Looking at it further, I realise you need do disclose the result in order to
make them equivalent:
* IOTA ← {⊃∘.,/⍳¨⍵}*
Regards,
Elias
On 2 March 2016 at 10:19, Elias Mårtenson <address@hidden
<mailto:address@hidden>> wrote:
I don't know about a loop, but wouldn't this do the same thing?
* IOTA ← {∘.,/⍳¨⍵}*
Regards,
Elias
On 2 March 2016 at 09:57, Christian Robert <address@hidden
<mailto:address@hidden>> wrote:
I have this function,
∇IOTA[⎕]∇
∇
[0] z←IOTA v
[1] z←⍳↑v
[2] v←1↓,v
[3] Loop: →(0=⍴v)/0
[4] z←z∘.,⍳↑v
[5] v←1↓v
[6] →Loop
∇
]boxing 24
IOTA 0
┌⊖┐
│0│
└─┘
IOTA 10
┌10──────────────────┐
│1 2 3 4 5 6 7 8 9 10 <tel:1%202%203%204%205%206%207%208%209%2010>│
└────────────────────┘
IOTA 2 3
┌3────────────────┐
2┌2──┐ ┌2──┐ ┌2──┐│
││1 1│ │1 2│ │1 3││
│└───┘ └───┘ └───┘│
│┌2──┐ ┌2──┐ ┌2──┐│
││2 1│ │2 2│ │2 3││
│└───┘ └───┘ └───┘│
└∊────────────────┘
IOTA 2 3 5
┌5──────────────────────────────────────┐
2┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││1 1 1│ │1 1 2│ │1 1 3│ │1 1 4│ │1 1 5││
3└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
│┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││1 2 1│ │1 2 2│ │1 2 3│ │1 2 4│ │1 2 5││
│└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
│┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││1 3 1│ │1 3 2│ │1 3 3│ │1 3 4│ │1 3 5││
│└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
│ │
│┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││2 1 1│ │2 1 2│ │2 1 3│ │2 1 4│ │2 1 5││
│└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
│┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││2 2 1│ │2 2 2│ │2 2 3│ │2 2 4│ │2 2 5││
│└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
│┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐ ┌3────┐│
││2 3 1│ │2 3 2│ │2 3 3│ │2 3 4│ │2 3 5││
│└─────┘ └─────┘ └─────┘ └─────┘ └─────┘│
└∊──────────────────────────────────────┘
my question is: can such a function can be written in Lambda style ?
(especially in gnuapl)
eg:
IOTA ← { ... }
That IOTA function simulate the behavior of "⍳" on "Dyalog APL" and
NARS2000 and more interpretors when the argument is a vector.
thanks,
Xtian.