual pages, keep tables as simple as possible. They usually look better, are less fragile, and are more
portable.

COMPATIBILITY
The mandoc(1) implementation of apropos doesn’t support mdoc(7) and man(7) macros and eqn(7)
equations inside tables.

SEE ALSO
mandoc(1), man(7), mandoc_char(7), mdoc(7), roff(7)

M. E. Lesk, Tbl — A Program to Format Tables, June 11, 1976.

HISTORY
The tbl utility, a preprocessor for troff, was originally written by M. E. Lesk at Bell Labs in 1975. The
GNU reimplementation of tbl, part of the groff package, was released in 1990 by James Clark. A stand-
alone tbl implementation was written by Kristaps Dzonsons in 2010. This formed the basis of the imple-
mentation that first appeared in OpenBSD 4.9 as a part of the mandoc(1) utility.

GNU September 18, 2021 149

tbl(7) Miscellaneous Information Manual tbl(7)

AUTHORS
This apropos reference was written by Kristaps Dzonsons <kristaps@bsd.lv> and
Ingo Schwarze <schwarze@openbsd.org>.

BUGS
In -T utf8 output mode, heavy lines are drawn instead of double lines. This cannot be improved because
the Unicode standard only provides an incomplete set of box drawing characters with double lines, whereas
it provides a full set of box drawing characters with heavy lines. It is unlikely this can be improved in the
future because the box drawing characters are already marked in Unicode as characters intended only for
backward compatibility with legacy systems, and their use is not encouraged. So it seems unlikely that the
missing ones might get added in the future.

GNU September 18, 2021 150

catman(8) System Manager’s Manual catman(8)

NAME
catman — format all manual pages below a directory

SYNOPSIS
catman [-I os=name] [-T output] srcdir dstdir

DESCRIPTION
The apropos utility assumes that all files below srcdir are manual pages in mdoc(7) and man(7) for-
mat and formats all of them, storing the formatted versions in the same relative paths below dstdir. Sub-
directories of dstdir are created as needed. Existing files are not explicitly deleted, but possibly over-
written.

The options are as follows:

-I os=name
Override the default operating system name for the mdoc(7) Os and for the man(7) TH macro.

-T output
Output format. The output argument can be ascii, utf8, or html; see mandoc(1). In html
output mode, the fragment output option is implied. Other output options are not supported.

IMPLEMENTATION NOTES
Since this version avoids fork(2) and exec(3) overhead and uses the much faster mandoc parsers and for-
matters rather than groff, it may be about one order of magnitude faster than other apropos implementa-
tions.

EXIT STATUS
The apropos utility exits 0 on success, and >0 if an error occurs.

Possible errors include:

• missing, invalid, or excessive command line arguments

• failure to change the current working directory to srcdir

• failure to open dstdir

• communication failure with mandocd(8)

• resource exhaustion, for example file descriptor, process table, or memory exhaustion

Except for memory exhaustion and similar system-level failures, failures while trying to open, read, parse,
or format individual manual pages, to save individual formatted files to the file system, or even to create di-
rectories do not cause apropos to return an error exit status. In such cases, apropos will simply con-
tinue with the next file or subdirectory.

SEE ALSO
mandoc(1), mandocd(8)

HISTORY
A apropos utility first appeared in FreeBSD 1.0. Other, incompatible implementations appeared in
NetBSD 1.0 and in man-db 2.2.

This version appeared in version 1.14.1 of the mandoc toolkit.

AUTHORS
The first apropos implementation was a short shell script by Christoph Robitschko in July 1993.

The NetBSD implementations were written by J. T. Conklin <jtc@netbsd.org> in 1993, Christian E. Hopps
<chopps@netbsd.org> in 1994, and Dante Profeta <dante@netbsd.org> in 1999; the man-db implementa-
tion by Graeme W. Wilford in 1994; and the FreeBSD implementations by Wolfram Schneider
<wosch@freebsd.org> in 1995 and John Rochester <john@jrochester.org> in 2002.

The concept of the present version was designed and implemented by Michael Stapelberg
<stapelberg@debian.org> in 2017. Option and argument handling and directory iteration was added by
Ingo Schwarze <schwarze@openbsd.org>.

