
Applied Arti�cial Intelligence, 14 :311È325, 2000
Copyright 2000 Taylor & FrancisÓ
0883 ± 9514/00 $12.00 1 .00

u UNIVERSITY COURSE
TIMETABLING USING
CONSTRAINT HANDLING
RULES

SLIM ABDENNADHER and MICHAEL MARTE
Computer Science Department, University of Munich,
Munich, Germany

T imetabling the courses o†ered at the Computer Science Department of the University of
Munich requires the processing of hard and soft constraints. Hard constraints are
conditions that must be satisÐed soft constraints, however, may be violated, but should be
satisÐed as much as possible. T his paper shows how to model the timetabling problem as a
partial constraint satisfaction problem and gives a concise Ðnite domain solver implemented
with constraint handling rules that, by performing soft constraint propagation, allows for
making soft constraints an active part of the problem± solving process. Furthermore,
efficiency is improved by reusing parts of the timetable of the previous year. T his prototype
needs only a few minutes to create a timetable while manual timetabling usually takes a few
days. T his was presented at the SystemsÏ98 Computer Fair in Munich and several
universities have inquired about it.

University course timetabling problems are combinatorial problems, which
consist of scheduling a set of courses within a given number of rooms and
time periods. Solving a real world timetabling problem manually often
requires a signi�cant amount of time, sometimes several days or even weeks.
Therefore, a lot of research has been invested in order to provide automated
support for human timetablers. Contributions come from the �elds of oper±

ations research (e.g., graph coloring, network �ow techniques) and arti�cial
intelligence (e.g., simulated annealing, tabu search, genetic algorithms, con±

straint satisfaction) (Schaerf, 1995). This paper refers to terms and methods
from constraint satisfaction (Mackworth, 1992 ; Kumar, 1992). The methods
presented were developed using constraint logic programming (CLP) (JaŒar
& Maher, 1994 ; FruÈ hwirth & Abdennadher, 1996 ; Marriott & Stuckey,
1998). Constraint logic programming combines the declarativity of logic
programming with the efficiency of methods from operations research and

Address correspondence to Slim Abdennadher, Computer Science Department, University of
Munich, Oettingenstr. 67, 80538 Munich, Germany. E± mail : {Slim.Abdennadher,
Michael.Marte}@informatik.uni± muenchen.de

311

312 S. Abdennadher and M. Marte

arti�cial intelligence. It has recently become a promising approach for
solving timetabling problems.

Applying classical methods from constraint satisfaction requires to
model the problem as a constraint satisfaction problem (CSP), i.e., a set of
variables (representing the points in time courses must begin, for example),
each associated with a domain of values it can take on, and a set of con±

straints among the variables. Constraints are relations that specify the space
of solutions by forbidding combinations of values.

Methods include search, heuristics, and constraint propagation. Typi±
cally, systematic search (e.g., chronological backtracking) assigns values to
variables sequentially following some search order. If the procedure fails to
extend a partial solution, decisions are undone and alternatives explored.
Systematic search often relies on heuristics, which de�ne the order in which
variables and values are chosen. Constraint propagation is complementary ;
it simpli�es a problem by identifying values that cannot participate in a
solution. This way the search space gets pruned and search becomes easier.

The classical CSP framework is of particular interest because many
problems from design, resource allocation, and decision support (among
others) can be cast as CSPs naturally (JaŒar & Maher, 1994 ; Wallace, 1996).
However, it is not sufficiently expressive for the application under study
here. In particular, it does not allow for a distinction between hard con±

straints, which are mandatory, and soft constraints, which should get satis±

�ed but may get violated in case this is unavoidable. This limitation forces
to treat soft constraints as if they were hard, which frequently leads to over±

constrained CSPs without solutions.
Several CSP± based frameworks have been introduced which facilitate the

formal treatment of soft constraints. For example, hierarchical constraint
logic programming (Borning et al., 1992) allows for constraint hierarchies (a
constraint on some level is more important than any set of constraints from
lower levels, but constraints of the same level are equally important), while
in partial constraint satisfaction (Freuder & Wallace, 1992) each constraint
is associated with the cost of its violation; see Bistarelli et al. (1997) for a
more powerful framework, which subsumes other frameworks.

