
23.02.16 22:12Monit 5.16

Seite 1 von 59https://www.mmonit.com/monit/documentation/monit.html

Version 5.16

NAME
SYNOPSIS
DESCRIPTION
WHAT TO MONITOR?
GENERAL OPERATION

Options
Arguments

THE MONIT CONTROL FILE
LOGGING
DAEMON MODE
INIT SUPPORT
INCLUDE FILES
SSL OPTIONS
MONIT HTTPD

Authentication
Client certificates
Host and network allow list
Basic Authentication

Cleartext user and password
PAM
htpasswd file
Read-only users

ALERT MESSAGES
Setting an alert recipient

Setting an event filter
Setting an error reminder

Disabling alerts for some service
Message format
Setting a mail server for alert delivery
Event queue

SERVICE METHODS
SERVICE POLL TIME
SERVICE GROUPS
SERVICE MONITORING MODE
SERVICE RESTART LIMIT
SERVICE DEPENDENCIES
SERVICE TESTS

LIMITS
GENERAL SYNTAX
ACTION
FAULT TOLERANCE

EXISTENCE TESTING
RESOURCE TESTING
FILE CHECKSUM TESTING
TIMESTAMP TESTING

https://www.mmonit.com/monit/documentation/monit.html#NAME
https://www.mmonit.com/monit/documentation/monit.html#SYNOPSIS
https://www.mmonit.com/monit/documentation/monit.html#DESCRIPTION
https://www.mmonit.com/monit/documentation/monit.html#WHAT-TO-MONITOR
https://www.mmonit.com/monit/documentation/monit.html#GENERAL-OPERATION
https://www.mmonit.com/monit/documentation/monit.html#Options
https://www.mmonit.com/monit/documentation/monit.html#Arguments
https://www.mmonit.com/monit/documentation/monit.html#THE-MONIT-CONTROL-FILE
https://www.mmonit.com/monit/documentation/monit.html#LOGGING
https://www.mmonit.com/monit/documentation/monit.html#DAEMON-MODE
https://www.mmonit.com/monit/documentation/monit.html#INIT-SUPPORT
https://www.mmonit.com/monit/documentation/monit.html#INCLUDE-FILES
https://www.mmonit.com/monit/documentation/monit.html#SSL-OPTIONS
https://www.mmonit.com/monit/documentation/monit.html#MONIT-HTTPD
https://www.mmonit.com/monit/documentation/monit.html#Authentication
https://www.mmonit.com/monit/documentation/monit.html#Client-certificates
https://www.mmonit.com/monit/documentation/monit.html#Host-and-network-allow-list
https://www.mmonit.com/monit/documentation/monit.html#Basic-Authentication
https://www.mmonit.com/monit/documentation/monit.html#Cleartext-user-and-password
https://www.mmonit.com/monit/documentation/monit.html#PAM
https://www.mmonit.com/monit/documentation/monit.html#htpasswd-file
https://www.mmonit.com/monit/documentation/monit.html#Read-only-users
https://www.mmonit.com/monit/documentation/monit.html#ALERT-MESSAGES
https://www.mmonit.com/monit/documentation/monit.html#Setting-an-alert-recipient
https://www.mmonit.com/monit/documentation/monit.html#Setting-an-event-filter
https://www.mmonit.com/monit/documentation/monit.html#Setting-an-error-reminder
https://www.mmonit.com/monit/documentation/monit.html#Disabling-alerts-for-some-service
https://www.mmonit.com/monit/documentation/monit.html#Message-format
https://www.mmonit.com/monit/documentation/monit.html#Setting-a-mail-server-for-alert-delivery
https://www.mmonit.com/monit/documentation/monit.html#Event-queue
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-METHODS
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-POLL-TIME
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-GROUPS
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-MONITORING-MODE
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-RESTART-LIMIT
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-DEPENDENCIES
https://www.mmonit.com/monit/documentation/monit.html#SERVICE-TESTS
https://www.mmonit.com/monit/documentation/monit.html#LIMITS
https://www.mmonit.com/monit/documentation/monit.html#GENERAL-SYNTAX
https://www.mmonit.com/monit/documentation/monit.html#ACTION
https://www.mmonit.com/monit/documentation/monit.html#FAULT-TOLERANCE
https://www.mmonit.com/monit/documentation/monit.html#EXISTENCE-TESTING
https://www.mmonit.com/monit/documentation/monit.html#RESOURCE-TESTING
https://www.mmonit.com/monit/documentation/monit.html#FILE-CHECKSUM-TESTING
https://www.mmonit.com/monit/documentation/monit.html#TIMESTAMP-TESTING

23.02.16 22:12Monit 5.16

Seite 2 von 59https://www.mmonit.com/monit/documentation/monit.html

FILE SIZE TESTING
FILE CONTENT TESTING
FILESYSTEM FLAGS TESTING
SPACE TESTING
INODE TESTING
PERMISSION TESTING
UID TESTING
GID TESTING
PID TESTING
PPID TESTING
PROCESS UPTIME TESTING
PROGRAM STATUS TESTING
NETWORK LINK STATUS TEST
NETWORK LINK CAPACITY TEST
NETWORK SATURATION TEST
NETWORK BANDWIDTH TEST
NETWORK PACKETS TEST
NETWORK PING TEST
CONNECTION TESTING

Specific protocol test options
GENERIC (SEND/EXPECT)
HTTP
APACHE-STATUS
SIP
RADIUS
MYSQL
WEBSOCKET

CONFIGURATION EXAMPLES
FILES
ENVIRONMENT
SIGNALS
NOTES
COPYRIGHT
SEE ALSO

NAME
Monit - utility for monitoring services on a Unix system

SYNOPSIS
monit [options] <arguments>

DESCRIPTION

https://www.mmonit.com/monit/documentation/monit.html#FILE-SIZE-TESTING
https://www.mmonit.com/monit/documentation/monit.html#FILE-CONTENT-TESTING
https://www.mmonit.com/monit/documentation/monit.html#FILESYSTEM-FLAGS-TESTING
https://www.mmonit.com/monit/documentation/monit.html#SPACE-TESTING
https://www.mmonit.com/monit/documentation/monit.html#INODE-TESTING
https://www.mmonit.com/monit/documentation/monit.html#PERMISSION-TESTING
https://www.mmonit.com/monit/documentation/monit.html#UID-TESTING
https://www.mmonit.com/monit/documentation/monit.html#GID-TESTING
https://www.mmonit.com/monit/documentation/monit.html#PID-TESTING
https://www.mmonit.com/monit/documentation/monit.html#PPID-TESTING
https://www.mmonit.com/monit/documentation/monit.html#PROCESS-UPTIME-TESTING
https://www.mmonit.com/monit/documentation/monit.html#PROGRAM-STATUS-TESTING
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-LINK-STATUS-TEST
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-LINK-CAPACITY-TEST
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-SATURATION-TEST
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-BANDWIDTH-TEST
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-PACKETS-TEST
https://www.mmonit.com/monit/documentation/monit.html#NETWORK-PING-TEST
https://www.mmonit.com/monit/documentation/monit.html#CONNECTION-TESTING
https://www.mmonit.com/monit/documentation/monit.html#Specific-protocol-test-options
https://www.mmonit.com/monit/documentation/monit.html#GENERIC-SEND-EXPECT
https://www.mmonit.com/monit/documentation/monit.html#HTTP
https://www.mmonit.com/monit/documentation/monit.html#APACHE-STATUS
https://www.mmonit.com/monit/documentation/monit.html#SIP
https://www.mmonit.com/monit/documentation/monit.html#RADIUS
https://www.mmonit.com/monit/documentation/monit.html#MYSQL
https://www.mmonit.com/monit/documentation/monit.html#WEBSOCKET
https://www.mmonit.com/monit/documentation/monit.html#CONFIGURATION-EXAMPLES
https://www.mmonit.com/monit/documentation/monit.html#FILES
https://www.mmonit.com/monit/documentation/monit.html#ENVIRONMENT
https://www.mmonit.com/monit/documentation/monit.html#SIGNALS
https://www.mmonit.com/monit/documentation/monit.html#NOTES
https://www.mmonit.com/monit/documentation/monit.html#COPYRIGHT
https://www.mmonit.com/monit/documentation/monit.html#SEE-ALSO

23.02.16 22:12Monit 5.16

Seite 3 von 59https://www.mmonit.com/monit/documentation/monit.html

Monit is a utility for managing and monitoring processes, programs, files, directories
and filesystems on a Unix system. Monit conducts automatic maintenance and repair and
can execute meaningful causal actions in error situations. E.g. Monit can start a process
if it does not run, restart a process if it does not respond and stop a process if it uses
too much resources. You can use Monit to monitor files, directories and filesystems for
changes, such as timestamps changes, checksum changes or size changes.

Monit is controlled via an easy to configure control file based on a free-format, token-
oriented syntax. Monit logs to syslog or to its own log file and notifies you about error
conditions via customisable alert messages. Monit can perform various TCP/IP network
checks, protocol checks and can utilise SSL for such checks. Monit provides a HTTP(S)
interface and you may use a browser to access the Monit program.

WHAT TO MONITOR?
You can use Monit to monitor daemon processes or similar programs running on
localhost. Monit is particularly useful for monitoring daemon processes, such as those
started at system boot time. For instance sendmail, sshd, apache and mysql. In contrast
to many other monitoring systems, Monit can act if an error situation should occur, e.g.;
if sendmail is not running, monit can start sendmail again automatically or if apache is
using too many resources (e.g. if a DoS attack is in progress) Monit can stop or restart
apache and send you an alert message. Monit can also monitor process characteristics,
such as how much memory or cpu cycles a process is using.

You can also use Monit to monitor files, directories and filesystems on localhost. Monit
can monitor these items for changes, such as timestamps changes, checksum changes
or size changes. This is also useful for security reasons - you can monitor the md5 or
sha1 checksum of files that should not change and get an alert or perform an action if
they should change.

Monit can monitor network connections to various servers, either on localhost or on
remote hosts. TCP, UDP and Unix Domain Sockets are supported. Network test can be
performed on a protocol level; Monit has built-in tests for the main Internet protocols,
such as HTTP, SMTP etc. Even if a protocol is not supported you can still test the server
because you can configure Monit to send any data and test the response from the server.

Monit can be used to test programs or scripts at certain times, much like cron, but in
addition, you can test the exit value of a program and perform an action or send an alert
if the exit value indicates an error. This means that you can use Monit to perform any
type of check you can write a script for.

Finally, Monit can be used to monitor general system resources on localhost such as
overall CPU usage, Memory and System Load.

GENERAL OPERATION
The behaviour of Monit is controlled by command-line options and a run control file,
monitrc, the syntax of which we describe in a later section. Command-line options

https://www.mmonit.com/monit/documentation/monit.html#THE-MONIT-CONTROL-FILE

23.02.16 22:12Monit 5.16

Seite 4 von 59https://www.mmonit.com/monit/documentation/monit.html

override .monitrc declarations.

The default location for monitrc is ~/.monitrc. If this file does not exist, Monit will try
/etc/monitrc and a few other places. See FILES for details. You can also specify the
control file directly by using the -c command-line switch to monit. For instance,

 $ monit -c /var/monit/monitrc

Before Monit is started the first time, you can test the control file for syntax errors:

 $ monit -t
 $ Control file syntax OK

If there was an error, Monit will print an error message to the console, including the line
number in the control file from where the error was found.

Once you have a working Monit control file, simply start Monit from the console, like so:

 $ monit

You can change some configuration directives via command-line switches, but for
simplicity it is recommended that you put these in the control file.

Monit will detach from the terminal and run as a background process, i.e. as a daemon
process. As a daemon, Monit runs in cycles; It monitor services, then goes to sleep for a
configured period, then wakes up and start monitoring again in an endless loop.

Options

The following options are recognized by Monit. However, it is recommended that you set
options (when applicable) directly in the .monitrc control file.

-c file Use this control file

-d n Run Monit as a daemon once per n seconds. Or use "set daemon" in monitrc.

-g name Set group name for start, stop, restart, monitor, unmonitor, status and
summary action.

-l logfile Print log information to this file. Or use "set logfile" in monitrc.

-p pidfile Use this lock file in daemon mode. Or use "set pidfile" in monitrc.

-s statefile Write state information to this file. Or use "set statefile" in monitrc.

-I Do not run in background (needed for run from init)

-i Print Monit's unique ID

-r Reset Monit's unique ID. Use with caution

-t Run syntax check for the control file

-v Verbose mode, work noisy (diagnostic output)

-vv Very verbose mode, same as -v plus log stack-trace on error

https://www.mmonit.com/monit/documentation/monit.html#FILES

23.02.16 22:12Monit 5.16

Seite 5 von 59https://www.mmonit.com/monit/documentation/monit.html

-H [filename] Print MD5 and SHA1 hashes of the file or of stdin if the filename is
omitted; Monit will exit afterwards

-V Print version number and patch level

-h Print a help text

Arguments

Once you have Monit running as a daemon process, you can call Monit with one of the
following arguments. Monit will then connect to the Monit daemon (on TCP port
127.0.0.1:2812 by default) and ask the Monit daemon to perform the requested action.
In other words; calling monit without arguments starts the Monit daemon, and calling
monit with arguments enables you to communicate with the Monit daemon process.

start all

Start all services listed in the control file and enable monitoring for them. If the
group option is set (-g), only start and enable monitoring of services in the named
group ("all" is not required in this case).

start name

Start the named service and enable monitoring for it. The name is a service entry
name from the monitrc file.

stop all

Stop all services listed in the control file and disable their monitoring. If the group
option is set, only stop and disable monitoring of the services in the named group
("all" is not required in this case).

stop name

Stop the named service and disable its monitoring. The name is a service entry
name from the monitrc file.

restart all

Stop and start all services. If the group option is set, only restart the services in the
named group ("all" is not required in this case).

restart name

Restart the named service. The name is a service entry name from the monitrc file.

monitor all

Enable monitoring of all services listed in the control file. If the group option is set,
only start monitoring of services in the named group ("all" is not required in this
case).

monitor name

Enable monitoring of the named service. The name is a service entry name from the

23.02.16 22:12Monit 5.16

Seite 6 von 59https://www.mmonit.com/monit/documentation/monit.html

monitrc file. Monit will also enable monitoring of all services this service depends
on.

unmonitor all

Disable monitoring of all services listed in the control file. If the group option is set,
only disable monitoring of services in the named group ("all" is not required in this
case).

unmonitor name

Disable monitoring of the named service. The name is a service entry name from the
monitrc file. Monit will also disable monitoring of all services that depends on this
service.

status [name]

Print service status information.

summary [name]

Print a short status summary.

reload

Reinitialise a running Monit daemon, the daemon will reread its configuration, close
and reopen log files.

quit

Kill the Monit daemon process

validate

Check all services listed in the control file. This action is also the default behaviour
when Monit runs in daemon mode.

procmatch regex

Allows for easy testing of pattern for process match check. The command takes
regular expression as an argument and displays all running processes matching the
pattern.

