FEAT_CMOW introduces support for controlling cache maintenance
instructions executed in EL0/1 and is mandatory from Armv8.8.
On real hardware, the main use for this feature is to prevent processes
from invalidating or flushing cache lines for addresses they only have
read permission, which can impact the performance of other processes.
QEMU implements all cache instructions as NOPs, and, according to rule
[1], which states that generating any Permission fault when a cache
instruction is implemented as a NOP is implementation-defined, no
Permission fault is generated for any cache instruction when it lacks
read and write permissions.
QEMU does not model any cache topology, so the PoU and PoC are before
any cache, and rules [2] apply. These rules states that generating any
MMU fault for cache instructions in this topology is also
implementation-defined. Therefore, for FEAT_CMOW, we do not generate any
MMU faults either, instead, we only advertise it in the feature
register.
[1] Rule R_HGLYG of section D8.14.3, Arm ARM K.a.
[2] Rules R_MZTNR and R_DNZYL of section D8.14.3, Arm ARM K.a.
Signed-off-by: Gustavo Romero <gustavo.romero@linaro.org>
---
docs/system/arm/emulation.rst | 1 +
target/arm/cpu-features.h | 5 +++++
target/arm/cpu.h | 1 +
target/arm/tcg/cpu64.c | 1 +
4 files changed, 8 insertions(+)
diff --git a/docs/system/arm/emulation.rst b/docs/system/arm/emulation.rst
index 35f52a54b1..a2a388f091 100644
--- a/docs/system/arm/emulation.rst
+++ b/docs/system/arm/emulation.rst
@@ -26,6 +26,7 @@ the following architecture extensions:
- FEAT_BF16 (AArch64 BFloat16 instructions)
- FEAT_BTI (Branch Target Identification)
- FEAT_CCIDX (Extended cache index)
+- FEAT_CMOW (Control for cache maintenance permission)
- FEAT_CRC32 (CRC32 instructions)
- FEAT_Crypto (Cryptographic Extension)
- FEAT_CSV2 (Cache speculation variant 2)
diff --git a/target/arm/cpu-features.h b/target/arm/cpu-features.h
index 04ce281826..e806f138b8 100644
--- a/target/arm/cpu-features.h
+++ b/target/arm/cpu-features.h
@@ -802,6 +802,11 @@ static inline bool isar_feature_aa64_tidcp1(const
ARMISARegisters *id)
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, TIDCP1) != 0;
}
+static inline bool isar_feature_aa64_cmow(const ARMISARegisters *id)
+{
+ return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, CMOW) != 0;
+}