qemu-arm
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[PATCH 14/21] target/arm/kvm: Merge kvm64.c into kvm.c


From: Richard Henderson
Subject: [PATCH 14/21] target/arm/kvm: Merge kvm64.c into kvm.c
Date: Wed, 22 Nov 2023 22:42:12 -0600

Since kvm32.c was removed, there is no need to keep them separate.
This will allow more symbols to be unexported.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
---
 target/arm/kvm.c       | 789 +++++++++++++++++++++++++++++++++++++++
 target/arm/kvm64.c     | 820 -----------------------------------------
 target/arm/meson.build |   2 +-
 3 files changed, 790 insertions(+), 821 deletions(-)
 delete mode 100644 target/arm/kvm64.c

diff --git a/target/arm/kvm.c b/target/arm/kvm.c
index 9bca6baf35..466b848156 100644
--- a/target/arm/kvm.c
+++ b/target/arm/kvm.c
@@ -19,6 +19,7 @@
 #include "qom/object.h"
 #include "qapi/error.h"
 #include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
 #include "sysemu/kvm.h"
 #include "sysemu/kvm_int.h"
 #include "kvm_arm.h"
@@ -28,10 +29,13 @@
 #include "hw/pci/pci.h"
 #include "exec/memattrs.h"
 #include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
 #include "hw/boards.h"
 #include "hw/irq.h"
 #include "qapi/visitor.h"
 #include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
 
 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     KVM_CAP_LAST_INFO
@@ -1614,3 +1618,788 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
     object_class_property_set_description(oc, "eager-split-size",
         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
 }
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return insert_hw_breakpoint(addr);
+        break;
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return insert_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return delete_hw_breakpoint(addr);
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return delete_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    if (cur_hw_wps > 0) {
+        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+    }
+    if (cur_hw_bps > 0) {
+        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+    }
+}
+
+static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
+                                    const char *name)
+{
+    int err;
+
+    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    return true;
+}
+
+void kvm_arm_pmu_init(CPUState *cs)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+    };
+
+    if (!ARM_CPU(cs)->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
+        error_report("failed to init PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .addr = (intptr_t)&irq,
+        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+    };
+
+    if (!ARM_CPU(cs)->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
+        error_report("failed to set irq for PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PVTIME_CTRL,
+        .attr = KVM_ARM_VCPU_PVTIME_IPA,
+        .addr = (uint64_t)&ipa,
+    };
+
+    if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
+        error_report("failed to init PVTIME IPA");
+        abort();
+    }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+        } else {
+            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+        }
+    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+        if (!has_steal_time) {
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "on this host");
+            return;
+        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            /*
+             * DEN0057A chapter 2 says "This specification only covers
+             * systems in which the Execution state of the hypervisor
+             * as well as EL1 of virtual machines is AArch64.". And,
+             * to ensure that, the smc/hvc calls are only specified as
+             * smc64/hvc64.
+             */
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "for AArch32 guests");
+            return;
+        }
+    }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(CPUState *cs)
+{
+    /* Only call this function if kvm_arm_sve_supported() returns true. */
+    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+    static bool probed;
+    uint32_t vq = 0;
+    int i;
+
+    /*
+     * KVM ensures all host CPUs support the same set of vector lengths.
+     * So we only need to create the scratch VCPUs once and then cache
+     * the results.