THE MONIT CONTROL FILE
Monit is configured and controlled via a control file called monitrc. The default location
for this file is ~/.monitrc. If this file does not exist, Monit will try /etc/monitrc, then
@sysconfdir@/monitrc and finally ./monitrc. If you build Monit from source, the value of
@sysconfdir@ can be given at configure time as ./configure --sysconfdir. For instance,
using ./configure --sysconfdir /var/monit/etc will make Monit search for monitrc in
/var/monit/etc

To protect the security of your control file and passwords the control file must have
read-write permissions no more than 0700 (u=xrw,g=,o=); Monit will complain and exit

23.02.16 22:12Monit 5.16

Seite 7 von 59https://www.mmonit.com/monit/documentation/monit.html

otherwise.

When there is a conflict between the command-line arguments and the arguments in
this file, the command-line arguments takes precedence.

Monit uses its own Domain Specific Language (DSL); The control file consists of a series
of service entries and global option statements.

Comments begin with a '#' and extend through the end of the line. Otherwise the file
consists of a series of service entries or global option statements in a free-format,
token-oriented syntax.

You can use noise keywords like 'if', 'and', 'with(in)', 'has', 'us(ing|e)',
'on(ly)', 'then', 'for', 'of' anywhere in an entry to make it resemble English.
They're ignored, but can make entries much easier to read at a glance. Keywords are
case insensitive.

There are three kinds of tokens: grammar, numbers (i.e. decimal digit sequences) and
strings. Strings can be either quoted or unquoted. A quoted string is bounded by double
quotes and may contain whitespace (and quoted digits are treated as a string). An
unquoted string is any whitespace-delimited token, containing characters and/or
numbers.

On a semantic level, the control file consists of three types of entries:

1. Global set-statements

A global set-statement starts with the keyword set and the item to configure.

2. Global include-statement

The include statement consists of the keyword include and a glob string. This
statement is used to include configure directives from separate files.

3. One or more service entry statements.

Each service entry consists of the keywords check, followed by the service type.
Each entry requires a unique descriptive name, which may be freely chosen. This
name is used by Monit to refer to the service internally and in all interactions with
the user.

Currently, nine types of check statements are supported:

1. CHECK PROCESS <unique name> <PIDFILE <path> | MATCHING <regex>>

<path> is the absolute path to the program's pid-file. A pid-file is a file, containing
a Process's unique ID. If the pid-file does not exist or does not contain the PID
number of a running process, Monit will call the entry's start method if defined.

<regex> is an alternative to using PID files and uses process name pattern
matching to find the process to monitor. The first match is used so this form of
check is most useful if the process name is unique. Pid-file should be used where
possible as it defines expected pid exactly (pattern matching won't be useful for
processes which start a child process using fork/clone as the child will match the
same pattern temporarily). You can test if a process match a pattern from the

23.02.16 22:12Monit 5.16

Seite 8 von 59https://www.mmonit.com/monit/documentation/monit.html

command-line using monit procmatch "regex-pattern". This will lists all
processes matching or not, the regex-pattern.

2. CHECK FILE <unique name> PATH <path>

<path> is the absolute path to the file. If the file does not exist, Monit will call the
entry's start method if defined, if <path> does not point to a regular file type (for
instance a directory), Monit will disable monitoring of this entry. If Monit runs in
passive mode or the start method is not defined, Monit will just send an alert on
error.

3. CHECK FIFO <unique name> PATH <path>

<path> is the absolute path to the fifo. If the fifo does not exist, Monit will call the
entry's start method if defined, if <path> does not point to a fifo type (for instance
a directory), Monit will disable monitoring of this entry. If Monit runs in passive
mode or the start method is not defined, Monit will just send an alert on error.

4. CHECK FILESYSTEM <unique name> PATH <path>

<path> is the path to the device/disk, mount point, file or a directory which is part
of a filesystem. It is recommended to use a block special file directly (for example
/dev/hda1 on Linux or /dev/dsk/c0t0d0s1 on Solaris, etc.) If you use a mount point
(for example /data), note if the filesystem is unmounted the test will still be true
because the mount point exist.

If the filesystem becomes unavailable, Monit will call the entry's start method if
defined. if <path> does not point to a filesystem, Monit will disable monitoring of
this entry. If Monit runs in passive mode or the start method is not defined, Monit
will just send an alert on error.

5. CHECK DIRECTORY <unique name> PATH <path>

<path> is the absolute path to the directory. If the directory does not exist, Monit
will call the entry's start method if defined. If <path> does not point to a directory,
monit will disable monitoring of this entry. If Monit runs in passive mode or the
start methods is not defined, Monit will just send an alert on error.

6. CHECK HOST <unique name> ADDRESS <host address>

The host address can be specified as a hostname string or as an IP-address string
on a dotted decimal format. Such as, tildeslash.com or "64.87.72.95".

7. CHECK SYSTEM <unique name>

The unique name is usually the local host name, but any descriptive name can be
used. If you use the variable $HOST as the name, it will expand to the hostname.
This check allows one to monitor general system resources such as CPU usage, total
memory usage or load average. The unique name is used as the system hostname in
mail alerts and as the initial name of the host entry in M/Monit.

8. CHECK PROGRAM <unique name> PATH <executable file> [TIMEOUT <number>
SECONDS]

23.02.16 22:12Monit 5.16

Seite 9 von 59https://www.mmonit.com/monit/documentation/monit.html

<path> is the absolute path to the executable program or script. The status test
allows one to check the program's exit status. If the program does not finish
executing within <number> seconds, Monit will terminate it. The default program
timeout is 300 seconds (5 minutes). The output of the program is recorded and
made available in the User Interface and in alerts (by default up to 512B, you can
customize the limit using the set limits statement).

9. CHECK NETWORK <unique name> <ADDRESS <ipaddress> | INTERFACE <name>>

<ipaddress> is the IPv4 or IPv6 address of the monitored network interface. It is
also possible to use interface name, such as "eth0" on Linux.

LOGGING
Monit will log status and error messages to a log file. Use the set logfile statement in the
monitrc control file. To setup Monit to log to its own logfile, use e.g. set logfile
/var/log/monit.log. If syslog is given as a value for the -l command-line switch (or the
keyword set logfile syslog is found in the control file) Monit will use the syslog system
daemon to log messages with a priority assigned to each message based on the context.
To turn off logging, simply do not set the logfile in the control file (and of course, do not
use the -l switch)

The format for logfile is:

 [date] priority : message

for example:

 [CET Jan 5 18:49:29] info : 'localhost' Monit started

DAEMON MODE
Use

 SET DAEMON <seconds>
 [[WITH] START DELAY <seconds>]

to specify Monit's poll cycle length and run Monit in daemon mode. You must specify a
numeric argument which is a polling interval in seconds.

In daemon mode, Monit detaches from the console, puts itself in the background and
runs continuously, monitoring each specified service and then goes to sleep for the
given poll interval, wakes up and start monitoring again in an endless cycle.

Alternatively, you can use the -d command line switch to set the poll interval, but it is
strongly recommended to set the poll interval in your ~/.monitrc file, by using set
daemon.

Monit will then always start in daemon mode. If you do not use this statement and do
not start monit with the -d option, Monit will just run through the service checks once

https://www.mmonit.com/monit/documentation/monit.html#PROGRAM-STATUS-TESTING
https://www.mmonit.com/monit/documentation/monit.html#LIMITS

23.02.16 22:12Monit 5.16

Seite 10 von 59https://www.mmonit.com/monit/documentation/monit.html

and then exit. This might be useful in some situations, but Monit is primarily designed
to run as a daemon process.

Calling monit with a Monit daemon running in the background sends a wake-up signal
to the daemon, forcing it to check services immediately. Calling monit with the quit
argument will kill a running Monit daemon process instead of waking it up.

The start delay option can be used to wait (once) before Monit starts checking services.
This can be useful for example when the system boots. Monit will by default start
checking services immediately at startup.

INIT SUPPORT
The set init statement prevents Monit from transforming itself into a daemon process.
Instead Monit will run as a foreground process. (You should still use set daemon to
specify the poll cycle).

This is required to run Monit from init. Using init to start Monit is probably the best way
to run Monit if you want to be certain that you always have a running Monit daemon on
your system. Another option is to run Monit from crontab. In any case, you should make
sure that the control file does not have any syntax errors before you start Monit from init
or crontab (use monit -t to check).

To setup Monit to run from init, you can either use the set init statement in Monit's
control file or use the -I option from the command line. Here is what you must add to
/etc/inittab:

 # Run Monit in standard run-levels
 mo:2345:respawn:/usr/local/bin/monit -Ic /etc/monitrc

After you have modified init's configuration file, you can run the following command to
re-examine /etc/inittab and start Monit:

 telinit q

For systems without telinit:

 kill -1 1

If Monit is used to monitor services that are also started at boot time (e.g. services
started via SYSV init rc scripts or via inittab) then, in some cases, a race condition could
occur. That is; if a service is slow to start, Monit can assume that the service is not
running and possibly try to start it and raise an alert, while, in fact the service is already
about to start or already in its startup sequence. Please see the FAQ for a solution to this
problem. The short version is to start Monit on a higher run-level after system
processes.

INCLUDE FILES
The Monit control file, monitrc, can include additional configuration files. This feature

23.02.16 22:12Monit 5.16

Seite 11 von 59https://www.mmonit.com/monit/documentation/monit.html

helps one to organise configuration into separate files instead of having everything in
one file, if you like this kind of thing. Include statements can be placed at virtually any
place in monitrc though the convention is at the bottom. The syntax is the following:

 INCLUDE <globstring>

The globstring is any kind of string as defined in glob(7). Thus, you can refer to a
single file or you can load several files at once. If you want to use whitespace in your
string the globstring needs to be embedded into quotes (') or double quotes ("). If the
globstring matches a directory instead of a file, it is silently ignored.

Any include statements in an included file are parsed as in the main control file.

If the globstring matches several results, the files are included in a non sorted manner. If
you need to rely on a certain order, you should avoid wild-card globbing and instead
specify the full path of files included.

An example,

 include /etc/monit.d/*.cfg

This will load any file matching the globstring. That is, all files in /etc/monit.d that ends
with the prefix .cfg.

SSL OPTIONS
Common SSL/TLS options can be set using the following statement and will apply to all
SSL connections made through Monit:

 SET <SSL | TLS> [OPTIONS] {
 VERSION: <AUTO | SSLV2 | SSLV3 | TLSV1 | TLSV11 | TLSV12>
 VERIFY: <ENABLE | DISABLE>
 SELFSIGNED: <ALLOW | REJECT>
 CLIENTPEMFILE: <path>
 CACERTIFICATEFILE: <path>
 CACERTIFICATEPATH: <path>
 }

VERSION set the specific SSL/TLS version to use. By default Monit uses AUTO. In AUTO
mode, only TLS is used, SSLv2 and SSLv3 is considered obsolete. If you have to use SSLv2
or SSLv3, you must explicitly set the version.

VERIFY enable SSL server certificate verification. This will verify and report an error if the
server certificate is not trusted, not valid or has expired. By default certificate verification
is disabled, though we recommend enabling it, otherwise there is no guarantee that
Monit speaks with the server you think it speaks with.

SELFSIGNED self-signed certificates are rejected by default. Use this option to allow self-
signed certificates.

CLIENTPEMFILE set the path to the SSL client certificate "database-file" in PEM format. If
an SSL server requires client certificate authentication, Monit will try to find a public key

23.02.16 22:12Monit 5.16

Seite 12 von 59https://www.mmonit.com/monit/documentation/monit.html

certificate in this file which match the server's Certificate Authority and if found, use this
certificate for client authentication.

CACERTIFICATEFILE set the path to the PEM encoded file containing Certificate Authority
(CA) certificates. Monit uses OpenSSL's default CA certificates if this options is not used
(openssl version -d can be used to get the default CA certificates). Many distributions
comes with SSL and CA certificates already setup and using this option is normally not
necessary.

CACERTIFICATEPATH set the path to the directory containing Certificate Authority (CA)
certificates. Monit uses OpenSSL's default CA certificates if this options is not used. Many
distributions comes with SSL and CA certificates already setup and using this option is
normally not necessary.

The SSL options statement will globally apply to all SSL/TLS connection made through
Monit. SSL options can also be set in a local check, in mailserver settings or in the
mmonit statement, and will then override or extend the global settings.