GNU March 18, 2017 151

catman(8) System Manager’s Manual catman(8)

CAVEATS
All versions of apropos are incompatible with each other because each caters to the needs of a specific
operating system, for example regarding directory structures and file naming conventions.

This version is more flexible than the others in so far as it does not assume any particular directory structure
or naming convention. That flexibility comes at the price of not being able to change the names and rela-
tive paths of the source files when reusing them to store the formatted files, of not supporting any configura-
tion file formats or environment variables, and of being unable to scan for and remove junk files in
dstdir.

Currently, apropos always reformats each page, even if the formatted version is newer than the source
version.

GNU March 18, 2017 152

makewhatis(8) System Manager’s Manual makewhatis(8)

NAME
makewhatis — index UNIX manuals

SYNOPSIS
apropos [-aDnpQ] [-T utf8] [-C file]
apropos [-aDnpQ] [-T utf8] dir . . .
apropos [-DnpQ] [-T utf8] -d dir [file . . .]
apropos [-Dnp] [-T utf8] -u dir [file . . .]
apropos [-DQ] -t file . . .

DESCRIPTION
The apropos utility extracts keywords from Unix manuals and indexes them in a database for fast re-
trieval by apropos(1), whatis(1), and man(1)’s -k option.

By default, apropos creates a database in each dir using the files
mansection/[arch/]title.section and catsection/[arch/]title.0 in that directory. Exist-
ing databases are replaced. If a directory contains no manual pages, no database is created in that directory.
If dir is not provided, apropos uses the default paths stipulated by man.conf(5).

The arguments are as follows:

-a Use all directories and files found below dir

-C file
Specify an alternative configuration file in man.conf(5) format.

-D Display all files added or removed to the index. With a second -D, also show all keywords
added for each file.

-d dir Merge (remove and re-add) file . . . to the database in dir.

-n Do not create or modify any database; scan and parse only, and print manual page names and
descriptions to standard output.

-p Print warnings about potential problems with manual pages to the standard error output.

-Q Quickly build reduced-size databases by reading only the NAME sections of manuals. The re-
sulting databases will usually contain names and descriptions only.

-T utf8
Use UTF-8 encoding instead of ASCII for strings stored in the databases.

-t file . . .
Check the given files for potential problems. Implies -a, -n, and -p. All diagnostic mes-
sages are printed to the standard output; the standard error output is not used.

-u dir Remove file . . . from the database in dir. If that causes the database to become empty,
also delete the database file.

If fatal parse errors are encountered while parsing, the offending file is printed to stderr, omitted from the
index, and the parse continues with the next input file.

ENVIRONMENT
MANPATH A colon-separated list of directories to create databases in. Ignored if a dir argument or the

-t option is specified.

FILES
mandoc.db

A database of manpages relative to the directory of the file. This file is portable across architec-
tures and systems, so long as the manpage hierarchy it indexes does not change.

/etc/man.conf
The default man(1) configuration file.

GNU May 17, 2017 153

makewhatis(8) System Manager’s Manual makewhatis(8)

EXIT STATUS
The apropos utility exits with one of the following values:

0 No errors occurred.
5 Invalid command line arguments were specified. No input files have been read.
6 An operating system error occurred, for example memory exhaustion or an error accessing input

files. Such errors cause apropos to exit at once, possibly in the middle of parsing or formatting a
file. The output databases are corrupt and should be removed.

SEE ALSO
apropos(1), man(1), whatis(1), man.conf(5)

HISTORY
A apropos utility first appeared in 2BSD. It was rewritten in perl(1) for OpenBSD 2.7 and in C for
OpenBSD 5.6.

The dir argument first appeared in NetBSD 1.0; the options -dpt in OpenBSD 2.7; the option -u in
OpenBSD 3.4; and the options -aCDnQT in OpenBSD 5.6.

AUTHORS
Bill Joy wrote the original BSD apropos in February 1979, Marc Espie started the Perl version in 2000,
and the current version of apropos was written by Kristaps Dzonsons <kristaps@bsd.lv> and Ingo
Schwarze <schwarze@openbsd.org>.

GNU May 17, 2017 154

man.cgi(8) System Manager’s Manual man.cgi(8)

NAME
man.cgi — CGI program to search and display manual pages

DESCRIPTION
The apropos CGI program searches for manual pages on a WWW server and displays them to HTTP
clients, providing functionality equivalent to the man(1) and apropos(1) utilities. It can use multiple man-
ual trees in parallel.