+     */
+    if (!probed) {
+        struct kvm_vcpu_init init = {
+            .target = -1,
+            .features[0] = (1 << KVM_ARM_VCPU_SVE),
+        };
+        struct kvm_one_reg reg = {
+            .id = KVM_REG_ARM64_SVE_VLS,
+            .addr = (uint64_t)&vls[0],
+        };
+        int fdarray[3], ret;
+
+        probed = true;
+
+        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+            error_report("failed to create scratch VCPU with SVE enabled");
+            abort();
+        }
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+        kvm_arm_destroy_scratch_host_vcpu(fdarray);
+        if (ret) {
+            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+                         strerror(errno));
+            abort();
+        }
+
+        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+            if (vls[i]) {
+                vq = 64 - clz64(vls[i]) + i * 64;
+                break;
+            }
+        }
+        if (vq > ARM_MAX_VQ) {
+            warn_report("KVM supports vector lengths larger than "
+                        "QEMU can enable");
+            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+        }
+    }
+
+    return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+    return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t psciver;
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        error_report("KVM is not supported for this guest CPU type");
+        return -EINVAL;
+    }
+
+    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cs->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+        cpu->has_pmu = false;
+    }
+    if (cpu->has_pmu) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+    } else {
+        env->features &= ~(1ULL << ARM_FEATURE_PMU);
+    }
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        assert(kvm_arm_sve_supported());
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+    if (cpu_isar_feature(aa64_pauth, cpu)) {
+        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cs);
+    if (ret) {
+        return ret;
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arm_sve_set_vls(cs);
+        if (ret) {
+            return ret;
+        }
+        ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /*
+     * KVM reports the exact PSCI version it is implementing via a
+     * special sysreg. If it is present, use its contents to determine
+     * what to report to the guest in the dtb (it is the PSCI version,
+     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+     * returns).
+     */
+    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+        cpu->psci_version = psciver;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+    /* Check whether user space can specify guest syndrome value */
+    kvm_arm_init_serror_injection(cs);
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+    return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+    ARMCPU *cpu = ARM_CPU(c);
+    CPUARMState *env = &cpu->env;
+    uint32_t esr;
+    bool same_el;
+
+    c->exception_index = EXCP_DATA_ABORT;
+    env->exception.target_el = 1;
+
+    /*
+     * Set the DFSC to synchronous external abort and set FnV to not valid,
+     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+     */
+    same_el = arm_current_el(env) == env->exception.target_el;
+    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+    env->exception.syndrome = esr;
+
+    arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+        uint64_t fp_val[2] = { q[1], q[0] };
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+                                                        fp_val);
+#else
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+        if (ret) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    uint64_t val;
+    uint32_t fpr;
+    int i, ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpsr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    write_cpustate_to_list(cpu, true);
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return -EINVAL;
+    }
+
+   /*
+    * Setting VCPU events should be triggered after syncing the registers
+    * to avoid overwriting potential changes made by KVM upon calling
+    * KVM_SET_VCPU_EVENTS ioctl
+    */
+    ret = kvm_put_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    kvm_arm_sync_mpstate_to_kvm(cpu);
+
+    return ret;
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+        if (ret) {
+            return ret;
+        } else {
+#if HOST_BIG_ENDIAN
+            uint64_t t;
+            t = q[0], q[0] = q[1], q[1] = t;
+#endif
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+    return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    uint64_t val;
+    unsigned int el;
+    uint32_t fpr;
+    int i, ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    ret = kvm_get_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return -EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+    ram_addr_t ram_addr;
+    hwaddr paddr;
+
+    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+    if (acpi_ghes_present() && addr) {
+        ram_addr = qemu_ram_addr_from_host(addr);
+        if (ram_addr != RAM_ADDR_INVALID &&
+            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+            kvm_hwpoison_page_add(ram_addr);
+            /*
+             * If this is a BUS_MCEERR_AR, we know we have been called
+             * synchronously from the vCPU thread, so we can easily
+             * synchronize the state and inject an error.
+             *
+             * TODO: we currently don't tell the guest at all about
+             * BUS_MCEERR_AO. In that case we might either be being
+             * called synchronously from the vCPU thread, or a bit
+             * later from the main thread, so doing the injection of
+             * the error would be more complicated.