To set global SSL options, put this statement near the top of your .monitrc file:

 set ssl options {...}

Here is an example of setting both global and local SSL options:

 # Enable certificate verification for all SSL connections
 # Self-signed certificates are not allowed by default
 set ssl options {
 verify: enable
 }

 # Verify certificate (via global setting)
 # Allow self-signed certificate for this check
 check host example with address example.com
 if failed
 port 443
 protocol https
 with ssl options {selfsigned: allow}
 then alert

 # Do not verify example2.com's certificate (override global setting)
 check host example2 with address example2.com
 if failed
 port 443
 protocol https
 with ssl options {verify: disable}
 then alert

MONIT HTTPD
If specified in the control file, Monit will start with HTTP support. You can then use Monit

23.02.16 22:12Monit 5.16

Seite 13 von 59https://www.mmonit.com/monit/documentation/monit.html

CLI to start and stop services, disable or enable service monitoring as well as view the
status of each service.

If HTTP support is enabled over TCP rather than over a Unix Socket, you can also view
Monit's informative dashboard in your web browser.

Note that if HTTP support is disabled, the Monit CLI interface will have reduced
functionality, as most CLI commands (such as "monit status") need to communicate with
the Monit background process via the HTTP interface. We strongly recommend having
HTTP support enabled. If security is a concern, bind the HTTP interface to local host only
or use Unix Socket so Monit is not accessible from the outside.

Syntax for TCP port:

 SET HTTPD PORT <number> [ADDRESS <hostname | IP-address>]
 [SSL <ENABLE | DISABLE>]
 [PEMFILE <path>]
 [CLIENTPEMFILE <path>]
 [ALLOWSELFCERTIFICATION]
 [SIGNATURE <ENABLE | DISABLE>]
 ALLOW <user:password | IP-address | IP-range>+

Example:

 set httpd port 2812
 allow username:password

You can now use http://localhost:2812/ to access Monit's web interface from a browser,
after you have entered username and password as credentials.

Syntax for Unix Socket:

 SET HTTPD UNIXSOCKET <path>
 ALLOW <user:password>+

Example:

 set httpd unixsocket /var/run/monit.sock
 allow username:password

Options:

UNIXSOCKET set the path to the Unix Socket Monit should bind to and listen on.

PORT set the port Monit should bind to and listen on. Monit is usually setup on port
2812.

ADDRESS make Monit listen on a specific interface only. For example if you don't want
to expose Monit's web interface to the network, bind it to localhost only. Monit will
accept connections on any address by default (if ADDRESS option is missing).

For example to limit the web interface to localhost only:

 set httpd
 port 2812

http://localhost:2812/

23.02.16 22:12Monit 5.16

Seite 14 von 59https://www.mmonit.com/monit/documentation/monit.html

 use address 127.0.0.1
 allow username:password

SSL enable TLS for Monit's web interface. The PEMFILE option holds both the server's
private key and certificate. This file should be stored in a safe place on the filesystem
and should have strict permissions, no more than 0700.

For example:

 set httpd
 port 2812
 ssl enable
 pemfile /etc/certs/monit.pem
 allow myuser:mypassword

You can now use https://localhost:2812/ to access the Monit web server over a TLS
encrypted connection.

OpenSSL FIPS is supported. To enable FIPS mode (provided your OpenSSL library
supports it), add this statement to Monit control file:

 SET FIPS

CLIENTPEMFILE client certificate based authentication. A connecting client has to
provide a certificate known to Monit in order to connect. This file also needs to have all
necessary CA certificates. By default self-signed client certificates are not allowed. If you
want to use a self signed certificate from a client it has to be allowed explicitly with the
ALLOWSELFCERTIFICATION statement.

For example:

 set httpd
 port 2812
 ssl enable
 pemfile /etc/certs/monit.pem
 clientpemfile /etc/certs/monit-client.pem

SIGNATURE can be used to hide Monit version from the HTTP response header and error
pages. For example:

 set httpd
 port 2812
 signature disable
 allow myuser:mypassword

Authentication

Access to the Monit web interface is controlled primarily via the ALLOW option which is
used to specify authentication and authorise only specific clients to connect.

If the Monit command line interface is being used, at least one cleartext password is
necessary (see bellow), otherwise the Monit command line interface will not be able to
connect to the Monit web interface.

https://localhost:2812/

23.02.16 22:12Monit 5.16

Seite 15 von 59https://www.mmonit.com/monit/documentation/monit.html

Clients trying to connect to Monit, but submit a wrong username and/or password are
logged with their IP-address.

Client certificates

This authentication method is a strong authentication mechanism and employ HTTPS
client certificates to verify the authenticity of a connecting client. Clients must posses a
Public Key Certificate known by Monit. The client must connect to Monit over SSL and
Monit ask the client to send its certificate. Upon receiving the certificate Monit compares
the certificate to certificates located in the CLIENTPEMFILE file. Access is granted if the
client certificate is in this file. See CLIENTPEMFILE above for details.

Host and network allow list

Monit maintains an access-control list of hosts and networks allowed to connect. You
can add as many hosts as you want to, but only hosts with a valid domain name or its IP
address are allowed.

Monit will query a name server to check any hosts trying to connect. If a host (client) is
trying to connect, but cannot be found in the access list or cannot be resolved, Monit will
shutdown the connection to the client promptly.

Control file example:

 set httpd port 2812
 allow localhost
 allow my.other.work.machine.com
 allow 10.1.1.1
 allow 192.168.1.0/255.255.255.0
 allow 10.0.0.0/8

Clients, not mentioned in the allow list, trying to connect to Monit will be denied access
and are logged with their IP-address.

Basic Authentication

Monit supports Basic Authentication as described in RFC 2617.

In short; a server challenge a client (e.g. a Browser) to send authentication information
(username and password) and if accepted, the server will allow the client access to the
requested document.

The biggest weakness with Basic Authentication is that username and password is sent
in clear-text over the network (i.e. base64 encoded). It is therefor recommended that
you do not use this authentication method unless you run Monit with ssl support. With
ssl, it is safe to use Basic Authentication since all HTTP data, including Basic
Authentication headers will be encrypted.

Cleartext user and password

Monit will use Basic Authentication if an allow statement contains a username and a
password separated with a single ':' character. Special characters can be used, but for
non-alphanumerics the password has to be quoted.

23.02.16 22:12Monit 5.16

Seite 16 von 59https://www.mmonit.com/monit/documentation/monit.html

Syntax:

 ALLOW <username>:<password>

PAM

PAM is supported on platforms which provide PAM (such as Linux, Mac OS X, FreeBSD,
NetBSD).

Syntax:

 ALLOW @<group>

where group is the group name allowed to access Monit's web interface. Monit uses a
PAM service called monit for PAM authentication, see the PAM manual page for detailed
instructions on how to set the PAM service and PAM authentication plugins.

Sample PAM service for Monit on Mac OS X (store as "/etc/pam.d/monit" file):

 # monit: auth account password session
 auth sufficient pam_securityserver.so
 auth sufficient pam_unix.so
 auth required pam_deny.so
 account required pam_permit.so

And monitrc config which only allows group admin authenticated via PAM to access the
web interface:

 set httpd
 port 2812
 allow @admin

htpasswd file

Alternatively you can use files in htpasswd format (one user:passwd entry per line), like
so: allow [cleartext|crypt|md5] /path [users]. By default cleartext passwords are read. In
case the passwords are digested it is necessary to specify the cryptographic method. If
you do not want all users in the password file to have access to Monit you can specify
only those users that should have access, in the allow statement. Otherwise all users are
added.

Example1:

 set httpd port 2812
 allow hauk:password
 allow md5 /etc/httpd/htpasswd john paul ringo george

If you use this method together with a host list, then only clients from the listed hosts
will be allowed to connect to the Monit HTTP server and each client will be asked to
provide a username and a password.

Example2:

 set httpd port 2812

23.02.16 22:12Monit 5.16

Seite 17 von 59https://www.mmonit.com/monit/documentation/monit.html

 allow localhost
 allow 10.1.1.1
 allow hauk:"passw@rd"

If you only want to use Basic Authentication, then just provide allow entries with
username and password or password files as in example 1 above.

Read-only users

Finally it is possible to define some users as read-only. A read-only user can read the
Monit web pages but will not get access to push-buttons and cannot change a service
from the web interface.

 set httpd port 2812
 allow admin:password
 allow hauk:password read-only
 allow @admins
 allow @users read-only

A user is set to read-only by using the read-only keyword after username:password. In
the above example the user hauk is defined as a read-only user, while the admin user
has all access rights.

ALERT MESSAGES
Monit will raise an alert in the following situations:

 o A service does not exist (e.g. process is not running)
 o Cannot read service data (e.g. cannot get filesystem usage)
 o Execution of a service related script failed (e.g. start failed)
 o Invalid service type (e.g. if path points to directory instead of file)
 o Custom test script returned error
 o Ping test failed
 o TCP/UDP connection and/or port test failed
 o Resource usage test failed (e.g. cpu usage too high)
 o Checksum mismatch or change (e.g. file changed)
 o File size test failed (e.g. file too large)
 o Timestamp test failed (e.g. file is older then expected)
 o Permission test failed (e.g. file mode doesn't match)
 o An UID test failed (e.g. file owned by different user)
 o A GID test failed (e.g. file owned by different group)
 o A process' PID changed out of Monit's control
 o A process' PPID changed out of Monit control
 o Too many service recovery attempts failed
 o A file content test found a match
 o Filesystem flags changed
 o A service action was performed by administrator
 o A network link failed
 o A network link capacity changed

23.02.16 22:12Monit 5.16

Seite 18 von 59https://www.mmonit.com/monit/documentation/monit.html

 o A network link saturation failed
 o A network link upload/download rate failed
 o Monit was started, stopped or reloaded

To get an alert via e-mail, set the alert target using the global set alert statement (for
all services) or the alert statement in the context of a service entry (for a single
service).

Setting an alert recipient

If an event occurs, Monit will send an alert. There are two kinds of alert statement:
global and local.

Global syntax:

 SET ALERT mail-address [[NOT] {event, ...}] [REMINDER cycles]

Example:

 set alert foo@bar

will send a default email to the address foo@bar whenever any event occurs on any
service.

If you want to send alert messages to more email addresses, add a set alert 'email'
statement for each address.

It is also possible to use the local alert statement in the context of a service check to
enable alert for the given service only:

 ALERT mail-address [[NOT] {event, ...}] [REMINDER cycles]

Local alert example:

 check host myhost with address 1.2.3.4
 if failed port 3306 protocol mysql then alert
 if failed port 80 protocol http then alert
 alert foo@baz # Local service alert

You can combine global and local alert statements. If there is a conflict, the local alert
has precedence and overrides the global statement.

Setting an event filter

If you only want an alert message sent for certain events, list them in an {event, ...}
block, e.g.:

 set alert foo@bar only on { timeout, nonexist }

The event list can also be negated to send alerts for all events except those which are
listed, by prepending the list with the word not. For example, to receive all alerts except
notification about Monit program start and stop:

 set alert foo@bar but not on { instance }

23.02.16 22:12Monit 5.16

Seite 19 von 59https://www.mmonit.com/monit/documentation/monit.html

Here is a list of all possible event types emitted by Monit. Values from the first column
can be used in the event filter list mentioned above:

 Event: | Failure state: | Success state:

 action | "Action done" | "Action done"
 checksum | "Checksum failed" | "Checksum succeeded"
 bytein | "Download bytes exceeded" | "Download bytes ok"
 byteout | "Upload bytes exceeded" | "Upload bytes ok"
 connection | "Connection failed" | "Connection succeeded"
 content | "Content failed", | "Content succeeded"
 data | "Data access error" | "Data access succeeded"
 exec | "Execution failed" | "Execution succeeded"
 fsflags | "Filesystem flags failed" | "Filesystem flags succeeded"
 gid | "GID failed" | "GID succeeded"
 icmp | "Ping failed" | "Ping succeeded"
 instance | "Monit instance changed" | "Monit instance changed not"
 invalid | "Invalid type" | "Type succeeded"
 link | "Link down" | "Link up"
 nonexist | "Does not exist" | "Exists"
 packetin | "Download packets exceeded" | "Download packets ok"
 packetout | "Upload packets exceeded" | "Upload packets ok"
 permission | "Permission failed" | "Permission succeeded"
 pid | "PID failed" | "PID succeeded"
 ppid | "PPID failed" | "PPID succeeded"
 resource | "Resource limit matched" | "Resource limit succeeded"
 saturation | "Saturation exceeded" | "Saturation ok"
 size | "Size failed" | "Size succeeded"
 speed | "Speed failed" | "Speed ok"
 status | "Status failed" | "Status succeeded"
 timeout | "Timeout" | "Timeout recovery"
 timestamp | "Timestamp failed" | "Timestamp succeeded"
 uid | "UID failed" | "UID succeeded"
 uptime | "Uptime failed" | "Uptime succeeded"

Each alert recipient can have it's own filter, for example:

 set alert foo@bar { nonexist, timeout, resource, icmp, connection }
 set alert security@bar on { checksum, permission, uid, gid }
 set alert admin@bar

Setting an error reminder

Monit by default sends just one notification if a service failed and another when/if it
recovers. If you want to be notified that the service is still in a failed state, you can use
the reminder option in the alert statement:

 SET ALERT mail-address [WITH] REMINDER [ON] number [CYCLES]

For example if you want to be notified each tenth cycle if a service remains in a failed
state, you can use:

23.02.16 22:12Monit 5.16

Seite 20 von 59https://www.mmonit.com/monit/documentation/monit.html

 alert foo@bar with reminder on 10 cycles

Likewise if you want to be notified on each failed cycle, you can use:

 alert foo@bar with reminder on 1 cycle

Disabling alerts for some service

To suppress alerts for some user and service, add the noalert statement in the context
of a service check.