In practice, most constraint± based timetabling systems either do not
support soft constraints (Azevedo & Barahona, 1994) or use a branch and
bound search instead of chronological backtracking (Henz & WuÈ rtz, 1995 ;
Frangouli et al., 1995). Branch and bound starts out from a solution and
requires the next solution to be better. Quality is measured by a suitable
cost function that depends on the set of violated soft constraints. With this
approach, however, soft constraints play no role in selecting variables and
values, i.e., they do not guide search.

Another approach is to adopt techniques developed to propagate hard
constraints ; soft constraint propagation is intended to associate values with

T imetabling 313

an estimate of how selecting a value will in�uence solution quality, i.e.,
which value is known (or expected) to violate soft constraints, or the other
way round, which value is known (or expected to) satisfy soft constraints. By
considering estimates in value selection, one hopes that the �rst solution will
satisfy a lot of soft constraints. For example, Meyer auf’m Hofe (1997) pre±

sents a commercial C1 1 library providing black box constraint solvers
and search methods for the nurse scheduling problem.

Since the black box approach makes it hard to modify a solver or build
a solver over a new domain, the aim was to implement a solver for the
timetabling problem using the ‘‘glass box’’ approach Constraint Handling
Rules (CHR) (FruÈ hwirth, 1995, 1998). Constraint handling rules is a power±

ful special purpose declarative programming language for writing
application± oriented constraint solvers either from scratch or by modifying
existing solvers. Inspired by an existing �nite domain solver written in CHR,
a solver was developed which performs hard and soft constraint propaga±

tion. The core of the solver takes no more than 20 lines of code. Further±

more, the system, IfIPlan,1 brought down the time necessary for creating a
timetable from a few days by hand to a few minutes on a computer.

In this article, the main features of the constraint solver that are
described were used to generate a timetable for the Computer Science
Department of the University of Munich. The next section introduces our
timetabling problem and the constraints that a solution of the problem had
to satisfy. The section The Constraint Model shows how the problem can be
modelled as a partial constraint satisfaction problem. The section Solving
the Problem with CHR gives an overview of the implementation. This paper
is an extended and substantially revised version of Abdennadher and Marte
(1998).

THE TIMETABLING PROBLEM
The Process of Timetabling

The Computer Science Department at the University of Munich oŒers a
�ve± year program for a master’s degree in computer science consisting of
undergraduate studies (two years) and graduate studies (three years). The
problem of timetabling is to be solved every term on the basis of the time±

table of the previous year, the teachers’ personal preferences, and a given set
of courses, each associated with its teachers. The overall process of manual
timetabling runs as follows.

After collecting wishes of teachers and information on new courses, a
�rst proposal is developed with the timetable of the previous year as a start±
ing point. This is done by using free slots in the timetable left by courses not
taking place again for new courses oŒered by the same people, whereas

314 S. Abdennadher and M. Marte

wishes of teachers take precedence over the timetable of the previous year.
After handing out the proposal to all teachers, evaluations and new wishes
are collected.

With the current proposal as a starting point, a new proposal is devel±
oped incorporating the responses on the current proposal, again changing as
little as possible, and so on. Creating a new timetable is thus a multistage,
incremental process. Relying on the timetable of the previous year and
changing as little as possible by incremental scheduling drastically reduces
the amount of work necessary for creating a new timetable and ensures
acceptance of the new timetable by keeping the weekly course of events
people are accustomed to.

Note that the assignment of rooms is done elsewhere. Nevertheless, con±

�icting requirements for space or certain equipment may be a cause for
changing the timetable.