+             */
+            if (code == BUS_MCEERR_AR) {
+                kvm_cpu_synchronize_state(c);
+                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+                    kvm_inject_arm_sea(c);
+                } else {
+                    error_report("failed to record the error");
+                    abort();
+                }
+            }
+            return;
+        }
+        if (code == BUS_MCEERR_AO) {
+            error_report("Hardware memory error at addr %p for memory used by "
+                "QEMU itself instead of guest system!", addr);
+        }
+    }
+
+    if (code == BUS_MCEERR_AR) {
+        error_report("Hardware memory error!");
+        exit(1);
+    }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    static uint32_t brk;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+        brk != brk_insn ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
deleted file mode 100644
index 52c0a6d3af..0000000000
--- a/target/arm/kvm64.c
+++ /dev/null
@@ -1,820 +0,0 @@
-/*
- * ARM implementation of KVM hooks, 64 bit specific code
- *
- * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
- * Copyright Alex Bennée 2014, Linaro
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
-
-#include "qemu/osdep.h"
-#include <sys/ioctl.h>
-#include <sys/ptrace.h>
-
-#include <linux/elf.h>
-#include <linux/kvm.h>
-
-#include "qapi/error.h"
-#include "cpu.h"
-#include "qemu/timer.h"
-#include "qemu/error-report.h"
-#include "qemu/host-utils.h"
-#include "qemu/main-loop.h"
-#include "exec/gdbstub.h"
-#include "sysemu/runstate.h"
-#include "sysemu/kvm.h"
-#include "sysemu/kvm_int.h"
-#include "kvm_arm.h"
-#include "internals.h"
-#include "cpu-features.h"
-#include "hw/acpi/acpi.h"
-#include "hw/acpi/ghes.h"
-
-
-int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
-    switch (type) {
-    case GDB_BREAKPOINT_HW:
-        return insert_hw_breakpoint(addr);
-        break;
-    case GDB_WATCHPOINT_READ:
-    case GDB_WATCHPOINT_WRITE:
-    case GDB_WATCHPOINT_ACCESS:
-        return insert_hw_watchpoint(addr, len, type);
-    default:
-        return -ENOSYS;
-    }
-}
-
-int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
-    switch (type) {
-    case GDB_BREAKPOINT_HW:
-        return delete_hw_breakpoint(addr);
-    case GDB_WATCHPOINT_READ:
-    case GDB_WATCHPOINT_WRITE:
-    case GDB_WATCHPOINT_ACCESS:
-        return delete_hw_watchpoint(addr, len, type);
-    default:
-        return -ENOSYS;
-    }
-}
-
-
-void kvm_arch_remove_all_hw_breakpoints(void)
-{
-    if (cur_hw_wps > 0) {
-        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
-    }
-    if (cur_hw_bps > 0) {
-        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
-    }
-}
-
-static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
-                                    const char *name)
-{
-    int err;
-
-    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
-    if (err != 0) {
-        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
-        return false;
-    }
-
-    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
-    if (err != 0) {
-        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
-        return false;
-    }
-
-    return true;
-}
-
-void kvm_arm_pmu_init(CPUState *cs)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
-        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
-    };
-
-    if (!ARM_CPU(cs)->has_pmu) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
-        error_report("failed to init PMU");
-        abort();
-    }
-}
-
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
-        .addr = (intptr_t)&irq,
-        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
-    };
-
-    if (!ARM_CPU(cs)->has_pmu) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
-        error_report("failed to set irq for PMU");
-        abort();
-    }
-}
-
-void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PVTIME_CTRL,
-        .attr = KVM_ARM_VCPU_PVTIME_IPA,
-        .addr = (uint64_t)&ipa,
-    };
-
-    if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
-        error_report("failed to init PVTIME IPA");
-        abort();
-    }
-}
-
-void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
-{
-    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
-
-    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
-        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
-        } else {
-            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
-        }
-    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
-        if (!has_steal_time) {
-            error_setg(errp, "'kvm-steal-time' cannot be enabled "
-                             "on this host");
-            return;
-        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-            /*
-             * DEN0057A chapter 2 says "This specification only covers
-             * systems in which the Execution state of the hypervisor
-             * as well as EL1 of virtual machines is AArch64.". And,
-             * to ensure that, the smc/hvc calls are only specified as
-             * smc64/hvc64.
-             */
-            error_setg(errp, "'kvm-steal-time' cannot be enabled "
-                             "for AArch32 guests");
-            return;
-        }
-    }
-}
-
-bool kvm_arm_aarch32_supported(void)
-{
-    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
-}
-
-bool kvm_arm_sve_supported(void)
-{
-    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
-}
-
-QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
-
-uint32_t kvm_arm_sve_get_vls(CPUState *cs)
-{
-    /* Only call this function if kvm_arm_sve_supported() returns true. */
-    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
-    static bool probed;
-    uint32_t vq = 0;
-    int i;
-
-    /*
-     * KVM ensures all host CPUs support the same set of vector lengths.