 NOALERT mail-address

Example (send all alerts to foo@bar except for service p3):

 set alert foo@bar

 check process p1 with pidfile /var/run/p1.pid

 check process p2 with pidfile /var/run/p2.pid

 check process p3 with pidfile /var/run/p3.pid
 noalert foo@bar

Message format

The alert message format can be modified by using the set mail-format statement:

 SET MAIL-FORMAT {mail-format}

Example:

 set mail-format {
 from: monit@foo.bar
 reply-to: support@domain.com
 subject: $SERVICE $EVENT at $DATE
 message: Monit $ACTION $SERVICE at $DATE on $HOST: $DESCRIPTION.
 Yours sincerely,
 monit
 }

The from: option is the sender's email address. That is, the email address Monit will
pretend it is sending alerts from. It does not have to be a real email-address only a
proper formatted address.

The reply-to: option can be used to set the reply-to mail header.

The subject: option sets the message subject and must be on only one line.

The message: option sets the mail body. This option should always be the last in a mail-
format statement. The mail body can be as long as needed, but must not contain the
block-closing '}' character.

23.02.16 22:12Monit 5.16

Seite 21 von 59https://www.mmonit.com/monit/documentation/monit.html

You need not use all options, only the option which you want to override. For example to
globally change the senders address only:

 set mail-format { from: bofh@foo.bar }

The subject and body may contain $NAME variables, which are expanded by Monit. Here
is a list of variables that can be used when composing an alert message.

$EVENT

A string describing the event that occurred.

$SERVICE

The service name

$DATE

The current time and date (RFC 822 date style).

$HOST

The name of the host Monit is running on

$ACTION

The name of the action which was done by Monit.

$DESCRIPTION

The description of the error condition

Setting a mail server for alert delivery

The mail server Monit should use to send alert messages is defined with a set
mailserver statement:

 SET MAILSERVER
 <hostname|ip-address>
 [PORT number]
 [USERNAME string] [PASSWORD string]
 [using SSL [with options {...}]
 [CERTIFICATE CHECKSUM [MD5|SHA1] <hash>],
 ...
 [with TIMEOUT X SECONDS]
 [using HOSTNAME hostname]

Multiple mail servers can be set by using a comma separated list. If Monit cannot
connect to the first server, it will try the next in the list and so on.

The port statement allows to override the default SMTP port (465 for SSL, or 25 for TLS
and non secure connection).

Monit supports AUTH PLAIN and AUTH LOGIN for SMTP authentication. You can set a
username and a password using the USERNAME and PASSWORD options.

23.02.16 22:12Monit 5.16

Seite 22 von 59https://www.mmonit.com/monit/documentation/monit.html

You can set SSL/TLS options for the connection and also check a SSL certificate
checksum.

The default connection timeout is 5 seconds. You can rise this limit using the TIMEOUT
option.

Example (setting two mail servers for failover):

 set mailserver smtp.gmail.com, smtp.other.host

By default, Monit uses the local host name in SMTP HELO/EHLO and in the Message-ID
header. You can override this using the HOSTNAME option.

Event queue

If no mail server is available, Monit can queue events in the local file-system for retry
until the mail server recovers.

If Monit is used with M/Monit, the event queue provides a safe event store for M/Monit
in the case of temporary problems.

The event queue is persistent across Monit restarts and provided that the back-end
filesystem is persistent, across system restart as well.

By default, the queue is disabled and if the alert handler fails, Monit will simply drop the
alert message.

To enable the event queue, add the following statement:

 SET EVENTQUEUE BASEDIR <path> [SLOTS <number>]

The <path> is the path to the directory where events will be stored.

Optionally if you want to limit the queue size, use the slots option to only store up to
number event messages.

Example:

 set eventqueue basedir /var/monit slots 5000

If you are running more then one Monit instance on the same machine, you must use
separated event queue directories.

SERVICE METHODS
Each service can have associated start, stop and restart methods which Monit can use to
execute action on the service.

Syntax:

 <START | STOP | RESTART> [PROGRAM] = "program"
 [[AS] UID <number | string>]
 [[AS] GID <number | string>]

https://www.mmonit.com/monit/documentation/monit.html#SSL-OPTIONS

23.02.16 22:12Monit 5.16

Seite 23 von 59https://www.mmonit.com/monit/documentation/monit.html

 [[WITH] TIMEOUT <number> SECOND(S)]

If the program is a shell script it must begin with #! and the remainder of the first line
must specify an interpreter for the program. e.g. #!/bin/sh

The program must also be executable (for example mode 0755).

It's possible to write scripts directly into the program this way:

 stop = "/bin/bash -c 'kill -s SIGTERM `cat /var/run/process.pid`'"

By default the program is executed as the user under which Monit is running. If Monit is
running as root, you may optionally specify the UID and GID the executed program
should switch to.

Example:

 check process mmonit with pidfile /usr/local/mmonit/mmonit/logs/mmonit.pid
 start program = "/usr/local/mmonit/bin/mmonit" as uid "mmonit" and gid "mmonit"
 stop program = "/usr/local/mmonit/bin/mmonit stop" as uid "mmonit" and gid "mmonit"

In the case of a process check, Monit will wait up to 30 seconds for the start/stop action
to finish before giving up and report an error. You can override this timeout using the
TIMEOUT option.

Example:

 check process foobar with pidfile /var/run/foobar.pid
 start program = "/etc/init.d/foobar start" with timeout 60 seconds
 stop program = "/etc/init.d/foobar stop"

SERVICE POLL TIME
Services are checked in regular intervals by the set daemon n statement. Checks are
performed in the same order as they are written in the .monitrc file, except if
dependencies are setup between services, where pre-requisite services are tested first.

It is possible to modify a service check schedule by using the every statement.

There are three variants:

1. custom interval based on a poll cycle multiple

 EVERY [number] CYCLES

2. check is schedule based on a cron-style string

 EVERY [cron]

3. do-not-check schedule based on a cron-style string

 NOT EVERY [cron]

A cron-style string, consist of 5 fields separated with white-space. All fields are
required:

23.02.16 22:12Monit 5.16

Seite 24 von 59https://www.mmonit.com/monit/documentation/monit.html

 Name: | Allowed values: | Special characters:

 Minutes | 0-59 | * - ,
 Hours | 0-23 | * - ,
 Day of month | 1-31 | * - ,
 Month | 1-12 (1=jan, 12=dec) | * - ,
 Day of week | 0-6 (0=sunday, 6=saturday) | * - ,

The special characters:

 Character: | Description:

 * (asterisk) | The asterisk indicates that the expression will
 | match for all values of the field; e.g., using
 | an asterisk in the 4th field (month) would
 | indicate every month.
 - (hyphen) | Hyphens are used to define ranges. For example,
 | 8-9 in the hour field indicate between 8AM and
 | 9AM. Note that range is from start time until and
 | including end time. That is, from 8AM and until
 | 10AM unless minutes are set. Another example,
 | 1-5 in the weekday field, specify from monday to
 | friday (including friday).
 , (comma) | Comma are used to specify a sequence. For example
 | 17,18 in the day field indicate the 17th and 18th
 | day of the month. A sequence can also include
 | ranges. For example, using 1-5,0 in the weekday
 | field indicate monday to friday and sunday.

Example 1: Check once per two cycles

 check process nginx with pidfile /var/run/nginx.pid
 every 2 cycles

Example 2: Check every workday 8AM-7PM

 check program checkOracleDatabase
 with path /var/monit/programs/checkoracle.pl
 every "* 8-19 * * 1-5"

Example 3: Do not run the check in the backup window on Sunday 0AM-3AM

 check process mysqld with pidfile /var/run/mysqld.pid
 not every "* 0-3 * * 0"

Limitations:

The current scheduler is poll cycle based. When a service check is constraint with the
every cron statement, Monit will check whether the current time match the cron-string
pattern. If it does, the check is performed, otherwise it is skipped. The cron specification
thus does not guarantee when exactly the test will run, this depends on the default poll
time and the length of the check cycle. In other words, we cannot guarantee that Monit

23.02.16 22:12Monit 5.16

Seite 25 von 59https://www.mmonit.com/monit/documentation/monit.html

will run on a specific time. Therefor we strongly recommend to use an asterix in the
minute field or at minimum a range, e..g. 0-15. Never use a specific minute as Monit
may not run on that minute.

We will address this limitation in a future release and convert the scheduler from serial
polling into a parallel non-blocking scheduler where checks are guaranteed to run on
time and with seconds resolution.

SERVICE GROUPS
Service entries in the control file, monitrc, can be grouped together by the group
statement. The syntax is simply (keyword in capital):

 GROUP groupname

With this statement it is possible to group similar service entries together and manage
them as a whole. Monit provides functions to start, stop, restart, monitor and unmonitor
a group of services, like so:

To start a group of services from the console:

 monit -g <groupname> start

To stop a group of services:

 monit -g <groupname> stop

To restart a group of services:

 monit -g <groupname> restart

A service can be added to multiple groups by using more than one group statement:

 group www
 group filesystem

SERVICE MONITORING MODE
Monit supports three monitoring modes per service: active, passive and manual.

Syntax:

 MODE <ACTIVE | PASSIVE | MANUAL>

In active mode (the default), Monit will pro-actively monitor a service and in case of
problems raise alerts and/or restart the service.

In passive mode, Monit will passively monitor a service and will raise alerts, but will not
try to fix a problem by executing start, stop or restart.

In manual mode, Monit will enter active mode only if a service was started via Monit:

 monit start <servicename>

23.02.16 22:12Monit 5.16

Seite 26 von 59https://www.mmonit.com/monit/documentation/monit.html

Use "monit stop <servicename>" to stop the service and take it out of Monit's control.
The manual mode can be used to build a simple cluster with active/passive HA-services.

A service's monitoring state is persistent across Monit restart.

If you use Monit in a HA-cluster you should place the Monit state file in a temporary
filesystem so if the machine which runs HA-services should crash and the stand-by
machine take over its services, the HA-services won't be started after the crashed node
will boot again:

 set statefile /tmp/monit.state

SERVICE RESTART LIMIT
Monit provides a restart limit mechanism for situations where a service simply refuses to
start or respond over a longer period.

The restart limit mechanism is based on number of service restarts and number of poll-
cycles. For example, if a service had x restarts within y poll-cycles (where x <= y) then
Monit will perform an action (for example unmonitor the service). If a timeout occurs,
Monit will send an alert message if you have register interest for this event.

The syntax for the timeout statement is as follows (keywords are in capital):

 IF <number> RESTART <number> CYCLE(S) THEN <action>

The action value is either one of common actions or TIMEOUT (for backward
compatibility, equals to UNMONITOR action).

Here is an example where Monit will unmonitor the service if it was restarted 2 times
within 3 cycles:

 if 2 restarts within 3 cycles then unmonitor

To have Monit check the service again after monitoring was disabled, run monit
monitor servicename from the command line.

Example for setting custom exec on timeout:

 if 5 restarts within 5 cycles then exec "/foo/bar"

Example for stopping the service:

 if 7 restarts within 10 cycles then stop

SERVICE DEPENDENCIES
If specified in the control file, Monit can do dependency checking before start, stop,
monitoring or unmonitoring of services. The dependency statement may be used within
any service entries in the Monit control file.

The syntax for the depend statement is simply:

https://www.mmonit.com/monit/documentation/monit.html#ACTION

23.02.16 22:12Monit 5.16

Seite 27 von 59https://www.mmonit.com/monit/documentation/monit.html

 DEPENDS on service[, service [,...]]

Where service is a check service entry name used in your .monitrc file, for instance
apache or datafs.

You may add more than one service name of any type or use more than one depend
statement in an entry.

Services specified in a depend statement will be checked during
stop/start/monitor/unmonitor operations.

If a service is stopped or unmonitored it will stop/unmonitor any services that depends
on itself.

If the service is started, all services which this service depends on will be started before
starting this service. if start of some service failed, the service with prerequisites will
NOT be started and the, but will remember that it should start and will retry next cycle.

If a service is restarted, it will first stop any active services that depend on it and after it
is started, start all depending services that were active before the restart again.

Here is an example where we set up an apache service entry to depend on the underlying
apache binary. If the binary should change an alert is sent and apache is not monitored
anymore. The rationale is security and that Monit should not execute a possibly cracked
apache binary.

 (1) check process apache with pidfile "/var/run/httpd.pid"
 (2) depends on httpd
 (3) ...
 (4)
 (5) check file httpd with path /usr/bin/httpd
 (6) if failed checksum then stop

The first entry is the process entry for apache. The second line sets up a dependency
between this entry and the service entry named httpd in line 5. A dependency tree works
as follows, if an action is conducted in a lower branch it will propagate upward in the
tree and for every dependent entry execute the same action. In this case, if the
checksum should fail in line 6 then an stop action is executed and apache binary is not
checked anymore. But since the apache process entry depends on the httpd entry this
entry will also execute the stop action. In short, if the checksum test for the httpd binary
file should fail, both the check file httpd and the check process apache entry are
stopped.

A dependency tree is a general construct and can be used between all types of service
entries and span many levels and propagate any supported action (except the exec
action which will not propagate upward in a dependency tree for obvious reasons).

Here is another different example. Consider the following common server setup:

 WEB-SERVER -> APPLICATION-SERVER -> DATABASE -> FILESYSTEM
 (a) (b) (c) (d)

You can set dependencies so that the web-server depends on the application server to
run before the web-server starts and the application server depends on the database

23.02.16 22:12Monit 5.16

Seite 28 von 59https://www.mmonit.com/monit/documentation/monit.html

server and the database depends on the filesystem to be mounted before it starts. See
also the example section below for examples using the depend statement.

