[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: eigensystem
From: |
Patrick Dupre |
Subject: |
Re: eigensystem |
Date: |
Tue, 19 Jan 2021 21:51:31 +0100 |
gsl_eigen_nonsymmv_workspace
has no member n_evals
issue:
Diagonalizing
double data_3 [] = { 0.0, 0.0, 1.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0 } ;
I get
eigenvalue = 0 +0i
eigenvector =
1 +0i
0 +0i
0 +0i
eigenvalue = 0 +0i
eigenvector =
0 +0i
1 +0i
0 +0i
eigenvalue = 0 +0i
eigenvector =
-1 +0i
0 +0i
3.00625e-292 +0i
which is wrong.
The last eigenvector is not correct because this matrix is not diagonalizable.
I need to identify such matrices.
===========================================================================
Patrick DUPRÉ | | email: pdupre@gmx.com
Laboratoire interdisciplinaire Carnot de Bourgogne
9 Avenue Alain Savary, BP 47870, 21078 DIJON Cedex FRANCE
Tel: +33 (0)380395988
===========================================================================
> Sent: Tuesday, January 19, 2021 at 6:56 PM
> From: "Patrick Alken" <patrick.alken@Colorado.EDU>
> To: help-gsl@gnu.org
> Subject: Re: eigensystem
>
> What do you mean by handle it? According to the documentation, if the
> function cannot compute all eigenvalues, an error code is returned. In
> the case of gsl_eigen_nonsymm, the number of converged eigenvalues is
> stored in w->n_evals.
>
> Patrick
>
> On 1/19/21 10:33 AM, Patrick Dupre wrote:
> > Hello,
> >
> > Is there a way to handle the possible error of gsl_eigen_nonsymmv ?
> >
> > For example, when the matrix is not diagonalizable.
> >
> > Thanks
> >
> > ===========================================================================
> > Patrick DUPRÉ | | email: pdupre@gmx.com
> > Laboratoire interdisciplinaire Carnot de Bourgogne
> > 9 Avenue Alain Savary, BP 47870, 21078 DIJON Cedex FRANCE
> > Tel: +33 (0)380395988
> > ===========================================================================
> >
> >
>
>
>
- eigensystem, Patrick Dupre, 2021/01/19
- Re: eigensystem, Patrick Alken, 2021/01/19
- Re: eigensystem,
Patrick Dupre <=
- Re: eigensystem, Alan Mead, 2021/01/19
- Re: eigensystem, Patrick Dupre, 2021/01/19
- Re: eigensystem, Alan Mead, 2021/01/19
- Re: eigensystem, Patrick Dupre, 2021/01/19
- Re: eigensystem, Patrick Alken, 2021/01/19
- Re: eigensystem, Patrick Alken, 2021/01/19
- Re: eigensystem, Patrick Dupre, 2021/01/20
- Re: eigensystem, Patrick Alken, 2021/01/20
Re: eigensystem, Alan Mead, 2021/01/19