-     * So we only need to create the scratch VCPUs once and then cache
-     * the results.
-     */
-    if (!probed) {
-        struct kvm_vcpu_init init = {
-            .target = -1,
-            .features[0] = (1 << KVM_ARM_VCPU_SVE),
-        };
-        struct kvm_one_reg reg = {
-            .id = KVM_REG_ARM64_SVE_VLS,
-            .addr = (uint64_t)&vls[0],
-        };
-        int fdarray[3], ret;
-
-        probed = true;
-
-        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
-            error_report("failed to create scratch VCPU with SVE enabled");
-            abort();
-        }
-        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
-        kvm_arm_destroy_scratch_host_vcpu(fdarray);
-        if (ret) {
-            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
-                         strerror(errno));
-            abort();
-        }
-
-        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
-            if (vls[i]) {
-                vq = 64 - clz64(vls[i]) + i * 64;
-                break;
-            }
-        }
-        if (vq > ARM_MAX_VQ) {
-            warn_report("KVM supports vector lengths larger than "
-                        "QEMU can enable");
-            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
-        }
-    }
-
-    return vls[0];
-}
-
-static int kvm_arm_sve_set_vls(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
-
-    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
-
-    return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
-}
-
-#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
-
-int kvm_arch_init_vcpu(CPUState *cs)
-{
-    int ret;
-    uint64_t mpidr;
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t psciver;
-
-    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
-        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
-        error_report("KVM is not supported for this guest CPU type");
-        return -EINVAL;
-    }
-
-    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
-
-    /* Determine init features for this CPU */
-    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
-    if (cs->start_powered_off) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
-    }
-    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
-        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
-    }
-    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
-    }
-    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
-        cpu->has_pmu = false;
-    }
-    if (cpu->has_pmu) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
-    } else {
-        env->features &= ~(1ULL << ARM_FEATURE_PMU);
-    }
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        assert(kvm_arm_sve_supported());
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
-    }
-    if (cpu_isar_feature(aa64_pauth, cpu)) {
-        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
-                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
-    }
-
-    /* Do KVM_ARM_VCPU_INIT ioctl */
-    ret = kvm_arm_vcpu_init(cs);
-    if (ret) {
-        return ret;
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arm_sve_set_vls(cs);
-        if (ret) {
-            return ret;
-        }
-        ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    /*
-     * KVM reports the exact PSCI version it is implementing via a
-     * special sysreg. If it is present, use its contents to determine
-     * what to report to the guest in the dtb (it is the PSCI version,
-     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
-     * returns).
-     */
-    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
-        cpu->psci_version = psciver;
-    }
-
-    /*
-     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
-     * Currently KVM has its own idea about MPIDR assignment, so we
-     * override our defaults with what we get from KVM.
-     */
-    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
-    if (ret) {
-        return ret;
-    }
-    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
-
-    /* Check whether user space can specify guest syndrome value */
-    kvm_arm_init_serror_injection(cs);
-
-    return kvm_arm_init_cpreg_list(cpu);
-}
-
-int kvm_arch_destroy_vcpu(CPUState *cs)
-{
-    return 0;
-}
-
-/* Callers must hold the iothread mutex lock */
-static void kvm_inject_arm_sea(CPUState *c)
-{
-    ARMCPU *cpu = ARM_CPU(c);
-    CPUARMState *env = &cpu->env;
-    uint32_t esr;
-    bool same_el;
-
-    c->exception_index = EXCP_DATA_ABORT;
-    env->exception.target_el = 1;
-
-    /*
-     * Set the DFSC to synchronous external abort and set FnV to not valid,
-     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
-     */
-    same_el = arm_current_el(env) == env->exception.target_el;
-    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
-
-    env->exception.syndrome = esr;
-
-    arm_cpu_do_interrupt(c);
-}
-
-#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-static int kvm_arch_put_fpsimd(CPUState *cs)
-{
-    CPUARMState *env = &ARM_CPU(cs)->env;
-    int i, ret;
-
-    for (i = 0; i < 32; i++) {
-        uint64_t *q = aa64_vfp_qreg(env, i);
-#if HOST_BIG_ENDIAN
-        uint64_t fp_val[2] = { q[1], q[0] };
-        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
-                                                        fp_val);
-#else
-        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
-#endif
-        if (ret) {
-            return ret;
-        }
-    }
-
-    return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_put_sve(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t tmp[ARM_MAX_VQ * 2];
-    uint64_t *r;
-    int n, ret;
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
-        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
-        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
-        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
-                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
-                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
-    if (ret) {
-        return ret;
-    }
-
-    return 0;
-}
-
-int kvm_arch_put_registers(CPUState *cs, int level)
-{
-    uint64_t val;
-    uint32_t fpr;
-    int i, ret;
-    unsigned int el;
-
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-
-    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
-     * AArch64 registers before pushing them out to 64-bit KVM.