Here we describe how Monit will function with the above dependencies:

If no services are running

Monit will start the servers in the following order: d, c, b, a

If all servers are running

When you run 'monit stop all' this is the stop order: a, b, c, d. If you run 'Monit stop
d' then a, b and c are also stopped because they depend on d and finally d is
stopped.

If a does not run

Monit will start a

If b does not run

Monit will first stop a then start b and finally start a if b is up again.

If c does not run

Monit will first stop a and b then start c and finally start b then a.

If d does not run

Monit will first stop a, b and c then start d and finally start c, b then a.

If the control file contains a depend loop.

A depend loop is for example; a->b and b->a or a->b->c->a.

When Monit starts it will check for such loops and complain and exit if a loop was
found. It will also exit with a complaint if a depend statement was used that does
not point to a service in the control file.

SERVICE TESTS
LIMITS

You can configure and set various limits to tweak buffer sizes and timeouts used by
Monit. In most situations the default values are fine. If needed, below are the limits you
can currently modify in Monit.

Syntax:

 SET LIMIT {
 PROGRAMOUTPUT: <number> <unit>,
 SENDEXPECTBUFFER: <number> <unit>,
 FILECONTENTBUFFER: <number> <unit>,
 HTTPCONTENTBUFFER: <number> <unit>,
 NETWORKTIMEOUT: <number> <timeunit>

23.02.16 22:12Monit 5.16

Seite 29 von 59https://www.mmonit.com/monit/documentation/monit.html

 }

Where: unit is "B" (byte), "kB" (kilobyte) or "MB" (megabyte) timeunit is "MS" (millisecond)
or "S" (second)

Options legend:

 --
 | Option | Description | Default |
 --
programOutput	limit for check program output (truncated after)	512 B
sendExpectBuffer	limit for send/expect protocol test	256 B
fileContentBuffer	limit for file content test (line)	512 B
httpContentBuffer	limit for HTTP content test (response body)	1 MB
networkTimeout	timeout for network I/O	5 sec
 --

GENERAL SYNTAX

Monit offers several if-tests you can use in a 'check' statement to test various aspects of
a service.

You can test both for a predefined value or for a range and take actions if the value
changes.

General syntax for testing a specific value or range:

 IF <test> THEN <action> [ELSE IF SUCCEEDED THEN <action>]

The action is evaluated each time the <TEST> condition is true. Success action is
optional and executed only when the state changes from failure to success. If success
action is not set, Monit will send a recovery alert by default.

General syntax for a value change test:

 IF CHANGED <test> THEN <action>

The action is executed each time the value changes. Monit will remember the new value
and will trigger event if the value change again.

ACTION

In each test you must select the action to be executed from this list:

ALERT sends the user an alert event on each state change.

RESTART restarts the service and send an alert. Restart is performed by calling the
service's registered restart method or by first calling the stop method followed by
the start method if restart is not set.

START starts the service by calling the service's registered start method and send
an alert.

STOP stops the service by calling the service's registered stop method and send an
alert. If Monit stops a service it will not be checked by Monit anymore nor restarted

23.02.16 22:12Monit 5.16

Seite 30 von 59https://www.mmonit.com/monit/documentation/monit.html

again later. To reactivate monitoring of the service again you must explicitly enable
monitoring from the web interface or from the console.

EXEC can be used to execute an arbitrary program and send an alert. If you choose
this action you must state the program to be executed and if the program requires
arguments you must enclose the program and its arguments in a quoted string. You
may optionally specify the uid and gid the executed program should switch to upon
start. The program is by default executed only once, on the state change. You can
enable program repetition when the error persists for given number of cycles. For
instance:

 if failed <test> then exec "/usr/local/bin/sms.sh"
 as uid nobody and gid nobody
 repeat every 5 cycles

Remember, if Monit is run by root, then all programs executed by Monit will be
started with superuser privileges unless the uid and gid extension is used.

UNMONITOR will disable monitoring of the service and send an alert. The service
will not be checked by Monit anymore nor restarted again later. To reactivate
monitoring of the service you must explicitly enable monitoring from the web
interface or from the console.

FAULT TOLERANCE

By default an action is executed if it matches and the corresponding service is set in an
error state. However, you can require a test to fail more than once before the error event
is triggered and the service state is changed to failed. This is useful to avoid getting
alerts on spurious errors, which can happen, especially with network tests.

Syntax:

 FOR <X> CYCLES ...

or:

 <X> [TIMES WITHIN] <Y> CYCLES ...

The condition can be used both for failure and success action.

The first, simpler and recommended format requires X consecutive events before
switching the state:

 if failed
 port 80
 for 3 cycles
 then alert

The second format is more advanced and allows to tolerate intermittent issues, but still
catch excessive problems, where the service is flapping between error and success states
frequently.

For example if every second cycle fails (1-0-1-0-1-0-...), then "for 2 cycles" condition
will never match, despite the service having problems. The following statement will catch

23.02.16 22:12Monit 5.16

Seite 31 von 59https://www.mmonit.com/monit/documentation/monit.html

such a state:

 if failed
 port 80
 for 3 times within 5 cycles
 then alert

Example which sets multiple error levels and actions:

 check filesystem rootfs with path /dev/hda1
 if space usage > 80% for 5 times within 15 cycles then alert
 if space usage > 90% for 5 cycles then exec '/try/to/free/the/space'

Note: the maximum value for cycles is 64.

EXISTENCE TESTING

This test is implicite and always active for service checks of type, process, file, directory
and fifo. If not defined, it defaults to a restart action.

You can override the default action with the following statement:

 IF [DOES] NOT EXIST THEN <action>

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check file with path /cifs/mydata
 if does not exist then exec "/usr/bin/mount_cifs.sh"

RESOURCE TESTING

Monit can examine how much system resources a service is using. This test can only be
used within a system or process service entry in the Monit control file.

Depending on system or process characteristics, services can be stopped or restarted
and alerts can be generated. Thus it is possible to utilise systems which are idle and to
spare system under high load.

The full syntax for a resource-statement used for resource testing is as follows
(keywords are in capital and optional statements in [brackets]),

 IF <resource> <operator> <value> THEN <action>

resource is a choice of "CPU", "TOTAL CPU", "CPU([user|system|wait])", "MEMORY",
"SWAP", "THREADS", "CHILDREN", "TOTAL MEMORY", "LOADAVG([1min|5min|15min])".
Some resource tests can be used inside a check system entry, some in a check process
entry and some in both:

System only resource tests:

CPU([user|system|wait]) is the percent of time the system spend in user or kernel space

23.02.16 22:12Monit 5.16

Seite 32 von 59https://www.mmonit.com/monit/documentation/monit.html

and I/O. The user/system/wait modifier is optional, if not used, the total system cpu
usage is tested.

SWAP is the swap usage of the system in either percent (of the systems total) or as an
amount (Byte, kB, MB, GB).

Process only resource tests:

CPU is the CPU usage of the process itself (percent).

TOTAL CPU is the total CPU usage of the process and its children in (percent). You will
want to use TOTAL CPU typically for services like Apache web server where one master
process forks child processes as workers.

THREADS is the number of processes' threads.

CHILDREN is the number of child processes of the process.

TOTAL MEMORY is the memory usage of the process and its child processes in either
percent or as an amount (Byte, kB, MB, GB).

System and process resource tests:

MEMORY is the memory usage of the system or of a process (without children) in either
percent (of the systems total) or as an amount (Byte, kB, MB, GB).

LOADAVG([1min|5min|15min]) refers to the system's load average. The load average is
the number of processes in the system run queue, averaged over the specified time
period.

operator is a choice of "<", ">", "!=", "==" in C notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

value is either an integer or a real number. For CPU, TOTAL CPU, MEMORY and TOTAL
MEMORY you need to specify a unit. This could be "%" or if applicable "B" (Byte), "kB"
(1024 Byte), "MB" (1024 KiloByte) or "GB" (1024 MegaByte).

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

To calculate the cycles, a counter is raised whenever the expression above is true and it
is lowered whenever it is false (but not below 0). All counters are reset in case of a
restart.

The following is an example to check that the CPU usage of a service is not going
beyond 50% during five poll cycles. If it does, Monit will restart the service:

 if cpu is greater than 50% for 5 cycles then restart

FILE CHECKSUM TESTING

The checksum statement may only be used in a file service entry and can be used to
check the file's MD5 or SHA1 checksum.

Check specific checksum:

23.02.16 22:12Monit 5.16

Seite 33 von 59https://www.mmonit.com/monit/documentation/monit.html

 IF FAILED [MD5|SHA1] CHECKSUM [EXPECT checksum] THEN action

Check any file changes:

 IF CHANGED [MD5|SHA1] CHECKSUM THEN action

The choice of MD5 or SHA1 is optional. MD5 features a 128 bits checksum (32 bytes hex
encoded string) and SHA1 a 160 bits checksum (40 bytes hex encoded string). If this
option is omitted, Monit will try to guess the method from the EXPECT string or use MD5
as the default checksum.

expect is optional and if used, specifies the md5 or sha1 string Monit should expect
when testing a file's checksum. Monit will then not compute an initial checksum for the
file, but instead use the string you submit. For example:

 if failed
 checksum expect 8f7f419955cefa0b33a2ba316cba3659
 then alert

You can, for example, use the GNU utility md5sum(1) or sha1sum(1) to create a
checksum string for a file and use this string in the expect-statement.

Reloading a server if its configuration file was changed:

 check file apache_conf with path /etc/apache/httpd.conf
 if changed checksum then exec "/usr/bin/apachectl graceful"

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

TIMESTAMP TESTING

The timestamp statement may only be used in a file, fifo or directory service entry.

Specific timestamp syntax:

 IF TIMESTAMP [[operator] value [unit]] THEN action

Timestamp changed syntax:

 IF CHANGED TIMESTAMP THEN action

operator is a choice of "<", ">", "!=", "==" in C notation, "GT", "LT", "EQ", "NE" in shell sh
notation and "GREATER", "LESS", "EQUAL", "NOTEQUAL" in human readable form (if not
specified, default is EQUAL).

value is a time watermark.

unit is either "SECOND(S)", "MINUTE(S)", "HOUR(S)" or "DAY(S)".

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

For example to reload apache if the configuration file timestamp changed:

 check file apache_conf with path /etc/apache/httpd.conf
 if changed timestamp then exec "/usr/bin/apachectl graceful"

23.02.16 22:12Monit 5.16

Seite 34 von 59https://www.mmonit.com/monit/documentation/monit.html

For example testing directory for file addition or removal:

 check directory bar path /foo/bar
 if timestamp < 1 hour then alert

FILE SIZE TESTING

The size statement may only be used in a check file service entry. If specified in the
control file, Monit will compute a size for a file.

Testing specific size or range:

 IF SIZE [[operator] value [unit]] THEN action

Testing size changes:

 IF CHANGED SIZE THEN action

operator is a choice of "<", ">", "!=", "==" in C notation, "GT", "LT", "EQ", "NE" in shell sh
notation and "GREATER", "LESS", "EQUAL", "NOTEQUAL" in human readable form (if not
specified, default is EQUAL).

value is a size watermark.

unit is a choice of "B","KB","MB","GB" or long alternatives "byte", "kilobyte", "megabyte",
"gigabyte". If it is not specified, "byte" unit is assumed by default.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

For example to send an alert if the file is too large:

 check file mydb with path /data/mydatabase.db
 if size > 1 GB then alert

FILE CONTENT TESTING

The content statement can be used to incrementally test the content of a text file by
using regular expressions.

Syntax:

 IF CONTENT <operator> <regex|path> THEN action

operator is either a "=" for match or "!=" for no-match.

regex is a string containing the extended regular expression. See also regex(7).

path is an absolute path to a file containing extended regular expression on every line.
See also regex(7).

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

On startup the read position is set to the end of the file and Monit continues to scan to
the end of the file on each cycle.

23.02.16 22:12Monit 5.16

Seite 35 von 59https://www.mmonit.com/monit/documentation/monit.html

If the file size should decrease or inode changed, the read position is set to the start of
the file.

Only lines ending with a newline character are inspected.

By default only the first 511 characters of a line are inspected. You can increase the limit
using the set limits statement.

 IGNORE CONTENT <operator> <regex|path>

Lines matching an IGNORE are not inspected during later evaluations. IGNORE CONTENT
has always precedence over IF CONTENT.

All IGNORE CONTENT statements are evaluated first, in the order of their appearance.
Thereafter, all the IF CONTENT statements are evaluated.

For example:

 check file syslog with path /var/log/syslog
 ignore content = "^monit"
 if content = "^mrcoffee" then alert

FILESYSTEM FLAGS TESTING

Monit can test the flags of a filesystem for changes. This test is implicit and Monit will
send alert in case of failure by default.

This test is useful for detecting changes of filesystem flags such as if the filesystem
become read-only (on disk error) or mount flags were changed (such as nosuid).

The syntax for the fsflags statement is:

 IF CHANGED FSFLAGS THEN action

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check filesystem rootfs with path /
 if changed fsflags then exec "/my/script"

SPACE TESTING

Monit can test a filesystem or a disk for space usage. This test may only be used in the
context of a filesystem service type.

Filesystems usually have some space reserved for the root user (ca. 1-5%), so non-
superusers cannot write to a nearly full filesystem. If you set a limit for the filesystem
which is used by non-root users you might want to consider these reserved blocks when
setting the limit. You can use Monit itself to view the reserved blocks percentage by
using the CLI status command or the HTTP interface for the given filesystem.

Syntax:

https://www.mmonit.com/monit/documentation/monit.html#LIMITS

23.02.16 22:12Monit 5.16

Seite 36 von 59https://www.mmonit.com/monit/documentation/monit.html

 IF SPACE operator value unit THEN action

or:

 IF SPACE FREE operator value unit THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

unit is a choice of "B","KB","MB","GB", "%" or long alternatives "byte", "kilobyte",
"megabyte", "gigabyte", "percent".