Constraints
The general constraints are due to physical laws, academic reasons, and

personal preferences of teachers :

teacher cannot be in two places at the same time, so avoid clashing thed A
courses of a teacher. There should be at least a one hour break between
two courses of a teacher.

teachers prefer certain times or days for teaching.d Some
afternoon is reserved for professors’ meetings : Do not scheduled Monday

professors’ courses for Monday afternoon.
department consists of �ve units, each dedicated to a certain area ofd The

research. Most courses are held by members of a single unit while only a
few courses are held by members of diŒerent units. Courses held by
members of a certain unit must not clash with courses held by other
members of the same unit.

oŒering typically consists of two lectures and a tutorial per week.d An
There should be a day break between the lectures of an oŒering. The
tutorial should not take place on a day, on which a lecture of the same
oŒering takes place. All courses should be scheduled between 9 a.m. and 6
p.m. No lectures should be scheduled for Friday afternoon. No tutorials
should be scheduled for late Friday afternoon.

few of the courses are mandatory for and dedicated to students of ad Only
certain term, while most courses are optional and open to all students.
For each term of the undergraduate studies there is a set of mandatory
courses, the attendance of which is highly recommended. Courses of the
graduate studies only rely on the knowledge provided by courses of the

T imetabling 315

undergraduate studies. There is no recommended order of attendance.
Undergraduate courses of a term must not clash, while undergraduate
courses of diŒerent terms are allowed to clash. Graduate courses should
not clash.

Observations and Problems
First observations made clear that existing timetables do not meet the

requirements stated, e.g., courses of a unit or graduate courses clash or a
lecture of an oŒering and a tutorial of the same oŒering are scheduled for the
same day. Furthermore, considering the number of graduate courses oŒered
over the years, it became clear that there is too little space to schedule all
graduate courses without clashes. This is due to the following reason. As
mentioned before, undergraduate courses are mandatory and there is a
recommended order of attendance. This way it is possible to distinguish
students of the �rst term from students of the third term and students of the
second term from students of the fourth term, which makes it possible to
allow clashing of undergraduate courses of diŒerent terms. The graduate
courses only rely on the knowledge provided by the undergraduate courses.
There is no recommended order of attendance, thus making it impossible to
distinguish students of the �fth term from e.g. students of the seventh term,
which makes it necessary to disallow clashing of graduate courses in some
way. So we faced two problems:

demand for incremental scheduling by basing the new timetable ond The
the timetable of the previous year and changing as little as possible made
it necessary to handle old timetables, which do not meet the requirements
stated.

a scheduler’s point± of± view, the graduate studies lack structured From
taking freedom and leading to overconstrained timetable speci�cations.

Tackling the second problem by removing selected no± clash constraints
turned out to be laborious and time± consuming and, therefore, impractical.
Classifying graduate courses by contents and expected number of students
and allowing clashing of courses of diŒerent categories won back some
freedom, but it was not possible to identify enough categories in such a way
that courses spread evenly over categories, which would have been necessary
to prevent con�icts. It became clear that we were in need of some kind of
weighted constraints able to express weak and strong constraints that are
not mandatory.

316 S. Abdennadher and M. Marte

THE CONSTRAINT MODEL
A Constraint Satisfaction Problem (CSP) consists of a �nite set of vari±

ables, each associated with a �nite domain and a �nite set of constraints. A
solution of a CSP maps each variable to a value of its domain such that all
the constraints are satis�ed. A partial constraint satisfaction problem (PCSP)
(Freuder & Wallace, 1992) is a CSP where each constraint is associated with
a weight. A weight of a constraint expresses the importance of its ful�llment,
allowing one to distinguish hard constraints from soft constraints. Hard
constraints stand out due to in�nite weights. The �nite weights of soft con±

straints allow for the speci�cation of preferences among constraints. A solu±

tion of a PCSP maps each variable to a value of its domain such that all
hard constraints are satis�ed and the total weight of the violated soft con±

straints is minimal.
Clearly, we only need one variable for each course holding the period,

i.e., the starting time point, it has been scheduled for. Each variable’s domain
consists of the whole week, the periods being numbered from 0 to 167, e.g., 9
denotes 9 a.m. on Monday, and so on. Requirements, wishes, and rec±

ommendations can be expressed with a small set of specialized constraints.

constraints demand that a course must not clash with anotherd No± clash
one.

constraints and availability constraints are used to expressd Preassignment
teachers’ preferences and that a course must (not) take place at a certain
time.

constraints make sure that there is at least one day (hour)d Distribution
between a course and another, or that two courses are scheduled for dif±
ferent days.

constraints make sure that one course will be scheduledd Compactness
directly after another.