-     */
-    if (!is_a64(env)) {
-        aarch64_sync_32_to_64(env);
-    }
-
-    for (i = 0; i < 31; i++) {
-        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
-                              &env->xregs[i]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
-     * QEMU side we keep the current SP in xregs[31] as well.
-     */
-    aarch64_save_sp(env, 1);
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
-    if (is_a64(env)) {
-        val = pstate_read(env);
-    } else {
-        val = cpsr_read(env);
-    }
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Saved Program State Registers
-     *
-     * Before we restore from the banked_spsr[] array we need to
-     * ensure that any modifications to env->spsr are correctly
-     * reflected in the banks.
-     */
-    el = arm_current_el(env);
-    if (el > 0 && !is_a64(env)) {
-        i = bank_number(env->uncached_cpsr & CPSR_M);
-        env->banked_spsr[i] = env->spsr;
-    }
-
-    /* KVM 0-4 map to QEMU banks 1-5 */
-    for (i = 0; i < KVM_NR_SPSR; i++) {
-        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
-                              &env->banked_spsr[i + 1]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arch_put_sve(cs);
-    } else {
-        ret = kvm_arch_put_fpsimd(cs);
-    }
-    if (ret) {
-        return ret;
-    }
-
-    fpr = vfp_get_fpsr(env);
-    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
-    if (ret) {
-        return ret;
-    }
-
-    fpr = vfp_get_fpcr(env);
-    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
-    if (ret) {
-        return ret;
-    }
-
-    write_cpustate_to_list(cpu, true);
-
-    if (!write_list_to_kvmstate(cpu, level)) {
-        return -EINVAL;
-    }
-
-   /*
-    * Setting VCPU events should be triggered after syncing the registers
-    * to avoid overwriting potential changes made by KVM upon calling
-    * KVM_SET_VCPU_EVENTS ioctl
-    */
-    ret = kvm_put_vcpu_events(cpu);
-    if (ret) {
-        return ret;
-    }
-
-    kvm_arm_sync_mpstate_to_kvm(cpu);
-
-    return ret;
-}
-
-static int kvm_arch_get_fpsimd(CPUState *cs)
-{
-    CPUARMState *env = &ARM_CPU(cs)->env;
-    int i, ret;
-
-    for (i = 0; i < 32; i++) {
-        uint64_t *q = aa64_vfp_qreg(env, i);
-        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
-        if (ret) {
-            return ret;
-        } else {
-#if HOST_BIG_ENDIAN
-            uint64_t t;
-            t = q[0], q[0] = q[1], q[1] = t;
-#endif
-        }
-    }
-
-    return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_get_sve(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t *r;
-    int n, ret;
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
-        r = &env->vfp.zregs[n].d[0];
-        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-        sve_bswap64(r, r, cpu->sve_max_vq * 2);
-    }
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
-        r = &env->vfp.pregs[n].p[0];
-        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-    }
-
-    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
-    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
-    if (ret) {
-        return ret;
-    }
-    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-
-    return 0;
-}
-
-int kvm_arch_get_registers(CPUState *cs)
-{
-    uint64_t val;
-    unsigned int el;
-    uint32_t fpr;
-    int i, ret;
-
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-
-    for (i = 0; i < 31; i++) {
-        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
-                              &env->xregs[i]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
-    if (ret) {
-        return ret;
-    }
-
-    env->aarch64 = ((val & PSTATE_nRW) == 0);
-    if (is_a64(env)) {
-        pstate_write(env, val);
-    } else {
-        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
-    }
-
-    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
-     * QEMU side we keep the current SP in xregs[31] as well.