HTML search interface
At the top of each generated HTML page, apropos displays a search form containing these elements:

1. An input box for search queries, expecting either a name of a manual page or an expression using
the syntax described in the apropos(1) manual; filling this in is required for each search.

The expression is broken into words at whitespace. Whitespace characters and backslashes can be es-
caped by prepending a backslash. The effect of prepending a backslash to another character is unde-
fined; in the current implementation, it has no effect.

2. A man(1) submit button. The string in the input box is interpreted as the name of a manual page.

3. An apropos(1) submit button. The string in the input box is interpreted as a search expression.

4. A dropdown menu to optionally select a manual section. If one is provided, it has the same effect as
the man(1) and apropos(1) -s option. Otherwise, pages from all sections are shown.

5. A dropdown menu to optionally select an architecture. If one is provided, it has the same effect as the
man(1) and apropos(1) -S option. By default, pages for all architectures are shown.

6. A dropdown menu to select a manual tree. If the configuration file /var/www/man/manpath.conf con-
tains only one manpath, the dropdown menu is not shown. By default, the first manpath given in the
file is used.

Program output
The apropos program generates five kinds of output pages:

The index page.
This is returned when calling apropos without PATH_INFO and without a QUERY_STRING. It
serves as a starting point for using the program and shows the search form only.

A list page.
Lists are returned when searches match more than one manual page. The first column shows the
names and section numbers of manuals as clickable links. The second column shows the one-line
descriptions of the manuals. For man(1) style searches, the content of the first manual page fol-
lows the list.

A manual page.
This output format is used when a search matches exactly one manual page, or when a link on a
list page or an Xr link on another manual page is followed.

A no-result page.
This is shown when a search request returns no results - either because it violates the query syntax,
or because the search does not match any manual pages.

An error page.
This cannot happen by merely clicking the “Search” button, but only by manually entering an in-
valid URI. It does not show the search form, but only an error message and a link back to the in-
dex page.

Setup
For each manual tree, create one first-level subdirectory below /var/www/man. The name of one of these
directories is called a “manpath” in the context of apropos. Create a single ASCII text file
/var/www/man/manpath.conf containing the names of these directories, one per line. The directory given
first is used as the default manpath.

GNU May 20, 2018 155

man.cgi(8) System Manager’s Manual man.cgi(8)

Inside each of these directories, use the same directory and file structure as found below /usr/share/man,
that is, second-level subdirectories /var/www/man/∗/man1, /var/www/man/∗/man2 etc. containing source
mdoc(7) and man(7) manuals with file name extensions matching the section numbers, second-level subdi-
rectories /var/www/man/∗/cat1, /var/www/man/∗/cat2 etc. containing preformatted manuals with the file
name extension ‘0’, and optional third-level subdirectories for architectures. Use makewhatis(8) to create a
mandoc.db(5) database inside each manpath.

Configure your web server to execute CGI programs located in /cgi-bin. When using OpenBSD httpd(8),
the slowcgi(8) proxy daemon is needed to translate FastCGI requests to plain old CGI.

To compile apropos, first copy cgi.h.example to cgi.h and edit it according to your needs. It contains the
following compile-time definitions:

COMPAT_OLDURI
Only useful for running on www.openbsd.org to deal with old URIs containing
"manpath=OpenBSD " where the blank character has to be translated to a hyphen. When compil-
ing for other sites, this definition can be deleted.

CSS_DIR
An optional file system path to the directory containing the file mandoc.css, to be specified relative
to the server’s document root, and to be specified without a trailing slash. When empty, the CSS
file is assumed to be in the document root. Otherwise, a leading slash is needed. This is used in
generated HTML code.

CUSTOMIZE_TITLE
An ASCII string to be used for the HTML <TITLE> element.

MAN_DIR
A file system path to the apropos data directory relative to the web server chroot(2) directory, to
be specified with a leading slash and without a trailing slash. It needs to have at least one compo-
nent; the root directory cannot be used for this purpose. The files manpath.conf, header.html, and
footer.html are looked up in this directory. It is also prepended to the manpath when opening
mandoc.db(5) and manual page files.