With respect to soft constraints, three grades of preferences were chosen :
weakly preferred, preferred, and strongly preferred, which get translated to
the integer weights 1, 3, and 9.

SOLVING THE PROBLEM WITH CONSTRAINT
HANDLING RULES (CHR)

Constraint handling rules (FruÈ hwirth, 1995) is a declarative high level
language extension especially designed for writing constraint solvers. With
CHR, one can introduce user± deÐned constraints into a given host language,
be it Prolog, Lisp, or any other language. To implement the timetabling
problem the CHR library of ECLiPSe was used (ECRC constraint logic pro±

gramming system (Aggoun et al., 1994)).

T imetabling 317

Constraint handling rules are essentially a committed± choice language
consisting of multiheaded guarded rules that rewrite constraints into simpler
ones until they are solved. There are basically two kinds of CHRs: Simpli� ±

cation rules replace constraints by simpler constraints while preserving
logical equivalence (e.g., X>Y, Y>X Û false). Propagation rules add new
constraints which are logically redundant but may cause further simpli�ca±

tion (e.g., X>Y, Y>Z Þ X>Z). Repeatedly applying the rules incrementally
solves constraints (e.g., A>B, B>C, C>A leads to false). With multiple
heads and propagation rules, CHR provides two features which are essential
for nontrivial constraint handling. Due to space limitations, a formal
account of syntax and semantics of CHR cannot be given in this paper. An
overview on CHR can be found in FruÈ hwirth (1995). Detailed semantics
results for CHR are available in Abdennadher (1997).

Domains
Constraint solving for �nite domains constraints is based on consistency

techniques (MacKworth, 1992 ; Kumar, 1992). For example, the constraints
X :: [2, 3, 4], i.e., X must take a value from the list [2, 3, 4], and X

:: [3, 4, 5] may be replaced by the new constraint X :: [3, 4]. Imple±

menting this technique with CHR is straightforward (FruÈ hwirth & Abden±

nadher, 1997) but this scheme is not sufficient for one’s needs : since soft
constraints may be violated, the values to be constrained must not be
removed from the domain of the variable. Moreover, when a value for the
variable has to be chosen during search, one must be able to decide whether
a certain value is a good choice or not. Therefore, each value must be associ±
ated with an assessment. A domain is chosen to be represented by a list of
value± assessment pairs. For example, assume the domain of X is [(3, 0),

(4, 1), (5, ±1)]. Then X may take one of values 3, 4, and 5 ; whereas,
4 is encouraged with assessment 1 and 5 is discouraged with assessment ±1.

Low-Level Constraints
The solver is based on three types of constraints :

D) means that X must get assigned a value occurring in thed domain(X,

list of value± assessment pairs D.
L, W) : Its meaning depends on the weight W. If W=inf, i.e., if thed in(X,

constraint is hard, it means that X must get assigned a value occurring in
the list L. If W is a number, i.e., if the constraint is soft, it means that the
assessment for the values occurring in L should be increased by W.

L, W), if hard, means that X must not get assigned any of thed notin(X,

values occurring in the list L. If it is soft, it means that the assessment for
the values occurring in L should be decreased by W.

318 S. Abdennadher and M. Marte

The Core of the Solver
Propagating a soft constraint is intended to modify the assessment of the

values to be constrained. For example, assume the domain of X is [(3, 0),

(4, 1), (5, ±1)], and assume the existence of the constraint in (X,

[3], 2) stating that 3 should be assigned to X with preference 2. Then we
have to increase the assessment for value 3 in the domain of X by adding 2

to the current assessment of 3 obtaining the new domain [(3, 2), (4,

1), (5, ±1)] for X. However, applying a hard constraint will still mean to
remove values from the variable’s domain. Consequently, an in constraint is
processed by either pruning the domain or increasing the assessment for the
given values

domain(X, D), in(X, L, W) Û W=inf |

domain–intersection(D, L, D1),

domain(X, D1) (fd–in–hard)

domain(X, D), in(X, L, W) Û W \= inf |

increase–assessment(W, L, D, D1),

domain(X, D1) (fd–in–soft).