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check filesystem rootfs with path /
 if space usage > 90% then alert

INODE TESTING

Monit can test filesystem inode usage. This test may only be used in the context of a
filesystem service type.

Syntax:

 IF INODE(S) operator value [unit] THEN action

or:

 IF INODE(S) FREE operator value [unit] THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

unit is optional. If not specified, the value is an absolute count of inodes. You can use
the "%" character or the longer alternative "percent" as a unit.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check filesystem rootfs with path /
 if inode usage > 90% then alert

PERMISSION TESTING

Monit can test the permissions of file objects. This test may only be used in the context
of a file, fifo, directory or filesystem service types.

Syntax for testing specific permissions:

23.02.16 22:12Monit 5.16

Seite 37 von 59https://www.mmonit.com/monit/documentation/monit.html

 IF FAILED PERM(ISSION) octalnumber THEN action

Syntax for testing any permission change:

 IF CHANGED PERM(ISSION) THEN action

octalnumber defines permissions for a file, a directory or a filesystem as four octal digits
(0-7). Valid range is 0000 - 7777 (you can omit the leading zeros, Monit will add the
zeros to the left. For example, "640" is a valid value and matches "0640").

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check file shadow with path /etc/shadow
 if failed permission 0640 then alert

UID TESTING

Monit can monitor the owner user id (uid) of a file, fifo, directory or owner and effective
user of a process.

Syntax:

 IF FAILED [E]UID user THEN action

user defines a user id either in numeric or in string form.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check file shadow with path /etc/shadow
 if failed uid root then alert

GID TESTING

Monit can monitor the owner group id (gid) of a file, fifo, directory or process.

Syntax:

 IF FAILED GID group THEN action

group defines a group id either in numeric or in string form.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check file shadow with path /etc/shadow
 if failed gid shadow then alert

PID TESTING

23.02.16 22:12Monit 5.16

Seite 38 von 59https://www.mmonit.com/monit/documentation/monit.html

Monit can test the process' PID. This test is implicit and Monit will send an alert in case
the PID changed outside of Monit's control.

Syntax:

 IF CHANGED PID THEN action

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

This test is useful to detect possible process restarts which has occurred in the
timeframe between two Monit testing cycles.

For example if someone changes sshd configuration and did sshd restart outside of
Monit's control you will be notified that the process was replaced by a new instance:

 check process sshd with pidfile /var/run/sshd.pid
 if changed pid then alert

PPID TESTING

Monit can test the process' parent PID (PPID) for changes. This test is implicit and Monit
will send alert in the case that the PPID changed outside of Monit control.

The syntax for the ppid statement is:

 IF CHANGED PPID THEN action

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check process myproc with pidfile /var/run/myproc.pid
 if changed ppid then exec "/my/script"

PROCESS UPTIME TESTING

The uptime statement may only be used in a process service type context.

Syntax:

 IF UPTIME [[operator] value [unit]] THEN action

operator is a choice of "<", ">", "!=", "==" in C notation, "GT", "LT", "EQ", "NE" in shell sh
notation and "GREATER", "LESS", "EQUAL", "NOTEQUAL" in human readable form (if not
specified, default is EQUAL).

value is a uptime watermark.

unit is either "SECOND", "MINUTE", "HOUR" or "DAY" (it is also possible to use "SECONDS",
"MINUTES", "HOURS", or "DAYS").

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example of restarting the process every three days:

23.02.16 22:12Monit 5.16

Seite 39 von 59https://www.mmonit.com/monit/documentation/monit.html

 check process myapp with pidfile /var/run/myapp.pid
 start program = "/etc/init.d/myapp start"
 stop program = "/etc/init.d/myapp stop"
 if uptime > 3 days then restart

PROGRAM STATUS TESTING

You can check the exit status of a program or a script. This test may only be used within
a check program service entry in the Monit control file.

Syntax for testing specific exit value:

 IF STATUS operator value THEN action

Syntax for testing any exit value change:

 IF CHANGED STATUS THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Example:

 check program myscript with path /usr/local/bin/myscript.sh
 if status != 0 then alert

Sample script for the above example (/usr/local/bin/myscript.sh):

 #!/bin/bash
 echo test
 exit $?

You can also send parameters with the program:

 check program list-files with path "/bin/ls -lrt /tmp/"
 if status != 0 then alert

Arguments to the program or script is a sequence of whitespace separated strings. In the
above example the strings '-lrt' and '/tmp/' are arguments to the program '/bin/ls'. If
arguments are used, it is recommended to use quotes " to enclose the string, otherwise,
if no arguments are used, quotes are not needed.

Notes: If the program is a script, the interpreter is required in the first line. The program
or script must also be executable.

If Monit is run as the super user, you can optionally run the program as a different user
and/or group. In this example we run the ls program as user www and as group staff:

 check program ls with path "/bin/ls /tmp" as uid "www"
 and gid "staff"
 if status != 0 then alert

23.02.16 22:12Monit 5.16

Seite 40 von 59https://www.mmonit.com/monit/documentation/monit.html

Monit will execute the program periodically and if the exit status of the program does
not match the expected result, Monit can perform an action. In the example above,
Monit will raise an alert if the exit value is different from 0. By convention, 0 means the
program exited normally.

Program checks are asynchronous. Meaning that Monit will not wait for the program to
exit, but instead, Monit will start the program in the background and immediately
continue checking the next service entry in monitrc. At the next cycle, Monit will check if
the program has finished and if so, collect the program's exit status. If the status
indicate a failure, Monit will raise an alert message containing the program's error
(stderr) output, if any. If the program has not exited after the first cycle, Monit will wait
another cycle and so on. If the program is still running after 5 minutes, Monit will kill it
and generate a program timeout event. It is possible to override the default timeout (see
the syntax below).

The asynchronous nature of the program check allows for non-blocking behaviour in the
current Monit design, but it comes with a side-effect: when the program has finished
executing and is waiting for Monit to collect the result, it becomes a so-called "zombie"
process. A zombie process does not consume any system resources (only the PID
remains in use) and it is under Monit's control and the zombie process is removed from
the system as soon as Monit collects the exit status. This means that every "check
program" will be associated with either a running process or a temporary zombie. This
unwanted zombie side-effect will be removed in a later release of Monit.

Multiple status tests can be used, for example:

 check program hwtest with path /usr/local/bin/hwtest.sh
 with timeout 500 seconds
 if status = 1 then alert
 if status = 3 for 5 cycles then exec "/usr/local/bin/emergency.sh"

NETWORK LINK STATUS TEST

You can check the network link state. This test may only be used within a check network
service entry in the Monit control file.

Syntax:

 IF FAILED LINK THEN action

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

The test will fail if the link/interface is down or link errors were detected.

Example:

 check network eth0 with interface eth0
 if failed link then alert

In case a link failed you can add a start and stop program to automatically restart the
interface which might help. (Substitute with the relevant network commands for your
system)

23.02.16 22:12Monit 5.16

Seite 41 von 59https://www.mmonit.com/monit/documentation/monit.html

 check network eth0 with interface eth0
 start program = '/sbin/ipup eth0'
 stop program = '/sbin/ipdown eth0'
 if failed link then restart

NETWORK LINK CAPACITY TEST

You can check the network link mode capacity for changes. This test may only be used
within a check network service entry in the Monit control file.

Syntax:

 IF CHANGED LINK [CAPACITY] THEN action

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

The test will match if the link mode has changed (e.g. maximum speed dropped) or if the
duplex mode has changed.

NOTE: not all interface types allow for capacity monitoring. Pseudo interfaces such as
loopback device or VMWare interfaces does not have a speed attribute.

Example:

 check network eth0 with interface eth0
 if changed link capacity then alert

NETWORK SATURATION TEST

You can check the network link saturation. Monit then computes the link utilisation
based on the current transfer rate vs. link capacity. This test may only be used within a
check network service entry in the Monit control file.

Syntax:

 IF SATURATION operator value% THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

NOTE: this test depends on the availability of the speed attribute and not all interface
types have this attribute. See the LINK SPEED test description.

Example:

 check network eth0 with interface eth0
 if saturation > 90% then alert

NETWORK BANDWIDTH TEST

23.02.16 22:12Monit 5.16

Seite 42 von 59https://www.mmonit.com/monit/documentation/monit.html

You can check a network link upload and download bandwidth usage, current transfer
rate and total data transferred in the last 24 hours. This test may only be used within a
check network service entry in the Monit control file.

Warning: this test requires monit poll time to be at maximum 30 seconds.

Current upload bandwidth rate test syntax:

 IF UPLOAD operator value unit THEN action

Current download bandwidth rate test syntax:

 IF DOWNLOAD operator value unit THEN action

Total upload test syntax:

 IF TOTAL UPLOAD operator value unit IN LAST number time-unit THEN action

Total download test syntax:

 IF TOTAL DOWNLOAD operator value unit IN LAST number time-unit THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

unit is a choice of "B","KB","MB","GB" or long alternatives "byte", "kilobyte", "megabyte",
"gigabyte".

time-unit is a choice of "MINUTE(S)", "HOUR(S)", "DAY". NOTE: Monit maintains a rolling
count of total uploaded and downloaded bytes for the last 24 hours only. The value of
time-unit can therefor not specify a range wider than one day.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Examples:

 check network eth0 with interface eth0
 if upload > 500 kB/s then alert
 if total download > 1 GB in last 2 hours then alert
 if total download > 10 GB in last day then alert

NETWORK PACKETS TEST

You can check the network link upload and download packets count, current transfer
rate and total data transferred in last 24 hours. This test may only be used within a
check network service entry in the Monit control file.

Warning: this test requires monit poll time to be at maximum 30 seconds.

Current upload bandwidth rate test syntax:

 IF UPLOAD operator value PACKETS/S THEN action

Current download bandwidth rate test syntax:

23.02.16 22:12Monit 5.16

Seite 43 von 59https://www.mmonit.com/monit/documentation/monit.html

 IF DOWNLOAD operator value PACKETS/S THEN action

Total upload test syntax:

 IF TOTAL UPLOAD operator value PACKETS IN LAST number time-unit THEN action

Total download test syntax:

 IF TOTAL DOWNLOAD operator value PACKETS IN LAST number time-unit THEN action

operator is a choice of "<",">","!=","==" in c notation, "gt", "lt", "eq", "ne" in shell sh
notation and "greater", "less", "equal", "notequal" in human readable form (if not
specified, default is EQUAL).

time-unit is a choice of "MINUTE(S)", "HOUR(S)", "DAY". NOTE: Monit keeps total
upload/download statistics only for the last 24 hours. The time-unit value cannot
therefor span more than one day.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Examples:

 check network eth0 with interface eth0
 if upload > 1000 packets/s then alert
 if total upload > 900000 packets in last hour then alert

NETWORK PING TEST

Monit can perform a network ping test by sending ICMP echo request datagram packets
to a host and wait for the reply. This test can only be used within a check host
statement. Monit must also run as the root user in order to be able to perform the ping
test (because the ping test must use raw sockets which usually only the super user is
allowed to).

Syntax:

 IF FAILED PING[4|6]
 [COUNT number]
 [SIZE number]
 [TIMEOUT number SECONDS]
 [ADDRESS string]
 THEN action

If a DNS host name was used in the check host statement and the host name resolve to
several addresses (either IPv4 or IPv6), Monit will ping the first available address and
continue with the next address until one connection succeed or until there are no more
addresses left to try. You can force Monit to only ping IPv4 or IPv6 addresses by using
the PING4 or the PING6 keyword instead of PING.

The COUNT parameter specifies how many consecutive ping requests will be sent to the
host in one cycle at maximum. The default value is 3.

The SIZE parameter specifies the ping request data size. Default is 64 bytes.

23.02.16 22:12Monit 5.16

Seite 44 von 59https://www.mmonit.com/monit/documentation/monit.html

If no reply arrive within TIMEOUT seconds, Monit reports an error. If at least one reply
was received, the ping test is considered a success.

The ADDRESS parameter specifies source IP address.

Monit will, by default, send up to three ping request packets in one cycle to prevent false
alarm (i.e. up to 66% packet loss is tolerated). You can set the COUNT option to a value
between 1 and 20 to send more or fewer packets. If you require 100% ping success, set
the count to 1 (i.e. just one request will be sent, and if the packet was lost an error will
be reported).

Note that many ISPs have started to filter out ping or ICMP packets now, in which case
there will be no reply from the host.

If a ping test is used in a check host entry, this test is run first and if the test should fail,
we assume that the connection to the host is down and Monit will not continue with any
subsequent port tests.

Example:

 check host mmonit.com with address mmonit.com
 if failed ping then alert # IPv4 or IPv6

 check host mmonit.com with address 62.109.39.247
 if failed ping then alert # Address is IPv4 so IPv4 is preferred

or test that the system is explicit accessible via IPv4 and IPv6:

 check host mmonit.com with address mmonit.com
 if failed ping4 then alert # IPv4 only
 if failed ping6 then alert # IPv6 only

or with all parameters; Send five 128 byte pings to mmonit.com and wait for up to 10
seconds for a reply

 check host mmonit.com with address mmonit.com
 if failed ping count 5 size 128 with timeout 10 seconds then alert

CONNECTION TESTING

Monit can perform connection testing via network ports or via Unix sockets. A
connection test may only be used within a process or host service type context.

If a service listens on one or more sockets, Monit can connect to the port (using TCP or
UDP) and verify that the service will accept a connection and that it is possible to write
and read from the socket. If a connection is not accepted or if there is a problem with
socket I/O, Monit will execute a specified action.