SCRIPT_NAME
The initial component of URIs, to be specified without leading and trailing slashes. It can be
empty.

After editing cgi.h, run

make man.cgi

and copy the resulting binary to the proper location, for example using the command:

make installcgi

In addition to that, make sure the default manpath contains the files man1/apropos.1 and man8/man.cgi.8,
or the documentation links at the bottom of the index page will not work.

URI interface
apropos uniform resource identifiers are not needed for interactive use, but can be useful for deep link-
ing. They consist of:

1. The http:// or https:// protocol specifier.

2. The host name.

3. The SCRIPT_NAME, preceded by a slash unless empty.

4. To show a single page, a slash, the manpath, another slash, and the name of the requested file, for ex-
ample /OpenBSD-current/man1/mandoc.1. This can be abbreviated according to the following syntax:
[/manpath][/mansec][/arch]/name[.sec]

GNU May 20, 2018 156

man.cgi(8) System Manager’s Manual man.cgi(8)

5. For searches, a query string starting with a question mark and consisting of key=value pairs, sepa-
rated by ampersands, for example ?manpath=OpenBSD-current&query=mandoc. Supported keys are
manpath, query, sec, arch, corresponding to apropos(1) -M, expression, -s, -S, respec-
tively, and apropos, which is a boolean parameter to select or deselect the apropos(1) query mode.
For backward compatibility with the traditional apropos, sektion is supported as an alias for
sec.

Restricted character set
For security reasons, in particular to prevent cross site scripting attacks, some strings used by apropos
can only contain the following characters:

- lower case and upper case ASCII letters
- the ten decimal digits
- the dash (‘-’)
- the dot (‘.’)
- the slash (‘/’)
- the underscore (‘_’)

In particular, this applies to all manpaths and architecture names.

ENVIRONMENT
The web server may pass the following CGI variables to apropos:

SCRIPT_NAME
The initial part of the URI passed from the client to the server, starting after the server’s host name
and ending before PATH_INFO. This is ignored by apropos. When constructing URIs for links
and redirections, the SCRIPT_NAME preprocessor constant is used instead.

PATH_INFO
The final part of the URI path passed from the client to the server, starting after the
SCRIPT_NAME and ending before the QUERY_STRING. It is used by the show page to acquire
the manpath and filename it needs.

QUERY_STRING
The HTTP query string passed from the client to the server. It is the final part of the URI, after the
question mark. It is used by the search page to acquire the named parameters it needs.

FILES
/var/www

Default web server chroot(2) directory. All the following paths are specified relative to this direc-
tory.

/cgi-bin/man.cgi
The usual file system path to the apropos program inside the web server chroot(2) directory. A
different name can be chosen, but in any case, it needs to be configured in httpd.conf(5).

/htdocs The file system path to the server document root directory relative to the server chroot(2) directory.
This is part of the web server configuration and not specific to apropos.

/htdocs/mandoc.css
A style sheet for mandoc(1) HTML styling, referenced from each generated HTML page.

/man Default apropos data directory containing all the manual trees. Can be overridden by
MAN_DIR.

/man/manpath.conf
The list of available manpaths, one per line. If any of the lines in this file contains a slash (‘/’) or
any character not contained in the “Restricted character set”, apropos reports an internal server
error and exits without doing anything.

GNU May 20, 2018 157

man.cgi(8) System Manager’s Manual man.cgi(8)

/man/header.html
An optional file containing static HTML code to be inserted right after opening the <BODY> ele-
ment.

/man/footer.html
An optional file containing static HTML code to be inserted right before closing the <BODY> ele-
ment.

/man/OpenBSD-current/man1/mandoc.1
An example mdoc(7) source file located below the “OpenBSD-current” manpath.

COMPATIBILITY
The apropos CGI program is call-compatible with queries from the traditional man.cgi script by Wolfram
Schneider. However, the output looks quite different.

SEE ALSO
apropos(1), mandoc.db(5), makewhatis(8), slowcgi(8)

HISTORY
A version of apropos based on mandoc(1) first appeared in mdocml-1.12.1 (March 2012). The current
mandoc.db(5) database format first appeared in OpenBSD 6.1.