In case a hard in constraint has arrived, rule fd–in–hard looks for the
corresponding domain constraint, which contains the current domain D,
and replaces both by a new domain constraint, which contains the new
domain D1. The domain D1 results from intersecting D with the list of values
L. Rule fd–in–soft works quite similar except for D1 results from D by
increasing the assessments for the values occurring in L. Note that the
guards exclude each other. Therefore, whichever constraint arrives, only one
of the rules will be applicable. The rules for notin are similar :

domain(X, D), notin(X, L, W) Û W=inf |

domain–subtraction(D, L, D1),

domain(X, D1) (fd–notin–hard)

domain(X, D), notin(X, L, W) Û W \= inf |

decrease–assessment(W, L, D, D1)

domain(X, D1) (fd–notin–soft).

Substracting weights, which are always positive, may result in negative
assessments.

Whenever a domain of a variable has been reduced to the empty list, the
variable cannot get assigned a value without violating hard constraints. This
case is dealt with by the following simpli�cation rule:

domain(–, []) Û false (fd–empty).

With only one value left in a domain of a variable, one can assign the
remaining value to the variable immediately :

domain(X, [(A, –)]) Þ X=A (fd–singleton).

T imetabling 319

A propagation rule is used instead of a simpli�cation rule because the
domain constraint must not be removed. Without it, the processing of in

and notin constraints imposed on the domain of a variable would not be
guaranteed and thus an inconsistency might be overlooked.

Treatment of Global Constraints
Up until now the low± level constraints of the �nite domain solver have

only been dealt with. Now how to express global (n± ary) application± level
constraints is exempli�ed in terms of in and notin constraints.

no–clash (W, Xs) mean that, depending on the weight W, the vari±
ables from Xs must or should get assigned distinct values. It gets translated
to notin constraints. This translation is data driven: whenever one of the
variables from Xs gets assigned a value, this value gets discouraged or for±

bidden for the other variables by the following rule:

no–clash(W, Xs) Û
Xs \=[–],

select–ground–var(Xs, X, XsRest)

|

post–notin–constraints(W, X, XsRest),

no–clash(W, XsRest) (fd–no–clash).

The guard �rst makes sure that Xs contains at least two elements. Then it
selects a ground variable X from Xs remembering the other variables in
XsRest. With no ground variable in Xs, the Prolog predicate select

–ground–var fails. If the guard holds, no–clash (W, Xs) gets replaced
by

constraints produced by the Prolog predicated notin

post–notin–constraints , one for each member of XsRest, discour±

aging or forbidding the value X, and
no–clash constraint stating that the variables in XsRest should ord a

must get assigned distinct values.

Note that the predicate post–notin–constraints fails in case XsRest

contains the value X.
A singleton list of variables means that there is nothing more to do. This

case is handled by the following rule:

no–clash(–, [–]) Û true (fd–no–clash–singleton).

The translation of the other application± level constraints either follows this
scheme or is a one± to± one translation.

320 S. Abdennadher and M. Marte

Interaction of the no–clash Rules and the Core of the Solver
In the following, two examples are presented to show how the CHR rules
interact with each other. In the �rst example, only hard constraints are dealt
with. Assume the current state of a computation consists of the constraints

domain(X, [(1, 0), (2, 0)]),

domain(Y, [(1, 0), (2, 0)]),

and

no–clash(inf, [X, Y]).

Since neither X nor Y are ground, no rule is applicable. After adding the
constraint in (X, [1], inf) rule fd–in–hard becomes applicable and
simpli�es

domain(X, [(1, 0), (2, 0)])

and

in(X, [1], inf)

to

domain(X, [(1, 0)]).