-     */
-    aarch64_restore_sp(env, 1);
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
-    if (ret) {
-        return ret;
-    }
-
-    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
-     * incoming AArch64 regs received from 64-bit KVM.
-     * We must perform this after all of the registers have been acquired from
-     * the kernel.
-     */
-    if (!is_a64(env)) {
-        aarch64_sync_64_to_32(env);
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Fetch the SPSR registers
-     *
-     * KVM SPSRs 0-4 map to QEMU banks 1-5
-     */
-    for (i = 0; i < KVM_NR_SPSR; i++) {
-        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
-                              &env->banked_spsr[i + 1]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    el = arm_current_el(env);
-    if (el > 0 && !is_a64(env)) {
-        i = bank_number(env->uncached_cpsr & CPSR_M);
-        env->spsr = env->banked_spsr[i];
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arch_get_sve(cs);
-    } else {
-        ret = kvm_arch_get_fpsimd(cs);
-    }
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpsr(env, fpr);
-
-    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpcr(env, fpr);
-
-    ret = kvm_get_vcpu_events(cpu);
-    if (ret) {
-        return ret;
-    }
-
-    if (!write_kvmstate_to_list(cpu)) {
-        return -EINVAL;
-    }
-    /* Note that it's OK to have registers which aren't in CPUState,
-     * so we can ignore a failure return here.
-     */
-    write_list_to_cpustate(cpu);
-
-    kvm_arm_sync_mpstate_to_qemu(cpu);
-
-    /* TODO: other registers */
-    return ret;
-}
-
-void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
-{
-    ram_addr_t ram_addr;
-    hwaddr paddr;
-
-    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
-
-    if (acpi_ghes_present() && addr) {
-        ram_addr = qemu_ram_addr_from_host(addr);
-        if (ram_addr != RAM_ADDR_INVALID &&
-            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
-            kvm_hwpoison_page_add(ram_addr);
-            /*
-             * If this is a BUS_MCEERR_AR, we know we have been called
-             * synchronously from the vCPU thread, so we can easily
-             * synchronize the state and inject an error.
-             *
-             * TODO: we currently don't tell the guest at all about
-             * BUS_MCEERR_AO. In that case we might either be being
-             * called synchronously from the vCPU thread, or a bit
-             * later from the main thread, so doing the injection of
-             * the error would be more complicated.
-             */
-            if (code == BUS_MCEERR_AR) {
-                kvm_cpu_synchronize_state(c);
-                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
-                    kvm_inject_arm_sea(c);
-                } else {
-                    error_report("failed to record the error");
-                    abort();
-                }
-            }
-            return;
-        }
-        if (code == BUS_MCEERR_AO) {
-            error_report("Hardware memory error at addr %p for memory used by "
-                "QEMU itself instead of guest system!", addr);
-        }
-    }
-
-    if (code == BUS_MCEERR_AR) {
-        error_report("Hardware memory error!");
-        exit(1);
-    }
-}
-
-/* C6.6.29 BRK instruction */
-static const uint32_t brk_insn = 0xd4200000;
-
-int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
-    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
-        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
-        return -EINVAL;
-    }
-    return 0;
-}
-
-int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
-    static uint32_t brk;
-
-    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
-        brk != brk_insn ||
-        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
-        return -EINVAL;
-    }
-    return 0;
-}
diff --git a/target/arm/meson.build b/target/arm/meson.build
index 5d04a8e94f..d6c3902e67 100644
--- a/target/arm/meson.build
+++ b/target/arm/meson.build
@@ -8,7 +8,7 @@ arm_ss.add(files(
 ))
 arm_ss.add(zlib)
 
-arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c', 
'kvm64.c'), if_false: files('kvm-stub.c'))
+arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c'), 
if_false: files('kvm-stub.c'))
 arm_ss.add(when: 'CONFIG_HVF', if_true: files('hyp_gdbstub.c'))
 
 arm_ss.add(when: 'TARGET_AARCH64', if_true: files(
-- 
2.34.1




reply via email to

[Prev in Thread] Current Thread [Next in Thread]