libcvd-members
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[libcvd-members] libcvd/cvd image_interpolate.h


From: Georg Klein
Subject: [libcvd-members] libcvd/cvd image_interpolate.h
Date: Fri, 18 Jan 2008 20:30:19 +0000

CVSROOT:        /cvsroot/libcvd
Module name:    libcvd
Changes by:     Georg Klein <georgklein>        08/01/18 20:30:19

Modified files:
        cvd            : image_interpolate.h 

Log message:
        Fix annoying compiler warning about multi-line comment (and also remove 
//s
        from doc equations)

CVSWeb URLs:
http://cvs.savannah.gnu.org/viewcvs/libcvd/cvd/image_interpolate.h?cvsroot=libcvd&r1=1.17&r2=1.18

Patches:
Index: image_interpolate.h
===================================================================
RCS file: /cvsroot/libcvd/libcvd/cvd/image_interpolate.h,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -b -r1.17 -r1.18
--- image_interpolate.h 18 Jul 2007 13:48:03 -0000      1.17
+++ image_interpolate.h 18 Jan 2008 20:30:18 -0000      1.18
@@ -14,45 +14,45 @@
        ///@ingroup gImage
        namespace Interpolate
        {
-               /// This does not interpolate: it uses the nearest neighbour.
-               ///
-               /// The sub pixel to be accessed is \f$p = (x,y)\f$. The 
nearest pixel is
-               /// \f$q = ( \operatorname{round}\ x, \operatorname{round}\ 
y)\f$
-               /// The interpolated value, \f$v\f$, is \f$v = I(q)\f$
+                /** This does not interpolate: it uses the nearest neighbour.
+                    
+                    The sub pixel to be accessed is \f$p = (x,y)\f$. The 
nearest pixel is
+                    \f$q = ( \operatorname{round}\ x, \operatorname{round}\ 
y)\f$
+                    The interpolated value, \f$v\f$, is \f$v = I(q)\f$
+                */
                class NearestNeighbour{};
 
+               /** This class is for bilinear interpolation.
+                   
+                   Define \f$p' = ( \operatorname{floor}\ x, 
\operatorname{floor}\ y)\f$ and
+                   \f$\delta = p - p'\f$
 
-               /// This class is for bilinear interpolation.
-               ///
-               /// Define \f$p' = ( \operatorname{floor}\ x, 
\operatorname{floor}\ y)\f$ and
-               /// \f$\delta = p - p'\f$
-               ///
-               /// 4 pixels in a square with \f$p'\f$ in the top left corner 
are taken:
-               /// \f[\begin{array}{rl}
-               /// a =& I(p')\\   
-               /// b =& I(p' + (1,0))\\  
-               /// c =& I(p' + (0,1))\\  
-               ///     d =& I(p' + (1,1))
-               /// \end{array}
-               /// \f]
-               /// 
-               /// The interpolated value, \f$v\f$, is 
-               /// \f[v = (1-\delta_y)((1-\delta_x)a + \delta_xb) + 
\delta_y((1-\delta_x)c + \delta_xd)\f]
+                   4 pixels in a square with \f$p'\f$ in the top left corner 
are taken:
+                   \f[\begin{array}{rl}
+                   a =& I(p')\\   
+                   b =& I(p' + (1,0))\\  
+                   c =& I(p' + (0,1))\\  
+                   d =& I(p' + (1,1))
+                   \end{array}
+                   \f]
+                   
+                   The interpolated value, \f$v\f$, is 
+                   \f[v = (1-\delta_y)((1-\delta_x)a + \delta_xb) + 
\delta_y((1-\delta_x)c + \delta_xd)\f]
+               */
                class Bilinear{};
 
+               /**
+                 This class is for bicubic (not bicubic spline) interpolation.
+
+                 \f[ v = \sum_{m=-1}^2\sum_{n=-1}^2 I(x' + m, y' + n)r(m - 
\delta_x)r(\delta_y-n) \f]
+                 where:
+                   \f[\begin{array}{rl}
+                   r(x) =& \frac{1}{6}\left[ p(x+2)^3 - 4p(x+1)^3 + 6p(x)^3 - 
4p(x-1)^3 \right]\\
+                   p(x) =& \begin{cases}x&x>0\\0&x \le 0\end{cases}
+                   \end{array}\f]                                              
               
 
-               /// This class is for bicubic (not bicubic spline) 
interpolation.
-               ///
-               /// \f[ v = \sum_{m=-1}^2\sum_{n=-1}^2 I(x' + m, y' + n)r(m - 
\delta_x)r(\delta_y-n) \f]
-               ///
-               /// where:
-               ///
-               /// \f[\begin{array}{rl}
-               /// r(x) =& \frac{1}{6}\left[ p(x+2)^3 - 4p(x+1)^3 + 6p(x)^3 - 
4p(x-1)^3 \right]\\
-               /// p(x) =& \begin{cases}x&x>0\\0&x \le 0\end{cases}
-               /// \end{array}\f]
-               ///
-               ///This algorithm is described in 
http://astronomy.swin.edu.au/~pbourke/colour/bicubic/
+                   This algorithm is described in 
http://astronomy.swin.edu.au/~pbourke/colour/bicubic/ 
+               */
                class Bicubic{};
        };
 




reply via email to

[Prev in Thread] Current Thread [Next in Thread]