Now rule fd–singleton becomes applicable and propagates the equality
constraint X=1. Then, rule fd–no–clash becomes applicable and simpli�es

no–clash(inf, [1, Y])

to

notin(Y, [1], inf)

and

no–clash(inf, [Y]).

Then rules fd–no–clash–singleton and fd–notin–hard become
applicable : rule fd–no–clash–singleton removes no–clash(inf,

[Y]) and rule fd–notin–hard simpli�es

domain(Y, [(1, 0), (2, 0)])

T imetabling 321

and

notin(Y, [1], inf)

to

domain(Y, [(2, 0)]).

Finally, rule fd–singleton becomes applicable and propagates the equal±
ity constraint Y=2. Thus, the �nal state of the computation consists of:

domain(X, [(1, 0)]),

domain(Y, [(2, 0)]),

X=1,

and

Y=2.

In the second example, how the rules treat soft no–clash constraints is
shown. Assume the current state of a computation consists of the con±

straints :

domain(X, [(1, 0), (2, 0)]),

domain(Y, [(1, 0), (2, 0)]),

and

no–clash(1, [X, Y]).

Again, in (X, [1], inf) is added. Until rule fd–no–clash becomes
applicable, the computation proceeds as before. Then rule fd–no–clash

simpli�es

no–clash(1, [1, Y])

to

notin(Y, [1], 1)

and

no–clash(1, [Y]).

Finally, both rules fd–no–clash–singleton and fd–notin–soft

become applicable : rule fd–no–clash–singleton removes no–clash

(1, [Y]) and rule fd–notin–soft simpli�es

322 S. Abdennadher and M. Marte

domain(Y, [(1, 0), (2, 0)])

and

notin(Y, [1], 1)

to

domain(Y, [(1, ±1), (2, 0)]).

Thus, the �nal state of the computation consists of:

domain(X, [(1, 0)]),

domain(Y, [(1, ±1), (2, 0)]),

and

X=1.

Propagation Performance
The �rst rule for no–clash (fd–no–clash) acts as a constraint pro±

pagator that ampli�es the constraint store by incrementally spanning a
network of notin constraints. Since the propagator sleeps as long as none
of the variables its surveys gets assigned a value, a no–clash constraint
cannot contribute to a solution as long as none of its courses get scheduled.
This approach is similar to the implementation of CHIP’s all–different

constraint (van Hentenryck, 1989).
Combining the solver with chronological backtracking results in a

search procedure, which, with respect to propagation performance, is a little
better than the forward checking algorithm (Haralick & Elliott, 1980) and
much worse than the generalized arc± consistency algorithm (Mohr &
Masini, 1988).

Concerning the reusability of our solver, we cannot give a de�nite
answer. On the one hand, experience shows that, for a variety of problems,
forward± checking together with additional search is more efficient than
applying more expensive consistency techniques (Kumar, 1992). On the
other hand, there is evidence that maintaining arc consistency is necessary to
solve the larger and the harder problems efficiently (Bessiére & ReÂ gin, 1996 ;
Sabin & Freuder, 1997 ; Marte 1998).

Whether the performance of the solver is sufficient to solve a whole uni±
versity timetabling problem depends on the structure of the problem. If
departments share teachers, students, rooms, or equipment and sharing has
to be taken into account, the problem might be too hard. Otherwise, the
university timetabling problem breaks down into several independent time±

T imetabling 323

tabling problems, one for each department. This is the case with most
German universities.

The Search Procedure
The search procedure employed integrates the solver given above with

chronological backtracking and heuristics for variable and value selection.
For variable selection, the �rst fail principle (Haralick & Elliott, 1980) was
chosen, which dynamically orders variables by increasing cardinality of
domains, i.e., the principle proposes to select one of the variables with the
smallest domains with respect to the current state of computation. For value
selection, a best± �t strategy was used choosing one of the best rated periods.
From an optimistic point of view, this will be one of the periods violating a
set of soft constraints with minimal total weight, but the estimate may be
too good due to the low propagation performance of the no–clash solver.
Furthermore, the best assessment does not necessarily violate a minimum
number of constraints : a strong personal preference may balance out 10
weak no± clash constraints. This approach yielded a good �rst solution to the
problem. It was not necessary to search for a better solution.