TCP/UDP port test syntax:

 IF FAILED
 [host]
 <port>

23.02.16 22:12Monit 5.16

Seite 45 von 59https://www.mmonit.com/monit/documentation/monit.html

 [localaddress]
 [ipversion]
 [type]
 [ssl [with options {...}]]
 [certificate checksum]
 [certificate valid days]
 [protocol | <send|expect>, ...]
 [timeout]
 [retry]
 THEN action

Unix socket test syntax:

 IF FAILED
 <unixsocket>
 [type]
 [protocol | <send|expect>, ...]
 [timeout]
 [retry]
 THEN action

Examples:

 if failed port 80 then alert

 if failed port 53 type udp protocol dns then alert

 if failed unixsocket /var/run/sophie then alert

Options:

host: HOST hostname. Optionally specify the host to connect to. If the host is not given
then localhost is assumed if this test is used inside a process entry. If this test is used
inside a remote host entry then the entry's remote host is assumed.

port: PORT number. The port number to connect to

unixsocket: UNIXSOCKET path. Specifies the path to a Unix socket (local machine only).

localaddress: ADDRESS string. The source IP address to use.

ipversion: IPV4 | IPV6 . Optionally specify the IP version Monit should use when trying to
connect to the port. If not used, Monit will try to connect to the first available address
(IPv4 or IPv6). If multiple addresses are available and connection to one address failed,
Monit will try the next address and so on until a connection succeed or until there are no
more addresses left to try.

type: TYPE [TCP | UDP]. Optionally specify the socket type Monit should use when trying
to connect to the port. The different socket types are: TCP or UDP, where TCP is a
regular stream based socket, UDP, a datagram socket. The default socket type is TCP.

ssl: [SSL | TLS] [with options {...}]. Set SSL/TLS options and override global/default SSL
options. You can set the SSL/TLS version to use, whether to verify certificates, trust self-

https://www.mmonit.com/monit/documentation/monit.html#SSL-OPTIONS

23.02.16 22:12Monit 5.16

Seite 46 von 59https://www.mmonit.com/monit/documentation/monit.html

signed certificates or set the SSL client certificates database-file for client certificate
authentication.

certificate checksum: CERTIFICATE CHECKSUM [MD5|SHA1] hash. Verify the SSL server
certificate by checking its checksum. You can use either MD5 or SHA1 checksum (if you
don't specify the type, Monit will determine the digest based on the hash length). You
can use the openssl command line tool to get the checksum value for your certificate,
which you can then use in Monit's control file:

 openssl x509 -fingerprint -sha1 -in server.crt | head -1 | cut -f2 -d'='

Example:

 if failed
 port 443
 protocol https
 and certificate checksum = "1ED948A6F4258ACAB964227EF4EB19FCC453B0F8"
 then alert

certificate expire days: CERTIFICATE VALID for number DAYS. Send an alert if the
certificate will expire in the given number of days. This test is pretty useful to get a
notification when it is time to renew your SSL certificate.

Example:

 if failed
 port 443
 protocol https
 and certificate valid > 30 days
 then alert

protocol: PROTO(COL) protocol. Optionally specify the protocol Monit should speak when
a connection is established. At the moment Monit knows how to speak: APACHE-STATUS
DNS DWP FTP GPS HTTP HTTPS IMAP IMAPS CLAMAV LDAP2 LDAP3 LMTP MEMCACHE
MONGODB MYSQL NNTP NTP3 PGSQL POP POPS POSTFIX-POLICY RADIUS RDATE REDIS
RSYNC SIEVE SIP SMTP SMTPS SSH TNS WEBSOCKET

If the target server's protocol is not found in this list, simply do not specify the protocol
and Monit will use a default connection test.

timeout: [WITH] TIMEOUT number SECONDS. Optionally specifies the connect and read
timeout for the connection. If Monit cannot connect to the server within this time it will
assume that the connection failed and execute the specified action. The default connect
timeout is 5 seconds.

retry: RETRY number. Optionally specifies the number of consecutive retries within the
same testing cycle in the case that the connection failed. The default is fail on first error.

action is a choice of "ALERT", "RESTART", "START", "STOP", "EXEC" or "UNMONITOR".

Specific protocol test options

GENERIC (SEND/EXPECT)

23.02.16 22:12Monit 5.16

Seite 47 von 59https://www.mmonit.com/monit/documentation/monit.html

If Monit does not support the protocol spoken by the server, you can write your own
protocol-test using send and expect strings. The SEND statement sends a string to the
server port and the EXPECT statement compares a string read from the server with the
string given in the expect statement.

Syntax:

 [<SEND|EXPECT> "string"]+

Monit will send a string as it is, and you must remember to include CR and LF in the
string sent to the server if the protocol expects such characters to terminate a string
(most text based protocols used over Internet do).

Monit will by default read up to 255 bytes from the server and use this string when
comparing the EXPECT string. You can override the default value using the set limits
statement.

You can use non-printable characters in a SEND string if needed. Use the hex notation,
\0xHEXHEX to send any char in the range \0x00-\0xFF, that is, 0-255 in decimal. For
example, to test a Quake 3 server:

 send "\0xFF\0xFF\0xFF\0xFFgetstatus"
 expect "sv_floodProtect|sv_maxPing"

If your system supports POSIX regular expressions, you can use regular expressions in
the EXPECT string, see regex(7) to learn more about the types of regular expressions you
can use in an expect string.

Since both regex and string compare operates on a zero terminated string, you cannot
test for '\0' in an EXPECT buffer since this character marks the end of the buffer.
However, we escape '\0' in the expect buffer as "\0" which you can test for. That is, '\'
followed by the ascii value for 0. For instance, here is how to test for an expect string
that starts with zero followed by any number of characters.

 expect "^[\\]0.*"

Here is a simple SMTP protocol example:

 if failed
 port 25 and
 expect "^220.*"
 send "HELO localhost.localdomain\r\n"
 expect "^250.*"
 send "QUIT\r\n"
 then alert

SEND/EXPECT can be used with any socket type, such as TCP sockets, UNIX sockets and
UDP sockets.

HTTP

Syntax:

 PROTO(COL) HTTP

https://www.mmonit.com/monit/documentation/monit.html#LIMITS

23.02.16 22:12Monit 5.16

Seite 48 von 59https://www.mmonit.com/monit/documentation/monit.html

 [REQUEST "string"]
 [STATUS operator number]
 [CHECKSUM checksum]
 [HTTP HEADERS list of headers]
 [CONTENT < "=" | "!=" > STRING]

REQUEST option can set an URL string specifying a document on the HTTP server. If the
request statement isn't specified, the default "/" page will be requested.

For example:

 if failed
 port 80
 protocol http
 request "/data/show?a=b&c=d"
 then restart

STATUS option can be used to explicitly test the HTTP status code returned by the HTTP
server. If not used, the HTTP protocol test will fail if the status code returned is greater
than or equal to 400. You can override this behaviour by using the status qualifier.

For example to test that a page does not exist (the HTTP server should return 404 in this
case):

 if failed
 port 80
 protocol http
 request "/non/existent.php"
 status = 404
 then alert

CHECKSUM You can test the checksum of documents returned by a HTTP server. Either
MD5 or SHA1 hash can be used. Monit will not test the checksum for a document if the
server does not set the HTTP Content-Length header. A HTTP server should set this
header when it server a static document (i.e. a file). There are no limitation on the
document size, but keep in mind that Monit will use time to download the document
over the network to compute the checksum.

Example:

 if failed
 port 80
 protocol http
 request "/page.html"
 checksum 8f7f419955cefa0b33a2ba316cba3659
 then alert

HTTP HEADERS can be used to send a list of any HTTP headers with a HTTP protocol test.
For instance, the host header. If the host header is not set, Monit will use the hostname
or IP-address of the host as specified in the check host statement. Specifying a host
header is useful if you want to connect to and test a name-based virtual host. The
syntax for setting HTTP headers is

23.02.16 22:12Monit 5.16

Seite 49 von 59https://www.mmonit.com/monit/documentation/monit.html

 http headers [name:value, name:value,..]

where each name:value pair is separated with ','. If you need to use ':' in the value string,
for instance to set port number for a host header, you must enclose the value in quotes.
For example,

 http headers [Host: "mmonit.com:443"]

In a check host context, using this statement might look like

 check host mmonit.com with address mmonit.com
 if failed
 port 80 protocol http
 with http headers [Host: mmonit.com, Cache-Control: no-cache,
 Cookie: csrftoken=nj1bI3CnMCaiNv4beqo8ZaCfAQQvpgLH]
 and request /monit/ with content = "Monit [0-9.]+"
 then alert

Setting HTTP headers is associated with the HTTP protocol test and must come before
request as in the example above.

CONTENT option sets the pattern which is expected in the data returned by the server. If
the pattern doesn't match, event is triggered.

By default at maximum 1MB is inspected. You can increase the limit using the set limits
statement.

For example:

 if failed
 port 80
 protocol http
 content = "foobar [0-9.]+"
 then alert

APACHE-STATUS

The APACHE-STATUS test allows to check server performance by examination of the
status page generated by Apache's mod_status, which is expected to be at its default
address of http://www.example.com/server-status.

Syntax:

 PROTOCOL APACHE-STATUS [PATH <path>] [<property> <operator> <number>]+

path is an optional path to apache status ("/server-status" by default)

property is acronym for child status:

 (1) logging (loglimit)
 (2) closing connections (closelimit)
 (3) performing DNS lookups (dnslimit)
 (4) in keepalive with a client (keepalivelimit)
 (5) replying to a client (replylimit)

https://www.mmonit.com/monit/documentation/monit.html#LIMITS

23.02.16 22:12Monit 5.16

Seite 50 von 59https://www.mmonit.com/monit/documentation/monit.html

 (6) receiving a request (requestlimit)
 (7) initialising (startlimit)
 (8) waiting for incoming connections (waitlimit)
 (9) gracefully closing down (gracefullimit)
 (10) performing cleanup procedures (cleanuplimit)

operator is one of "<", "=", ">".

number is percentile numeric limit.

Each of these limits can be compared against a value relative to the total number of
active Apache child processes.

You can combine all of these tests into one expression or you can choose to test a
certain limit only. If you combine the limits you must connect them together using the
OR keyword.

Example:

 if failed port 80 protocol apache-status
 loglimit > 10% or
 dnslimit > 50% or
 waitlimit < 20%
 then alert

SIP

The SIP protocol is used by communication platform servers such as Asterisk and
FreeSWITCH.

Syntax:

 PROTOCOL SIP [TARGET valid@uri] [MAXFORWARD n]

TARGET you may specify an alternative recipient for the message, by adding a valid sip
uri after this keyword.

MAXFORWARD Limit the number of proxies or gateways that can forward the request to
the next server. It's value is an integer in the range 0-255, set by default to 70. If max-
forward = 0, the next server may respond 200 OK (test succeeded) or send a 483 Too
Many Hops (test failed)

For example:

 check host openser_all with address 127.0.0.1
 if failed
 port 5060 type udp protocol sip
 with target "localhost:5060" and maxforward 6
 then alert

RADIUS

Syntax:

23.02.16 22:12Monit 5.16

Seite 51 von 59https://www.mmonit.com/monit/documentation/monit.html

 PROTOCOL RADIUS [SECRET string]

SECRET you may specify an alternative secret, default is "testing123".

For example:

 check process radiusd with pidfile /var/run/radiusd.pid
 start program = "/etc/init.d/freeradius start"
 stop program = "/etc/init.d/freeradius stop"
 if failed
 host 127.0.0.1 port 1812 type udp protocol radius
 secret pingpong
 then alert

MYSQL

Syntax:

 PROTOCOL MYSQL [USERNAME string PASSWORD string]

USERNAME MySQL username (maximum 16 characters).

PASSWORD MySQL password (special characters can be used, but for non-alphanumerics
the password has to be quoted).

The credentials are optional. If no credentials are set, Monit will perform the test using
anonymous login. That may cause authentication error to be logged in your MySQL log
for higher MySQL log levels.

If credentials are set, Monit will login and perform MySQL ping. Monit doesn't require any
database privileges, it needs just database user, we recommend to create standalone
user for Monit testing, for example:

 CREATE USER 'monit'@'host_from_which_monit_performs_testing' IDENTIFIED BY 'mysecretpassword';
 FLUSH PRIVILEGES;

For example:

 check process mysql with pidfile /var/run/mysqld/mysqld.pid
 start program = "/sbin/start mysql"
 stop program = "/sbin/stop mysql"
 if failed
 port 3306
 protocol mysql username "foo" password "bar"
 then alert

or with unix-socket and OS X start/stop commands

 check process mysql with pidfile /var/run/mysqld/mysqld.pid
 start program = "/usr/local/mysql/support-files/mysql.server start"
 stop program = "/usr/local/mysql/support-files/mysql.server stop"
 if failed
 unixsocket /tmp/mysql.sock
 protocol mysql username "foo" password "bar"

23.02.16 22:12Monit 5.16

Seite 52 von 59https://www.mmonit.com/monit/documentation/monit.html

 then alert

WEBSOCKET

Syntax:

 PROTOCOL WEBSOCKET
 [REQUEST string]
 [HOST string]
 [ORIGIN string]
 [VERSION number]

HOST you may specify an alternative Host header

REQUEST you may specify an alternative request, default is "/"

ORIGIN you may specify an alternative origin, default is "http://www.mmonit.com"

VERSION you may specify an alternative version, default is "0"

For example:

 check host websocket.org with address "echo.websocket.org"
 if failed
 port 80 protocol websocket
 host "echo.websocket.org"
 request "/"
 origin 'http://websocket.com'
 version 13
 then alert

CONFIGURATION EXAMPLES
The simplest form is just the check statement. In this example we check to see if our
web server is running and log a message if not:

 check process nginx with pidfile /var/run/nginx.pid

To have Monit start the server if it's not running, add a start statement:

 check process nginx with pidfile /var/run/nginx.pid
 start program = "/etc/init.d/nginx start"

Here's a more advanced example for monitoring an apache web-server listening on the
default port number for HTTP and HTTPS. In this example Monit will restart apache if it's
not accepting connections at the port numbers. The method Monit use for restart is to
first execute the stop-program, then wait (up to 30s) for the process to stop and then
execute the start-program and wait (30s) for it to start. The length of start or stop wait
can be overridden using the 'timeout' option. If Monit was unable to stop or start the
service a failed alert message will be sent if you have requested alert messages to be
sent.

