[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Help-gsl] solving the Van der Pol problem with rk1imp with fixed step s
From: |
Juan Pablo Amorocho D. |
Subject: |
[Help-gsl] solving the Van der Pol problem with rk1imp with fixed step size using low level functions |
Date: |
Thu, 1 Sep 2011 19:51:22 +0200 |
Hi all,
I'm trying to solve the Van der Pol problem that is in the gsl documentation
using the step type (aka solver) rk1imp - Euler backward - with fixed step
size and low level functions (evolve, step, control). So far all I get is
that the status from the evolve_apply_fixed_step is 3. Looking that the gsl
code I found that this means that there is pointer problem. Now, if I change
the solver to, say, rk2 the code runs. The strange thing is that if I use
the driver with fixed step and rk1imp, the code runs. Any ideas of what may
be wrong? Any help would be appreciated.
-- Juan
PS. Here is my code using the low level functions:
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
int func (double t, const double y[], double f[],
void *params)
{
double mu = *(double *)params;
f[0] = y[1];
f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
return GSL_SUCCESS;
}
int jacobian (double t, const double y[], double *dfdy,
double dfdt[], void *params)
{
double mu = *(double *)params;
gsl_matrix_view dfdy_mat
= gsl_matrix_view_array (dfdy, 2, 2);
gsl_matrix * m = &dfdy_mat.matrix;
gsl_matrix_set (m, 0, 0, 0.0);
gsl_matrix_set (m, 0, 1, 1.0);
gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
dfdt[0] = 0.0;
dfdt[1] = 0.0;
return GSL_SUCCESS;
}
int main (void)
{
const double epsAbs = 1e-4, epsRel = 1e-4;
double mu = 10.;
double y[2] = { 1.0, 0.0 };
double t = 0.0, tf = 10.0, h = 1e-4, hstart = h;
int status = 0;
gsl_odeiv2_system system = { func, jacobian, 2, &mu };
const gsl_odeiv2_step_type * solvingAlgorithm = gsl_odeiv2_step_rk1imp;
gsl_odeiv2_step * step = gsl_odeiv2_step_alloc(solvingAlgorithm, 2);
gsl_odeiv2_control * control = gsl_odeiv2_control_y_new(epsAbs, epsRel);
gsl_odeiv2_evolve * evolve = gsl_odeiv2_evolve_alloc(2);
while (t < tf)
{
status = gsl_odeiv2_evolve_apply_fixed_step(evolve, control, step,
&system, &t,hstart, y);
if (status != GSL_SUCCESS)
{
printf ("error: evolve returned %d\n", status);
break;
}
printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
}
gsl_odeiv2_evolve_free(evolve);
gsl_odeiv2_control_free(control);
gsl_odeiv2_step_free(step);
return 0;
}
PSS And here my code using the driver:
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
int func (double t, const double y[], double f[],
void *params)
{
double mu = *(double *)params;
f[0] = y[1];
f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
return GSL_SUCCESS;
}
int jac (double t, const double y[], double *dfdy,
double dfdt[], void *params)
{
double mu = *(double *)params;
gsl_matrix_view dfdy_mat
= gsl_matrix_view_array (dfdy, 2, 2);
gsl_matrix * m = &dfdy_mat.matrix;
gsl_matrix_set (m, 0, 0, 0.0);
gsl_matrix_set (m, 0, 1, 1.0);
gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
dfdt[0] = 0.0;
dfdt[1] = 0.0;
return GSL_SUCCESS;
}
int main (void)
{
const double hstart = 1e-5, epsAbs = 1e-4, epsRel = 1e-4;
double mu = 10.;
const unsigned long numberOfSteps = 10000;
const int problemDimension = 2;
gsl_odeiv2_system sys = { func, jac, problemDimension, &mu };
gsl_odeiv2_driver *d =
gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk1imp,
hstart, epsAbs, epsRel);
double t = 0.0;
double y[2] = { 1.0, 0.0 };
int i, s;
for (i = 0; i < numberOfSteps; i++)
{
s = gsl_odeiv2_driver_apply_fixed_step (d, &t, hstart,
numberOfSteps, y);
if (s != GSL_SUCCESS)
{
printf ("error: driver returned %d\n", s);
break;
}
printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
}
gsl_odeiv2_driver_free (d);
return s;
}
[Prev in Thread] |
Current Thread |
[Next in Thread] |
- [Help-gsl] solving the Van der Pol problem with rk1imp with fixed step size using low level functions,
Juan Pablo Amorocho D. <=