Generation of Timetables
The generation of a timetable runs as follows. Each course is associated

with a domain constraint allowing for the whole week, the periods being
numbered from 0 to 167. It is important to note that, for each course, the
initial assessment for all periods is 0 indicating that no period is given pref±
erence initially. Then preassignment constraints and availability constraints
will be translated into in and notin constraints. Adding in and notin

constraints may narrow the domains of the courses using the rules presented
above. Propagation continues until a �xpoint is reached, that is to say, when
further rewriting does not change the store. Usually, our consistency± based
�nite domain solver is not powerful enough to determine that the con±

straints are satis�able. In order to guarantee that a valid solution is found
the search procedure is called. Addition of an in constraint may initiate
propagation, and so on.

Now that we have discussed the details of creating a timetable, how does
one create a new timetable based on a timetable of the previous year with
this system? Central to our solution is the notion of Ðxing a timetable.
Fixing a timetable consists in adding a (strongly preferred) soft pre±

assignment constraint for each course that has been scheduled ensuring that
all courses oŒered again will be scheduled for the same time.

The time necessary to compute a timetable depends on whether a pre±

vious timetable is reused or not. Scheduling 89 courses within 42 time

324 S. Abdennadher and M. Marte

periods from scratch took about �ve minutes. Considering an ‘‘almost good’’
previous timetable saved about two and a half minutes.

CONCLUSION
Constraint handling rules is a declarative high level language extension,

especially designed for writing application± oriented constraint solvers. In
this paper, it has been argued that CHR is a good vehicle for implementing
a �nite domain solver that performs hard and soft constraint propagation.
The solver is powerful enough to serve as the core of a university time±

tabling system.
The scheduler runs on ECLiPSe complemented by the CHR library. The

internet is relied on, and more speci�cally the World Wide Web (WWW) to
enable teachers to enter new wishes and oŒerings into the speci�cation by
themselves. The Web front end is based on HTML; pages are also generated
by a Prolog program. Developing the constraint solver and attaching it to a
database of timetabling problems took about three weeks ; developing the
front end took another two weeks. The solver takes only a few lines of code.

The I�Plan system has been in use at the Computer Science Department
of the University of Munich for four terms. The good execution times
achieved and the very reasonable timetables generated demonstrate that
CHR is able to reconcile efficient execution and declarative implementation.
This very high level approach also means that the program can be easily
maintained and modi�ed.

NOTES
1. I�Plan is an acronym for the German, ‘‘Planer fuÈ r das Institut fuÈ r Informatik’’.

REFERENCES
Abdennadher, S. 1997. Operational semantics and con�uence of constraint propagation rules. In T hird

International Conference on Principles and Practice of Constraint Programming, LNCS 1330. New
York: Springer.

Abdennadher, S., and M. Marte. 1998. University timetabling using constraint handling rules. In Actes
des Francophones de Programmation en L ogique et Programmation par Contraintes.JourneÂ es

Aggoun, A., D. Chan, P. Dufrense, E. Falvey, H. Grant, A. Herold, G. Macartney, M. Maier, D. Miller,
B. Perez, E. van Rossum, J. Schimpf, P. Tsahageas, and D. de Villeneuve 1994. ECL iPSe3.4 User
Manual. Munich, Germany: European Computer Research Center (ECRC), July.

Azevedo, F., and P. Barahona. 1994. Timetabling in constraint logic programming. In Proceedings of 2nd
W orld Congress on Expert Systems.

Bessiére, C., and J.± C. ReÂ gin. 1996. MAC and combined heuristics : Two reasons to forsake FC (and
CBJ?) on hard problems. In Second International Conference on Principles and Practice of Con±

straint Programming, LNCS 1118, 61È75. New York: Springer.
Bistarelli, S., U. Montanari, and F. Rossi. 1997. Semiring± based constraint satisfaction and optimization.