23.02.16 22:12Monit 5.16

Seite 53 von 59https://www.mmonit.com/monit/documentation/monit.html

 check process apache with pidfile /var/run/httpd.pid
 start program = "/etc/init.d/httpd start" with timeout 60 seconds
 stop program = "/etc/init.d/httpd stop"
 if failed port 80 for 2 cycles then restart
 if failed port 443 for 2 cycles then restart

This example demonstrate how you can run a program as a specified user (uid) and with
a specified group (gid). Many daemon programs can do the uid and gid switch by
themselves, but for those programs that does not (e.g. Java programs), monit's ability to
start a program as a certain user can be very useful. In this example we start the Tomcat
Java Servlet Engine as the standard nobody user and group. Please note that Monit can
only switch uid and gid for the program if the super-user is running Monit, otherwise
Monit will simply ignore the request to change uid and gid.

 check process tomcat with pidfile /var/run/tomcat.pid
 start program = "/etc/init.d/tomcat start"
 as uid nobody and gid nobody
 stop program = "/etc/init.d/tomcat stop"
 # You can also use id numbers instead and write:
 as uid 99 and with gid 99
 if failed port 8080 then alert

In this example we use udp for connection testing to check if the name-server is
running:

 check process named with pidfile /var/run/named.pid
 start program = "/etc/init.d/named start"
 stop program = "/etc/init.d/named stop"
 if failed port 53 use type udp protocol dns then restart

The following example illustrates how to check if the service 'sophie' is answering
connections on its Unix domain socket:

 check process sophie with pidfile /var/run/sophie.pid
 start program = "/etc/init.d/sophie start"
 stop program = "/etc/init.d/sophie stop"
 if failed unix /var/run/sophie then restart

In this example we check an apache web-server running on localhost which answers for
several IP-based virtual hosts or vhosts, hence the host statement before port:

 check process apache with pidfile /var/run/httpd.pid
 start "/etc/init.d/httpd start"
 stop "/etc/init.d/httpd stop"
 if failed host www.sol.no port 80 then alert
 if failed host shop.sol.no port 443 then alert
 if failed host chat.sol.no port 80 then alert

To make sure that Monit is communicating with a HTTP server a protocol test can be
added:

 check process apache with pidfile /var/run/httpd.pid

23.02.16 22:12Monit 5.16

Seite 54 von 59https://www.mmonit.com/monit/documentation/monit.html

 start "/etc/init.d/httpd start"
 stop "/etc/init.d/httpd stop"
 if failed
 host www.sol.no port 80 protocol http
 then alert

This example demonstrate a different way to check a web-server using the send/expect
mechanism:

 check process apache with pidfile /var/run/httpd.pid
 start "/etc/init.d/httpd start"
 stop "/etc/init.d/httpd stop"
 if failed
 host www.sol.no port 80 and
 send "GET / HTTP/1.1\r\nHost: www.sol.no\r\n\r\n"
 expect "HTTP/[0-9\.]{3} 200.*"
 then alert

Here we ping a remote host to check if it is up and if not, send an alert:

 check host www.tildeslash.com with address www.tildeslash.com
 if failed ping then alert

In the following example we ask Monit to compute and verify the checksum for the
underlying apache binary used by the start and stop programs. If the checksum test
should fail, monitoring will be disabled to prevent possibly restarting a compromised
binary:

 check process apache with pidfile /var/run/httpd.pid
 start program = "/etc/init.d/httpd start"
 stop program = "/etc/init.d/httpd stop"
 if failed host www.tildeslash.com port 80 then restart
 depends on apache_bin

 check file apache_bin with path /usr/local/apache/bin/httpd
 if failed checksum then unmonitor

In this example we ask Monit to test a document's checksum on a remote server. If the
checksum was changed we send an alert:

 check host mmonit.com with address mmonit.com
 if failed
 port 80 protocol http and
 request "/monit/dist/monit-5.7.tar.gz"
 with checksum f9d26b8393736b5dfad837bb13780786
 then alert

Here are a couple of tests for some popular communication servers, using the SIP
protocol. First we test a FreeSWITCH server and then an Asterisk server

 check process freeswitch
 with pidfile /usr/local/freeswitch/log/freeswitch.pid

23.02.16 22:12Monit 5.16

Seite 55 von 59https://www.mmonit.com/monit/documentation/monit.html

 start program = "/usr/local/freeswitch/bin/freeswitch -nc -hp"
 stop program = "/usr/local/freeswitch/bin/freeswitch -stop"
 if total memory > 1000.0 MB for 5 cycles then alert
 if total memory > 1500.0 MB for 5 cycles then alert
 if total memory > 2000.0 MB for 5 cycles then restart
 if cpu > 60% for 5 cycles then alert
 if failed
 port 5060 type udp protocol SIP
 target me@foo.bar and maxforward 10
 then restart

 check process asterisk
 with pidfile /var/run/asterisk/asterisk.pid
 start program = "/usr/sbin/asterisk"
 stop program = "/usr/sbin/asterisk -r -x 'shutdown now'"
 if total memory > 1000.0 MB for 5 cycles then alert
 if total memory > 1500.0 MB for 5 cycles then alert
 if total memory > 2000.0 MB for 5 cycles then restart
 if cpu > 60% for 5 cycles then alert
 if failed
 port 5060 type udp protocol SIP
 and target me@foo.bar maxforward 10
 then restart

Some servers are slow starters, like for example Java based Application Servers. If we
want to keep the poll-cycle low (i.e. < 60 seconds) but allow some services to take its
time to start, the every statement is handy:

 check process dynamo with pidfile /etc/dynamo.pid every 2 cycles
 start program = "/etc/init.d/dynamo start"
 stop program = "/etc/init.d/dynamo stop"
 if failed port 8840 then alert

Here is an example where we group together two database entries so you can manage
them together, e.g.; 'Monit -g database start all'. The mode statement is also illustrated
in the first entry and have the effect that Monit will not try to (re)start this service if it is
not running:

 check process sybase with pidfile /var/run/sybase.pid
 start = "/etc/init.d/sybase start"
 stop = "/etc/init.d/sybase stop"
 mode passive
 group database

 check process oracle with pidfile /var/run/oracle.pid
 start program = "/etc/init.d/oracle start"
 stop program = "/etc/init.d/oracle stop"
 if failed
 port 9001 protocol tns
 then restart

23.02.16 22:12Monit 5.16

Seite 56 von 59https://www.mmonit.com/monit/documentation/monit.html

 group database

This resource checks example will send an alert if CPU usage of the Apache's HTTP
daemon and its child processes goes beyond 60% for two cycles. Apache is restarted if
the CPU usage is over 80% for five cycles or the memory usage is over 100Mb for five
cycles or if the machines load average is more than 10 for 8 cycles:

 check process apache with pidfile /var/run/httpd.pid
 start program = "/etc/init.d/httpd start"
 stop program = "/etc/init.d/httpd stop"
 if cpu > 40% for 2 cycles then alert
 if total cpu > 60% for 2 cycles then alert
 if total cpu > 80% for 5 cycles then restart
 if mem > 100 MB for 5 cycles then stop
 if loadavg(5min) greater than 10.0 for 8 cycles then stop

This examples demonstrate the timestamp statement with exec and how you may restart
apache if its configuration file was changed.

 check file httpd.conf with path /etc/httpd/httpd.conf
 if changed timestamp
 then exec "/etc/init.d/httpd graceful"

In this example we demonstrate usage of the extended alert statement and a file check
dependency:

 check process apache with pidfile /var/run/httpd.pid
 start = "/etc/init.d/httpd start"
 stop = "/etc/init.d/httpd stop"
 alert admin@bar on {nonexist, timeout}
 with mail-format {
 from: bofh@$HOST
 subject: apache $EVENT - $ACTION
 message: This event occurred on $HOST at $DATE.
 Your faithful employee,
 monit
 }
 if failed host www.tildeslash.com port 80 then restart
 depend httpd_bin
 group apache

 check file httpd_bin with path /usr/local/apache/bin/httpd
 alert security@bar on {checksum, timestamp,
 permission, uid, gid}
 with mail-format {subject: Alaaarrm! on $HOST}
 if failed checksum
 and expect 8f7f419955cefa0b33a2ba316cba3659
 then unmonitor
 if failed permission 755 then unmonitor
 if failed uid root then unmonitor
 if failed gid root then unmonitor

23.02.16 22:12Monit 5.16

Seite 57 von 59https://www.mmonit.com/monit/documentation/monit.html

 if changed timestamp then alert
 group apache

In this example, we demonstrate usage of the depend statement. In this case, we want to
start oracle and apache. However, we've set up apache to use oracle as a back end, and if
oracle is restarted, apache must be restarted as well.

 check process apache with pidfile /var/run/httpd.pid
 start = "/etc/init.d/httpd start"
 stop = "/etc/init.d/httpd stop"
 depends on oracle

 check process oracle with pidfile /var/run/oracle.pid
 start = "/etc/init.d/oracle start"
 stop = "/etc/init.d/oracle stop"
 if failed port 9001 for 5 cycles then restart

Next, we have 2 services, oracle-import and oracle-export that need to be restarted if
oracle is restarted, but are independent of each other.

 check process oracle with pidfile /var/run/oracle.pid
 start = "/etc/init.d/oracle start"
 stop = "/etc/init.d/oracle stop"
 if failed port 9001 for 3 cycles then restart

 check process oracle-import
 with pidfile /var/run/oracle-import.pid
 start = "/etc/init.d/oracle-import start"
 stop = "/etc/init.d/oracle-import stop"
 depends on oracle

 check process oracle-export
 with pidfile /var/run/oracle-export.pid
 start = "/etc/init.d/oracle-export start"
 stop = "/etc/init.d/oracle-export stop"
 depends on oracle

FILES
~/.monitrc Default run control file

/etc/monitrc If the control file is not found in the default location and /etc contains a
monitrc file, this file will be used instead.

./monitrc If the control file is not found in either of the previous two locations, and the
current working directory contains a monitrc file, this file is used instead.

~/.monit.pid Lock file to help prevent concurrent runs (non-root mode).

/run/monit.pid Lock file to help prevent concurrent runs (root mode, Linux systems, if

23.02.16 22:12Monit 5.16

Seite 58 von 59https://www.mmonit.com/monit/documentation/monit.html

/run directory is available).

/var/run/monit.pid Lock file to help prevent concurrent runs (root mode, Linux systems).

/etc/monit.pid Lock file to help prevent concurrent runs (root mode, systems without
/var/run).

~/.monit.state Monit saves its state to this file and utilises information found in this file
to recover from a crash. This is a binary file and its content is only of interest to monit.
You may set the location of this file in the Monit control file or by using the -s switch
when Monit is started.

~/.monit.id Monit save its unique id to this file.

ENVIRONMENT
No environment variables are used by Monit. However, when Monit execute a script or a
program Monit will set several environment variables which can be utilised by the
executable. The following and only the following environment variables are available:

MONIT_EVENT

The event that occurred on the service

MONIT_DESCRIPTION

A description of the error condition

MONIT_SERVICE

The name of the service (from monitrc) on which the event occurred.

MONIT_DATE

The time and date (RFC 822 style) the event occurred

MONIT_HOST

The host the event occurred on

The following environment variables are only available for process service entries:

MONIT_PROCESS_PID

The process pid. This may be 0 if the process was (re)started,

MONIT_PROCESS_MEMORY

Process memory. This may be 0 if the process was (re)started,

MONIT_PROCESS_CHILDREN

Process children. This may be 0 if the process was (re)started,

MONIT_PROCESS_CPU_PERCENT

23.02.16 22:12Monit 5.16

Seite 59 von 59https://www.mmonit.com/monit/documentation/monit.html

Process cpu%. This may be 0 if the process was (re)started,

SIGNALS
If a Monit daemon is running, SIGUSR1 wakes it up from its sleep phase and forces a poll
of all services. SIGTERM and SIGINT will gracefully terminate a Monit daemon. The
SIGTERM signal is sent to a Monit daemon if Monit is started with the quit action
argument.

Sending a SIGHUP signal to a running Monit daemon will force the daemon to reinitialise
itself, specifically it will reread configuration, close and reopen log files.

Running Monit in foreground while a background Monit daemon is running will wake up
the daemon.

NOTES
This is a very silent program. Use the -v switch if you want to see what Monit is doing,
and tail -f the log file. Optionally for testing purposes; you can start Monit with the -Iv
switch. Monit will then print debug information to the console, to stop monit in this
mode, simply press CTRL^C (i.e. SIGINT) in the same console.

The syntax (and parser) of the control file was inspired by Eric S. Raymond et al.'s
excellent fetchmail program. Some portions of this man page also receive inspiration
from the same authors.

COPYRIGHT
Copyright (C) 2001-2016 by Tildeslash Ltd. All Rights Reserved. This product is
distributed in the hope that it will be useful, but WITHOUT any warranty; without even
the implied warranty of MERCHANTABILITY or FITNESS for a particular purpose.

SEE ALSO
GNU text utilities; md5sum(1); sha1sum(1); openssl(1); glob(7); regex(7)

BACK TO MONIT

http://mmonit.com/monit/