AUTHORS
The apropos program was written by Kristaps Dzonsons <kristaps@bsd.lv> and is maintained by Ingo
Schwarze <schwarze@openbsd.org>, who also designed and implemented the database format.

GNU May 20, 2018 158

mandocd(8) System Manager’s Manual mandocd(8)

NAME
mandocd — server process to format manual pages in batch mode

SYNOPSIS
mandocd [-I os=name] [-T output] socket_fd

DESCRIPTION
The apropos utility formats many manual pages without requiring fork(2) and exec(3) overhead in be-
tween. It does not require listing all the manuals to be formatted on the command line, and it supports writ-
ing each formatted manual to its own file descriptor.

This server requires that a connected UNIX domain socket(2) is already present at exec(3) time. Conse-
quently, it cannot be started from the sh(1) command line because the shell cannot supply such a socket.
Typically, the socket is created by the parent process using socketpair(2) before calling fork(2) and exec(3)
on apropos. The parent process will pass the file descriptor number as an argument to exec(3), formatted
as a decimal ASCII-encoded integer. See catman(8) for a typical implementation of a parent process.

apropos loops reading one-byte messages with recvmsg(2) from the file descriptor number socket_fd.
It ignores the byte read and only uses the out-of-band auxiliary struct cmsghdr control data, typically
supplied by the calling process using CMSG_FIRSTHDR(3). The parent process is expected to pass three
file descriptors with each dummy byte. The first one is used for mdoc(7) or man(7) input, the second one
for formatted output, and the third one for error output.

The options are as follows:

-I os=name
Override the default operating system name for the mdoc(7) Os and for the man(7) TH macro.

-T output
Output format. The output argument can be ascii, utf8, or html; see mandoc(1). In html
output mode, the fragment output option is implied. Other output options are not supported.

After exhausting one input file descriptor, all three file descriptors are closed before reading the next
dummy byte and control message.

When a zero-byte message is read, when the socket_fd is closed by the parent process, or when an error
occurs, apropos exits.

EXIT STATUS
The apropos utility exits 0 on success, and >0 if an error occurs.

A zero-byte message or a closed socket_fd is considered success. Possible errors include:

• missing, invalid, or excessive exec(3) arguments

• recvmsg(2) failure, for example due to EMSGSIZE

• missing or unexpected control data, in particular a cmsg_level in the struct cmsghdr that dif-
fers from SOL_SOCKET, a cmsg_type that differs from SCM_RIGHTS, or a cmsg_len that is not
three times the size of an int

• invalid file descriptors passed in the CMSG_DATA(3)

• resource exhaustion, in particular dup(2) or malloc(3) failure

Except for memory exhaustion and similar system-level failures, parsing and formatting errors do not cause
apropos to return an error exit status. Even after severe parsing errors, apropos will simply accept and
process the next input file descriptor.

SEE ALSO
mandoc(1), mandoc(3), catman(8)

GNU March 18, 2017 159

mandocd(8) System Manager’s Manual mandocd(8)

HISTORY
The apropos utility appeared in version 1.14.1 or the mandoc toolkit.

AUTHORS
The concept was designed and implemented by Michael Stapelberg <stapelberg@debian.org>. The
mandoc(3) glue needed to make it a stand-alone process was added by Ingo Schwarze
<schwarze@openbsd.org>.

CAVEATS
If the parsed manual pages contain roff(7) .so requests, apropos needs to be started with the current
working directory set to the root of the manual page tree. Avoid starting it in directories that contain secret
files in any subdirectories, in particular in the user starting it has read access to these secret files.

GNU March 18, 2017 160

	apropos(1)
	Name
	Synopsis
	Description
	Macro Keys

	Environment
	Files
	Exit status
	Examples
	See also
	Standards
	History
	Authors

	demandoc(1)
	Name
	Synopsis
	Description
	Exit status
	Examples
	See also
	History
	Authors

	man(1)
	Name
	Synopsis
	Description
	Environment
	Files
	Exit status
	Examples
	See also
	Standards
	History

	man.options(1)
	Name
	Description
	Authors

	mandoc(1)
	Name
	Synopsis
	Description
	ASCII Output
	HTML Output
	Locale Output
	Man Output
	Markdown Output
	PDF Output
	PostScript Output
	UTF-8 Output
	Syntax tree output

