
Optimizing JShelter performance

Martin Zmitko

Supervisor: Ing. Radek Hranický, Ph.D.

May 23, 2023



Chrome – Regular Injection Performance

• On almost every load
• 250 ms performance hit
• Slow SyncMessage – 180 ms on every load

Optimizing JShelter performance 2 / 14



SyncMessage Performance

• Large payload size – 700 kB
• Necessary serialization and deserialization
• 30 ms spent by background script handler
• Slow internal browser processing
• Linear execution time increase

Optimizing JShelter performance 3 / 14



Chrome – Early Injection Performance

• Uncommon
• 80 ms performance hit
• 10 ms for evaluation, 20 ms added to total time

Optimizing JShelter performance 4 / 14



Firefox Injection Performance
• Always the same
• 80 ms performance hit
• Injected as a content script – patchWindow executes during SyncMessage

handling
• Necessary to complete request, additional 20 ms

Optimizing JShelter performance 5 / 14



Wrapper Performance
• Small performance hit for all
• Most couldn’t be further optimized
• Large performance hit on farbling
• Inefficient iteration

Optimizing JShelter performance 6 / 14



Injection optimization

• Decrease SyncMessage payload size – don’t send code
• Split configuration and code generation logic
• Move code generation to content scripts
• Generate code in document start.js

• Wrapper definition evaluation adds 10 ms, code generation takes 15 ms
• Final SyncMessage payload size is 12 kB and executes under 10 ms
• Code size optimizations

Optimizing JShelter performance 7 / 14



WebAssembly optimized farbling

• Allows efficient data processing
• Subject to CSP on Chrome
• Modify CPS headers, adjustable level
• Inconsistent initialization
• JS implementation used as a fallback, optimized implementation must always

provide same results
• Not subject to CSP on Firefox, possible to use WebAssembly only
• Reimplemented Canvas, WebGL and WebAudio farbling in AssemblyScript –

TypeScript syntax, for compiling into WebAssembly
• Differences between number types and operations
• Automatic build process
• Unit tests
• Known bug: floating point CRC provides different results

Optimizing JShelter performance 8 / 14



Optimized canvas farbling measurement

Measured on Chrome for square canvas with data in range 0.4-4000 kB, 5.3 times

faster
Optimizing JShelter performance 9 / 14



Optimized canvas farbling measurement detail

Measured on Chrome for square canvas with data in range 40 B to 40 kB

Optimizing JShelter performance 10 / 14



Optimized canvas farbling measurement

Measured on Firefox for square canvas with data in range 0.4-4000 kB, 53 times

faster

Optimizing JShelter performance 11 / 14



Optimized audio farbling measurement

Measured on Chrome for audio in range 0.4-4000 kB

Optimizing JShelter performance 12 / 14



Optimized audio farbling measurement

Measured on Firefox for audio in range 0.4-4000 kB

Optimizing JShelter performance 13 / 14



Lighthouse loading analysis

• Tool for measuring user percieved loading performance
• No similiar tools found
• Implemented own CLI tool for collecting performance data on set URLs with

set extensions
• JSON output for analysis
• Measured on 50 top Tranco domains
• Performance of clean browser was 83.5, original JShelter 69.2 and optimized

JShelter 78.5
• That is 13,5% increase from original version
• Original version decreased performance by 17,2 %, optimized version

decreased performance just by 6,1 %

Optimizing JShelter performance 14 / 14