Journal of the ACM 44(2):201È236.

http://ninetta.cranfield.ac.uk/nw=1/rpsv/0004-5411^28^2944:2L.201[aid=712216,csa=0004-5411^26vol=44^26iss=2^26firstpage=201]

T imetabling 325

Borning, A., B. N. Freeman± Benson, and M. Wilson. 1992. Constraint hierarchies. L isp and Symbolic
Computation 5(3):223È270.

Frangouli, H., V. Harmandas, and P. Stamatopoulos. UTSE: Construction of optimum timetables for
university courses± A CLP based approach. In Proceedings of the T hird International Conference on
the Practical Applications of Prolog, 225È243.

Freuder, E. C., and R. J. Wallace. 1992. Partial constraint satisfaction. ArtiÐcial Intelligence 58(1È3):
21È70.

FruÈ hwirth, T. 1995. Constraint handling rules. In Constraint Programming : Basics and T rends, ed. A.
Padelski. LNCS 910. New York: Springer.

FruÈ hwirth, T. 1998. Theory and practice of constraint handling rules (Special issue on constraint logic
programming). Journal of L ogic Programming, 37(1È3):95È138.

FruÈ hwirth, T., and S. Abdennadher. 1997. Constraint ± Programmierung : Grundlagen und Anwendungen.
New York: Springer.

Haralick, R. M., and G. L. Elliott. 1980. Increasing tree search efficiency for constraint satisfaction prob±

lems. ArtiÐcial Intelligence 14 :263È313.
Henz, M., and J. WuÈ rtz. 1995. Using Oz for college time tabling. In Proceedings of the First International

Conference on the Practice and T heory of Automated T imetabling, 283È296.
JaŒar, J., and M. J. Maher. 1994. Constraint logic programming : A survey. T he Journal of L ogic Pro±

gramming 19È20 :503È582.
Kumar, V. 1992. Algorithms for constraint± satisfaction problems : A survey. AI Magazine 13(1):32È44.
Mackworth, A. K. 1992. Constraint satisfaction. In Encyclopedia of ArtiÐcial Intelligence, 2nd ed., Vol. 1,

ed. Stuart C. Shapiro, 285È293. New York: Wiley.
Marriott, K., and P. Stuckey. 1998. Programming with Constraints : An Introduction. Cambridge: MIT

Press.
Marte, M. 1998. Constraint± based grammar school timetabling± A case study. Diplomarbeit, Lehr± und

Forschungseinheit fuÈ r Programmier± und Modellierungssprachen, Institut fuÈ r Informatik, Ludwig±

Maximilians± UniversitaÈ t MuÈ nchen.
Meyer auf’m Hofe, H. 1997. ConPlan/SIEDAplan : Personnel assignment as a problem of hierarchical

constraint satisfaction. In Proceedings of the 3rd International Conference on the Practical Applica±

tion of Constraint T echnology, 257È272, 1997.
Mohr, R., and G. Masini. 1988. Good old discrete relaxation. In Proceedings of the 8th European Con±

ference on ArtiÐcial Intelligence, 651È656. Boston: Pitman Publishers.
Sabin, D., and E. C. Freuder. 1997. Understanding and improving the mac algorithm. In T hird Interna±

tional Conference on Principles and Practice of Constraint Programming, LNCS 1330, 167È181. New
York: Springer.

Schaerf, A. 1995. A survey of automated timetabling. T echnical Report CS± R9567, CWI± Centrum voor
Wiskunde en Informatica.

van Hentenryck, P. 1989. Constraint Satisfaction in L ogic Programming. Cambridge: MIT Press.
Wallace, M. 1996. Practical applications of constraint programming. Constraints Journal 1 :139È168.

http://ninetta.cranfield.ac.uk/nw=1/rpsv/0892-4635^28^295:3L.223[aid=712217]
http://ninetta.cranfield.ac.uk/nw=1/rpsv/0892-4635^28^295:3L.223[aid=712217]