	Environment
	Exit status
	Examples
	Diagnostics
	Conventions for base system manuals
	Style suggestions
	Warnings related to the document prologue
	Warnings regarding document structure
	Warnings related to macros and nesting
	Warnings related to missing arguments
	Warnings related to bad macro arguments
	Warnings related to plain text
	Warnings related to tables
	Errors related to tables
	Errors related to roff, mdoc, and man code
	Unsupported features
	Bad command line arguments

	See also
	History
	Authors

	soelim(1)
	Name
	Synopsis
	Description
	See also
	Authors

	man.cgi(3)
	Name
	Description
	Top level
	Page generators
	Result generators
	Utility routines

	See also

	mandoc(3)
	Name
	Synopsis
	Description
	Reference
	Types
	Functions
	Variables

	Implementation notes
	Man and Mdoc Strings
	Man Abstract Syntax Tree
	Mdoc Abstract Syntax Tree

	See also
	Authors

	mandoc_escape(3)
	Name
	Synopsis
	Description
	Return values
	Files
	See also
	History
	Authors
	Bugs

	mandoc_headers(3)
	Name
	Description
	Parser interface
	Parser internals
	Formatter interface

	mandoc_html(3)
	Name
	Synopsis
	Description
	Data structures
	Private interface functions

	Return values
	Files
	See also
	Authors

	mandoc_malloc(3)
	Name
	Synopsis
	Description
	Return values
	Files
	See also
	Standards
	History
	Authors

	mansearch(3)
	Name
	Synopsis
	Description
	Implementation notes
	Finding matches
	Assembling the results

	Files
	See also
	History
	Authors

	mchars_alloc(3)
	Name
	Synopsis
	Description
	Files
	See also
	History
	Authors

	tbl(3)
	Name
	Synopsis
	Description
	Data structures
	Interface functions
	Private functions

	See also
	Authors

	man.conf(5)
	Name
	Description
	Files
	Examples
	See also
	History
	Authors

	mandoc.db(5)
	Name
	Description
	Files
	See also
	History
	Authors

	eqn(7)
	Name
	Description
	Compatibility
	See also
	History
	Authors

	man(7)
	Name
	Description
	Macro overview
	Page header and footer meta-data
	Sections and paragraphs
	Physical markup

	Macro reference
	Macro syntax
	Line Macros
	Block Macros
	Font handling

	See also
	History
	Authors

	mandoc_char(7)
	Name
	Description
	Dashes and Hyphens
	Spaces
	Quotes
	Accents
	Periods
	Backslashes

	Special characters
	Predefined strings
	Unicode characters
	Numbered characters
	Compatibility
	See also
	Authors
	Caveats

	mdoc(7)
	Name
	Description
	Manual structure
	Macro overview
	Document preamble and NAME section macros
	Sections and cross references
	Displays and lists
	Spacing control
	Semantic markup for command line utilities
	Semantic markup for function libraries
	Various semantic markup
	Physical markup
	Physical enclosures
	Text production

	Macro reference
	Macro syntax
	Block full-explicit
	Block full-implicit
	Block partial-explicit
	Block partial-implicit
	Special block macro
	In-line
	Delimiters
	Font handling

	Compatibility
	See also
	History
	Authors

	roff(7)
	Name
	Description
	Language syntax
	Comments
	Special Characters
	Font Selection
	Whitespace
	Scaling Widths
	Sentence Spacing

	Request syntax
	Macro syntax
	Request reference
	Numerical expressions

	Escape sequence reference
	Compatibility
	See also
	History
	Authors

	tbl(7)
	Name
	Description
	Options
	Layout
	Data

	Examples
	Compatibility
	See also
	History
	Authors
	Bugs

	catman(8)
	Name
	Synopsis
	Description
	Implementation notes
	Exit status
	See also
	History
	Authors
	Caveats

	makewhatis(8)
	Name
	Synopsis
	Description
	Environment
	Files
	Exit status
	See also
	History
	Authors

	man.cgi(8)
	Name
	Description
	HTML search interface
	Program output
	Setup
	URI interface
	Restricted character set

	Environment
	Files
	Compatibility
	See also
	History
	Authors

	mandocd(8)
	Name
	Synopsis
	Description
	Exit status
	See also
	History
	Authors
	Caveats

